
CSC2411 - Linear Programming and
Combinatorial Optimization∗

Lecture 10: Integrality Gap, Rounding
Notes taken by Gerald Quon

April 9, 2007

Summary: In this lecture, we review the properties of Totally Unimodu-
lar Matrices (TUM), and prove that the incidence matrix of directed and bi-
partite graphs is TUM. We then discuss the Maximum Matching problem
as a dual problem of the Vertex Cover problem. We then define Integrality-
Gap, and prove that for vertex cover, we attain an integrality gap of 2. We
then discuss alternative rounding strategies besides naive rounding, and
apply this to the Set Cover problem. We end with an introduction to the
maximum satisfiability (MAX-SAT) problem.

1 Totally Unimodular Matrices
In the previous lecture, we were introduced to Totally Unimodular Matrices (TUMs),
that is, matrices A for which every square submatrix M has det(M) ∈ {+1,−1, 0},
which also leads to the fact that each such matrix A can only have +1, -1, or 0 as
its elements. Furthermore, we pointed out that if A is TUM, then the vertices of the
polytope of Ax = b, x ≥ 0 are integral.

We now prove several theorems that relate TUM incidence matrices to various
graphs.

Claim 1.1. If H is a directed graph, then its incidence matrix is TUM.

Proof. Consider any submatrix M, and its first column - there are three possibilities.
If there exists a 1 in a column, then the determinant of M is the the determinant of the
reminaing matrix. If there is all zeros, then the matrix is singular and its determinant is
0. Else, if a column has a 1 and a -1, the matrix is singular because the sum of rows is
zero in that column.

We now use Claim 1.1 to show the following.

Claim 1.2. If G is a bipartite graph, its incidence matrix is TUM.
∗ Lecture Notes for a course given by Avner Magen, Dept. of Computer Sciecne, University of Toronto.

1

Figure 1: The incidence matrix of a directed, bipartite graph H = (V, E), where V1

is one side, and V2 is the other side, and the dges are directed from V1 to V2. Rows
represent vertices in H , and columns represent its edges. uv = e ∈ E ⇒ Aue =
+1, Ave = −1.

Proof. Take G, and construct a new directed graph H with an incidence matrix as
shown in Figure 1. Then, apply Claim 1.1 on H . To see that the result applies to the
original matrix G, note that the incidence matrix of H is constructed by flipping the
sign of some entries of G (see Figure 2). Hence, the determinent will only scale by a
multiplication factor of 1 or -1, but wil still be either zero, +1, or -1. In other words,
we can view a bipartite graph as a directed graph G, and use Claim 1.1 to get that
det(EG) = ±det(EH).

Remark 1.3. Note that if G is not bipartite, then EG is not TUM. Consider a matrix
G that contains an odd cycle formed by vertices xC1

, xC2
, ..., xCm

, and consider the
submatrix of G, M , formed by the column and rows C1, C2, ..., Cm. det(M) = 2,
therefore M is not TUM.

M =

1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0

. . .
0 0 0 1 1 0
1 0 0 0 1 1

2 Maximum Matching Problem
The Maximum Matching Problem (MM), intuitively, is to find a set of non-adjacent
edges whose total weight is maximal, where non-adjacent edges implies that no two
edges share a common vertex. Here we will show that the LP relaxed version of MM

2

Figure 2: The incidence matrix of an original bipartite graph G is modified to obtain
an incidence matrix of a directed graph H .

Figure 3: The relationship between the optimal values of the relaxed (LP) and exact (IP)
integer programming problems of VC and MM. Note MMIP = MMLP = V CLP =
V CIP for bipartite graphs, according to our Claim that for bipartite graphs, the LP
relaxation is exact.

is like a relaxation of the dual of another Integer Programming (IP) problem. In this
case, Vertex Cover (VC) is the dual of MM.

Problem VC-Relaxed
min

∑

v∈V yv s.t.
yu + yv ≥ 1, uv ∈ E

yu ≥ 0

Problem MM-Relaxed
max

∑

e∈E xe s.t.
∑

e touches v xe ≤ 1, ∀v, xe ∈ {0, 1}
xe ≥ 0

In general, the relationship between the optimal values of the relaxed and exact
solutions of MM and VC are related by the Figure 3, where all of the optimal values
are equal for a bipartite graph.

3 Integrality Gap
In this section we will discuss the notion of Integrality Gap, as well as rounding proce-
dures for turning LP relaxation solutions into integer solutions.

3

Figure 4: Kn for n = 5.

Rounding is a method of taking a fractional solution and mapping it to an integral
solution. For VC, it is easy to see that in general, the LP relaxation is not exact. For
example, take G = Kn (complete graph on n vertices - see Figure 4). The best integral
solution is n − 1 since if 2 nodes are left out, there is one edge between them that is
missed. One possible fractional solution, when all xi = 1

2 , is 1
2n = n

2 . Hence, the
integrality gap is at least n−1

n
2

= 2 − O(1).

Claim 3.1. The integrality gap of LP relaxation for VC is ≤ 2.

Proof. Note in general the easiest way to solve these types of proofs is to take a
feasible solution, ’round’ to an integer solution, and see the change in the objective
function. Do not try to start with an optimal integer solution. So let y = (y1, y2, ..., yn)
be a feasible solution to the LP relaxation of VC. Now define ∀yi,

zi = 1 if yi ≥ 0.5
zi = 0 if yi < 0.5

So y
rounding
−→ z ∈ {0, 1}n. We now must check that z is a valid solution.

ij ∈ E ⇒ yi + yj ≥ 1
⇒ yi ≥

1
2 or yj ≥ 1

2
⇒ zi = 1 or zj = 1

So
Integrality-Gap=sup

OPT (IP)
OPT (LP) =

P

zi
P

yi
.

