
CSC2414 - Metric Embeddings∗

Lecture 6: Reductions that preserve volumes and
distance to affine spaces& Lower bound

techniques for distortion when embedding into`2

Notes taken by Costis Georgiou
revised by Hamed Hatami

Summary: According to Johnson-Lindenstrauss Lemma there is a pro-
jection from a Euclidian space to a subspace of dimensionO( logn

ε2 ), that
scales distances within a factor of1 + ε. A natural extension of this result
suggests the preservation of other geometric characteristics like angles, ar-
eas and volumes of simplexes spanned by many vectors. In this direction
we see how to obtain similar results when our concern is the preservation
of general geometric characteristics.

On the other hand we have stated that certain metrics (such asC4) cannot
be isometrically embedded intò2. We make this fact more concrete by
introducing a class of inequalities (Poincaré inequalities) that provide a
technique for proving lower bounds for the required distortions. We also
apply this result to the hypercubeQn and obtain a

√
n lower bound.

1 Reductions that preserve angles and volumes

In last lecture we saw a lemma by Johnson and Lindenstrauss that allows us to embed
ann-point metricd ∈ `2 to aO( logn

ε2 ) dimensional Euclidean space with distortion
1 + ε. The idea was to project the original space onto a randomlogn

ε2 -dimensional
subspace of the original space, suggesting a probabilistic algorithm for producing the
low-distortion embedding.

Theorem 1.1. (Johnson-Lindenstrauss) For anyε > 0, anyn-point `2 metric can be

(1 + ε)-embedded intò
O( logn

ε2 )
2 .

A natural question to ask is whether we can do any better with the dimension.
A negative result by Alon (unpublished manuscript) shows that if then + 1 points
∗ Lecture Notes for a course given by Avner Magen, Dept. of Computer Sciecne, University of Toronto.
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0, e1, . . . , en ∈ Rn (where theei’s are the standard orthonormal basis) are(1 + ε)-
embedded intòk2 , where100n−1/2 ≤ ε ≤ 1

2 thenk = Ω
(

1
ε2 log 1

ε

log n
)

. In other

words the bound of Theorem 1.1 is almost tight.
The previous bounds concern embeddings that preserve the pairwise distances which

is one of many characteristics of a subset in the Euclidean space. Some other charac-
teristics include center of gravity, angles defined by triplets, volumes of sets, distances
between points to lines or even higher dimensional affine spaces [Mag02]. It is easy
to see that these characteristics are independent. For example, a function that “almost”
preserves the distance between any two points can affect dramatically the angles de-
fined by triplets as shown in Figure 1. Additionally, we can note that since the three
points that define a right angle are mapped to three “almost” collinear points, even the
areas of triangles cannot be preserved.

Figure 1: A low distortion embedding that does not preserve angles.

The new challenge is to generalize the notion of a good embedding that preserves
pairwise distances, to a dimension reduction that preserves distances, angles and vol-
umes of simplexes spanned byk points (for more details we refer to [Mag02]). Of
course such an embedding might be more demanding regarding the lower bound of the
dimension that it needs to guarantee good distortion.

First, one has to consider good dimension reductions with respect to area preser-
vation. Keeping in mind that this can be generalized to a dimension reduction that
preserves the volume ofk-dimensional simplexes we can expect thatk needs to appear
in the lower bound of the dimension.

Now consider the problem of determining a low-dimensional embedding that pre-
serves pairwise distances, areas of triangles and distance of points from lines. Note
here that the preservation of these characteristics is strongly related to the low distor-
tion on heights of triangles. So, in order to extract the properties of a good dimensional
reduction for these characteristics, it is useful to look for specific instances where the
distance-preservation implies low distortion on heights. In the next lemma, our restric-
tion to 2 dimension hardly affects its validity for higher dimensions.

Lemma 1.2. LetA,B,C ∈ Rn be the vertices of a right angle isosceles, where the
right angle is atA, and letf be a contracting embedding of its vertices into a Euclidean
space with distortion1 + ε, ε < 1

6 . Let alsoh = ‖A−B‖, b = C −A, c = B−A and
let h′ be the height that corresponds tof(B). Then
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|〈b, c〉| ≤ 2εh2

h

1 + 2ε
≤ h′ ≤ h

Figure 2: The triangle that preserves heights

Proof. Recall thatf is non expanding with contraction at most1 + ε. It is easy to see
that |〈b, c〉| =

∣∣‖b‖2 + ‖c‖2 − ‖b− c‖2
∣∣ /2, is maximized when‖b‖2 = ‖c‖2 = h

1+ε .

For these values‖b − c‖2 =
√

2h. Combining this with the previous observation we
obtain|〈b, c〉| ≤ 2εh2.

