CSC2414 - Metric Embeddings*
Lecture 7: Lower bounds on the embeddability in
/5 via expander graphs and some algorithmic
connectionsto /;

Notes taken by Periklis Papakonstantinou
revised by Hamed Hatami

Summary: Inview of Bourgain’s upper bound a central question in finite
metric embeddings concerns explicit constructions of families of metric
spaces that incur distortion (logn) when embedded into £,. We will
see that embedding constant degree expanders into £, requires distortion
Q(logn). On an independent direction we begin investigating algorithmic
questions regarding the embeddability of metric spaces into £ and ¢;. We
show that computing a minimum distortion embedding of a metric space
into /5 can be easily done in polynomial time. The corresponding ques-
tion for ¢, appears to be a computationally hard task (unless P = NP).
Even the weaker question of deciding whether a metric space embeds iso-
metrically into ¢; is an NP-complete problem. ¢; seems to intuitively
maintain a strong connection with N'P-hard combinatorial optimization
problems. We begin our investigation around algorithmic questions for £,
by seeing how to represent an £; metric as a weighted sum of cut metrics.
Furthermore, we introduce the sparsest cut problem which is of particular
importance to the theory of approximation algorithms.

1 Terminology - notational conventions

We use boldface to denote vectors. For example x; corresponds to a vector whereas
x; corresponds to a real number. We denote by @,, = {0,1}" the n-dimensional
hamming cube; i.e. the hamming cube with 2™ points. Given a finite set of reals
A = {ay,...,a,} we denote by Avg} ,a; the arithmetic mean of A. We consider
graphs with vertex set V- = {1, 2, ...,n} and denote the edges by ij, where i, j € [n].
The term “expander graph” corresponds to a regular, constant degree, and of constant
expansion graph. For unweighted graphs the distance between two vertices is the length
of the unweighted shortest path i.e. the minimum number of edges of a path connecting
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them (if they are not connected the distance is co). Let G = (V, E) be an unweighted
graph. We denote by d¢ the shortest path metric on G.

2 Lower boundsin thedistortion into ¢

2.1 Introduction

Bourgain’s theorem provides an O(log n) upper bound in the distortion of embedding
any metric space of . points into £,,. Of certain interest is the tightness when embedding
into /. Bourgain used the probabilistic method to show that there exists a family
of finite metric spaces which require distortion Q(lol"lgogn) when embedding into £
(e.g. see [Mat02] p.366). However this is not sharp and in fact we will show that
his logarithmic upper-bound is sharp. In the previous lecture we saw that embedding
the hamming cube of n points (i.e. of dimension log, n) suffers distortion Q(v/Iogn).
We also saw that with this construction we can not go any further since the standard
embedding of the hamming cube into £» has distortion v/logn. In this lecture we
present an explicit® construction of families of metric spaces which require distortion
Q(log n) when embedding into ¢5. In particular, we will show that embedding constant
degree expander graphs equipped with the shortest path metric into £, incurs distortion
which matches the Bourgain’s upper bound.

In Lecture 6 (Theorem 2.5) we presented a general framework based on Poincaré
inequalities involving coefficients of positive semi-definite (PSD) matrices for proving
lower bounds when embedding into ¢,. The second part of this theorem says that this
framework is complete in the sense that if a specific metric d embeds with minimum
distortion ¢ (d) in £ then there exists a PSD matrix that can be applied to prove a lower
bound of ¢z(d). We will prove the lower bound for embedding a family of expander
graphs into £, using similar inequalities. First we give a “direct” proof and then we
will show how this proof can be easily fitted in the framework of the previous lecture.

2.2 Proof of the Q(logn) lower bound

Consider a family of expander graphs G = (V, E), V' = [n] of constant degree & > 3
and spectral gap Ao > 02. Fix an arbitrary embedding f of G into ¢, of distortion
D > 1andlet f(i) = x;. In particular, the inequality we are going to use is the
following.

Note that on the left hand side ¢ and j are adjacent vertices.

Lemma 2.1. Let G be a k-regular expander graph with spectral gap A, > 0. Then

A2
AVG e pllxi — x3l2 > Z2AVG; ey llx — x512, 1)
where the first average is taken over all edges (every edge appears only once) while the
second average is taken over all n2 ordered pairs of vertices.

LIn theoretical computer science the term “explicit” corresponds to mathematical objects of length n that
can be computed in time polynomial in = (where n is given in unary). Our constructions are explicit per se
since there are efficient constructions of constant degree expander graphs.

2o is the second smallest eigenvalue of the Laplacian. See Tutorial notes 2.




Proof. Since the graph is k-regular it has nk /2 edges.
AVY;epllxi — xj|[2 > %Avgi,jevllm - x;]|2
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ZijEE ||xi_xj”2 > A2 Zi,jEV ”xi_xj”Z
= k

nk/2 n?
o EijeEnLl’/‘;*xjHE Z %Ei,jeng‘i*xj”g
Aad QEijeE [Ix: — lelf > /\72 Zi,jev lIx: — Xj”g 2

The technical reason for taking squares of Euclidean norms instead of Euclidean
norms is that we can argue regarding (2) by proving it for real numbers instead of n-
dimensional points (since afterwards we can sum up the corresponding inequalities).
We abuse notation an from now on x; refers to a real number.