But
∑

zi =
∑

{i|yi≥
1
2
} 1 ≤ 2

∑

{i|yi≥
1
2
} yi ≤ 2

∑

yi

⇒
P

zi
P

yi
≤ 2

⇒ Integrality-Gap≤ 2.

Figure 5 shows the relationship between the optimal solutions (of both the integer
programming, OPT , and the LP relaxed problem, OPT ∗), as well as the integrality
gap. Note that for a particular instance, the rounding factor is the (Approximation
Factor) x (Integrality Gap). So, bounding the rounding factor bounds the integrality
gap.

4

Figure 5: The relationship between the optimal solution to the LP relaxed minimization
problem, OPT ∗, the optimal solution of the integer program, OPT , and the integer
solution achieved by rounding OPT ∗, A.

Figure 6: The matrix A in Ax = b, for the SCP LP-relaxed problem. Aij = 1 iff ele-
ment i ∈ Sj . Hence, the rows of A correspond to elements, and columns j correspond
to sets Sj .

4 Set-Cover Problem
In this section, we show how to relax the Set-Cover Problem (SCP) and achieve an
approximation factor of 4(log(n) + 2), where SCP is defined below.

Input: U is a universe of elements, and S1, S2, ..., Sm ⊆ U , where |U | = n (U has n

elements).

Output: A minimal subfamily of sets so that every element is covered in at least
one of the sets in the subfamily.

A practical example of this problem might be in hardware circuit design - we have
expensive tests, which each test different registers and variables, and our goal is to test
every component at least once, while minimizing the cost of the tests.

Note feasibility is easy to check - simply check if S1 ∪ S2 ∪ ... ∪ Sn covers all
variables.

We can formulate the LP relaxation of SCP as follows. Let Aij = 1 iff element
i ∈ Sj (See Figure 6). Define the corresponding xj ∈ {0, 1}, where xj = 1 iff xj is in
set Sj . We can formally define SCP as:

5

min
∑

xj

s.t. Ax ≥ ~1
xj ∈ {0, 1}

We can relax it to an LP formulation as follows:

min
∑

xj

s.t. Ax ≥ ~1
xj ≥ 0

Let’s now consider possible rounding procedures to take a solution to SCP-relaxed
and translate it into an integer solution for SCP. Consider a randomized procedure that
picks a set Sj with probability xj . The expected number of sets is

∑

xi, which is the
cost of the linear program, which should be at most the cost of the optimal original
integer program! However, the solution may not be feasible!

So instead, we pick a set Sj with probability xj , and repeat this S independent
times, and take all sets that were picked at least once in all t iterations. How big a t do
we need to ensure that all elements are covered? Recall that OPT is the optimal solu-
tion of the original integer programming problem, and OPT ∗ is the optimal solution
of the LP relaxed problem (see Figure 5).

For element i,
∑

i∈Sj
xj = (Ax)i ≥ 1. Therefore,

Pr[i is not chosen in one iteration] =
∏

i∈Sj
(1−xj) ≤

∏

i∈Sj
e−xj = e

−
P

i∈Sj
xj ≤

e−1.
Hence, Pr[i not picked in any of the t iterations] ≤ (e−1)t = e−t. This implies

Pr[any element not picked] ≤ ne−t [since at most, events are independent and proba-
bilities add]

So set t = log(n) + 2, then ne−t ≤ 1
4 .

Let yi ∈ {0, 1} be the indicator variable for the algorithm’s choice (yi = 1 if
picked). Then

E[
∑

yi] ≤ t
∑

xj ≤ t ∗ OPT ∗ = (log(n) + 2) ∗ OPT ∗

Therefore Pr[
∑

yi ≥ 4(log(n) + 2) · OPT ∗] ≤ 1
4 (by Markov inequality)

To summarize, with probability ≥ 1 − 1
4 − 1

4 = 1
2 we get a valid solution, with

objective value ≤ 4(log(n) + 2) · OPT ∗ ≤ 4(log(n) + 2) · OPT .
So we get an algorithm with approximation factor 4(log(n) + 2).

5 Maximum Satisfiability
Maximum satisfiability problems are of the form, given n variables xi ∈ {0, 1}, i =
1, ..., n, and clauses Cj , then MAX-SAT asks to determine a binary configuration of
all xi such that we maximize the sum of the satisfied clauses.

An example is the following:

Let
C1 = (x1 ∨ x2 ∨ x̄5 ∨ x6)

6

C2 = (x2 ∨ x̄1)
C3 = (x2 ∨ x̄1)

Then the problem is C1 ∧ C2 ∧ C3.
Note that C1 ⇒ x1 + x2 + (1 − x5) + x6 ≥ 1.
MAX-SAT can be reformulated as an integer programming problem:

max
∑

zcj
s.t.

∑

i∈c
+

j
xi +

∑

i∈c
−

j
(1 − xi) ≥ zcj

, ∀j

xi, zcj
∈ {0, 1}

We can then relax to LP:

max
∑

zcj

∑

i∈c
+

j
xi +

∑

i∈c
−

j
(1 − xi) ≥ zcj

, ∀j

zcj
≤ 1

xi ≥ 0

7