Note that to prove (2) we can assume > z; = 0. Denote by x the vector whose
coordinates are the z;’s.

> (@i — =)

2 (n—l)me—Zmimj

ijev iev i#]
= 2 (nzmg - (Zwm) = 2n||x|? 3)
eV eV
On the other hand recall from Tutorial 2 that
(@i — )’ =x'Lax > Xolx|[2. 4)
ij€E
Combining (2), (3) and (4) proves the lemma. O

Relying solely on the constant degree of the graph we can easily show the following
fact.

Claim2.2. Let G = (V, E) be a constant degree £ > 0 graph. Then, from every vertex
v € V at least half of the vertices are at distance Q(logn).

Proof. From an arbitrary vertex v € V thereareatmost 1 + k + k(k — 1) + ... +
k(k —1)"~! < k" + 1 vertices at distance r. Therefore, if r < log, 25* we have that
at distance r there are at most n /2 vertices at distance O(log, n). O

Claim 2.2 implies that Avg; ;v d(i, j) = Q(log n). So
. 1 .
1= AVgijEEd(Z’J) < mAVgi,jeVd(z’J)'

Suppose that dg 4 £3. Thus, since the embedding has distortion D and since
(1) holds we have that D? > 22Q(log® n) which implies that D = Q < 22 log n)

Therefore, since G is a constant degree expander we have that D = Q(logn).



2.3 Presenting the proof in the framework of Theorem 2.5

Actually the proof we presented in the previous section follows the framework of The-
orem 2.5. To apply Theorem 2.5 (Lecture 6) it suffices to construct a good PSD matrix.

We know
Z (:L', — xj)2 = XtLgx,
ijEE
and
Z (z; — z;)? = x'(2nI — J)x.
i,jev
Thus, by (2) the matrix
1
Q=Lcg— (I - EJ)I’

is PSD. Also @1 = 0 since 1 is an eigenvector of Lg for 1 = 0 and also %Jl =1
which means (I — %J)l = 0. We leave to the reader the details of applying the
inequality of Theorem 2.5 (Lecture 6).

3 A polynomial timealgorithm for embedding into ¢

It is not hard to see that deciding whether a finite metric space (X, d) can be isometri-
cally embedded into /- is equivalent to deciding whether a symmetric matrix A (which
can be efficiently computed) is positive semi-definite. This can be easily done by ap-
plying an algorithm that computes a factorization of A = M M? for some matrix M.
This factorization is called Cholesky decomposition and an efficient algorithm can be
found in almost every introductory Linear Algebra or Numerical Linear Algebra text.

We will not get into the details of dealing with this issue since we will answer the
following generalization of the question.

Theorem 3.1. Let (X, d) be a metric space of n points. Then, there exists an algorithm
that computes an embedding of distortion D := ¢2(X) in time polynomial in n, where
c2(X)is the minimum required distortion distortion to embed X into 5.

Proof. Note that since the distortion D > 1 minimizing D is the same as minimizing
its square. Also, since the space is normed without loss of generality we can assume
that the embedding is an expansion. Let f be an embedding of (X, d), X = [n], s.it.
f(@) = xi,1 € [n]. Therefore, finding the minimum D is equivalent to the following
program.

minimize D?
subjectto  d(4,4)* < [|xi — x> < d(4,§)*D*
x; € R"

Now noting that ||x; — x;{|2 = [|x;]|? + [|x;]|2 — 2(x3, x;), it is not hard to obtain
a semi-definite program (SDP). O



4 Contrastive summary for ¢, and /4

Before getting into algorithmic questions for £; metrics we present a contrastive sum-
mary of the properties and meta-properties of £ and £; metrics.

{5 metrics /1 metrics

Good dimension reduction Does not have good dimension reduction

Efficient algorithm to compute an embedding | It is NV P-hard to compute an optimal
of any finite metric space in polynomial time | embedding [Kar85]

Table 1: Contrastive comparison of £; and £ metrics.

5 Representation of /; metrics as conical combinations
of cut metrics

We provide a representation of £; metrics as conical combinations® of cut metrics. This
representation finds many applications. In particular, cut metrics are the extreme rays
of the ¢, cone. This is very useful as minimizing the ratio of linear functions over a
convex cone is the same as minimizing over the extreme rays of the convex cone.*

A line metric is a one dimensional ¢; metric. Let z,y € R". We denote by
d®(z,y) = |z; — y;|. Letd be an ¢, metric. Clearly, d can be written as the sum
of line metrics d(®. It is straightforward to verify the following fact.

Claim 5.1. The set of £; metrics is a convex cone. That is, if dy, d» are ¢; metrics and
A1, A2 are non-negative reals then A1d; + Aads is an ¢; metric.

Recall that we call a metric §5 a cut (semi)metric if ds(i,7) = |xs(i) — xs()],

where
(i) = 1 ieS
XSW=9 0 otherwise

The main representation theorem we want to show is:

Theorem 5.2. Let d be a finite £; metric. Then, d can be represented as ZSC[n] asds,
for some constants ag > 0. -

The proof of this theorem is transparent in the following illustrative example and
follows as a corollary of this and the previous claim. Consider the line metric depicted
in Figure 1.

By separating the line into two clusters (as in the figure) we get that this line metric
d can be represented as

d= 3(5{a} + 105{,1,1,} + 5(5{(1,1,,6}

3A conical combination of vectors in R™ is a non-negative linear combination.

4Using this fact in order to prove Poincaré inequalities for £1 we only need to consider cut metrics, i.e.
f:X — {0,1} instead of f : X — £; (this is similar to the situation that we showed in order to prove a
Poincaré inequalities for £3, instead of considering f : X — £3 we could consider f : X — £3).




Figure 1: Example of a line metric

Now, it is clear that the theorem follows for every £; metric.

Another way of viewing the theorem is that the cut metrics are the extreme rays
of the £; cone. Here is a lemma, useful when minimizing fractions of linear functions
OVer a convex cone.

Lemma 5.3. Let C C R™ be a convex cone and f, g : R*+ — R* be linear functions

and suppose that min ¢ g((:g is defined. Then,

zeC g(.Z') zisintheextr. rayof C' g

.

(x
)

Proof. Let zo be the optimum. Then, since zo € C we have that zo = ) a;y;, where
y; are in the extreme rays of C and a; are non-negative reals.

flo) _ f(aiyi) X flawys) o flagys) _ flys)
9(@o) 9> aiyi) o g(aiys) — 9(azy;)  9(y;s)
The second equality follows by linearity of f and g. The last inequality follows by

o

the fact that for a fraction of the sum of the terms of any two finite sequences Z—ﬁ >
min; % (we can show this by observing that adding numerators and denominators

of two fractions of non-negative reals we get a fraction whose value is between the
minimum and the maximum). O

~—

—~

6 The Sparsest-Cut problem

The sparsest cut problem is one of the major problems in the theory of approxima-
tion algorithms. On one hand it is related to other optimization problems. Also, its
approximability is one of the central questions in approximation algorithms. The best
known lower bound is that the problem does not admit a PTAS. This is still very far
from the best known approximation algorithm with approximation ratio O(+/logn)
[ARV04]. The first O(log n) approximation algorithm is due to [BL84] (1984). The
same approximation ratio was achieved by applying methods of metric embeddings
[LLR95, AR98] (1995). We will discuss an approach that uses metric embeddings and
we will study the unweighted case.



Definition 6.1. We define the sparsity «(G) of an unweighted graph G = (V, E) as

L IEBS)

a(G@) =
@ isj<iyl 1S

where S C V, S = V\S and E(S, S) is the set of edges crossing the cut (S, S).

For example, consider the hamming cube @,,. It is not hard to see that if we par-
tition its vertices according to a fixed coordinate (i.e. let S be the set of points which
have this coordinate set to 0), then we get the minimum a(Q,) = g:—j =1.

Intuitively the above definition suggests the definition of a combinatorial problem
in which we wish to find a cut which is somehow balanced between the attempt to be

minimal and to contain enough vertices. We define the following notion

|E(S, S)|
B(G) = min ——=.
) isi<iyt (SIS
We are going to deal with the problem related to the later definition. The reason
is that this definition is simpler and for every graph G it holds that a(G) < ng(G) <

2a(@). The optimization problem we are interested in takes as an input a graph G and

the objective is to output a cut (9, S) such that ‘E‘éﬁ’g” is minimized.
Fix an arbitrary graph G = (V, E), V' = [n] and an arbitrary cut of this graph

(S, S). We observe that

|E(S,5)| _ 2ijerds(i,j)
|S||S| Zi,jev 6S(i;j)
This observation together with Lemma 5.3 implies the following theorem.

Theorem 6.2. Let G = (V, E) be a graph. Then,
_ |E(S,9)] - Dijen d(i,J)

min ———=>— =min=———-——
isi<yl ISIS] det 3o ey dGis )

Based on the above theorem computing 3(G) is equivalent to the following math-
ematical program.

minimize > d(i, )
ijeE

subject to Z d(i,j) =1
ijev
del,

The requirement that d is an ¢; metric is not known to be representable as a small
set of linear constraints®. We “relax” (in some non-standard relaxation notion) the
5Note that there is some inaccuracy here. What we really require is the linear program to have a polytime

separation oracle. Also note that according to what we have said before if this was true this would imply
P =NP.




above program by only requiring that d is a metric. This introduces only a number
of constraints polynomial in n; in particular 3(;‘) triangle inequlaities. Therefore, the
relaxed linear program takes the following form which is solvable in time polynomial

inn.

minimize Z d(i,j)

ij€EE

subject to > d(i,j) =1

ijev
d(i,j) < d(i k) +d(k,j) forevery i, j, k € [n].

In the next lecture we show that this relaxation leads to a log(n)-approximation

algorithm.
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