On the other hand the same values of‖b‖, ‖c‖ maximize | cos(θ)|, whereθ =
∠(b, c). More specifically| cos(θ)| ≤ 2ε+ε2 and sinceε ≤ 1

6 , we get| sin(θ)| > 1+ε
1+2ε .

Hence

h

1 + 2ε
=

h

1 + ε

1 + ε

1 + 2ε
≤ h′ ≤ c sin θ ≤ h

The idea is now to enrich the stability of any triangle by considering a right isosce-
les for any of the edges of the triangle. For example, consider a triangle that is formed
by the vectorsu, v, z. For the edgeuv, and for any other edge respectively, we will
introduce a right isosceles with edge defined by the height corresponding touv. So let
u′ be the projection ofz to the affine hull of{u, v} (i.e. the lineu, v).Let alsov′ be
a vector such thatu, v′, v are collinear and||z − v′|| = ||v′ − u′|| (Figure 3). We will
refer to this as the stabilization of a space. Clearly then, if we are able to preserve the
pairwise distances within the pairs of all vectors, then the distortion on the angles and
the areas will be low.

If the original space hasn points, we can stabilize it with a total of6
(
n
3

)
points.

What we have in mind is to apply Theorem 1.1 to the stabilized space. Clearly, the new
bound for the dimension is at mostε−2 log(n+ 6

(
n
3

)
) ≈ 3ε−2 log n.

Till now, our concern was to preserve areas or in other words the volume of a
simplex spanned by three vectors (note here that the choice of

(
n
3

)
vectors might not
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Figure 3: The stabilization of a triangle

be just a coincidence). Clearly the number of additional points that we need in order to
preserve higher dimensional volumes of simplexes defined byk points, should depend
onk. Just to get a flavor, and for simplexes defined by 4 points, we can define an analog
of a right isosceles triangle (see Figure 4) that has good behavior when embedded with
low distortion.

Figure 4: Simplexes defined by4 points that preserve their volume

Note here that the initial space could live inRm. As far as we are interested in
preserving the volume of simplexes defined byk vectors, we can treat them as if they
lived inRk−1. We can introduce an appropriate notation that will be useful for volumes
of simplexes of higher dimensions. Having in mind the analogies (see Figure 4), and
now for a simplex that is defined by 4 vectorsA,B,C,D, we introduce a new simplex
with the same heighth and with edges||K −M || = ||K − L|| = h, while the vectors
K − L,K −M define a right angle (see Figure 5). We can think ofh as the norm
of the vectorA− P (A, {B,C,D}), whereP (A, {B,C,D}) is the projection ofA to
the affine hullL(S) = {

∑|S|
i=1 λiαi : ai ∈ S, λi ≥ 0} of S = {B,C,D}. Then if

we denote byad(x, S) the distance of x toL(S), and byr1, . . . , r|S|−1 a collection of
orthonormal vectors ofL(S), thenL = P (A, {B,C,D}) +ad(A, {B,C,D}) · r1 and
K = P (A, {B,C,D}) + ad(A, {B,C,D}) · r2.

For the simplex defined by 4 points above we introduceΘ(
(
n
4

)
) vectors to preserve

its volume. For extending the previous construction to simplexes defined byk vectors
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Figure 5: The stabilization of the tetrahedronABCD

one has to be careful with the relation between the number of points of the initial space
and the value of the distortion. However, in the general case it suffices to introduce
Θ(
(
n
k

)
) vectors in order to preserve the volume ofk-dimensional simplexes giving rise

to the following corollary of Theorem 1.1.

Corollary 1.3. For any ε > 0, anyn-point `2 metric can be(1 + ε)-embedded in

`
O( k logn

ε2 )
2 so that the embedding also preserves the volume of simplexes defined byk

points.

2 Lower bounds for the distortion when embedding into
`2

We are interested in providing lower bounds for the required distortion for embeddings
into `2. So far we have seen thatn-points metric spaces can be embedded into`2 with
distortionO(log n) (Bourgain’s Theorem). Here we provide a weaker lower bound
for the cube{0, 1}m. More specifically we prove that the cube{0, 1}m (with n =
2m), equipped with the Hamming distance (or`1), suffers distortionΩ(

√
log n) to be

embedded intò2.
As a motivating example we can refer to the 2-dimensional cubeQ2 (4-cycleC4)

which cannot be isometrically ebmedded into`2. The reason is that a mapping that
preserves the distances for the edges has to expand the diagonals. Actually, the distor-
tion we have to suffer is

√
2, something that as we will see is related to the fact that

the cube is 2-dimensional. The main idea for this is captured by the following lemma
[Mat02]. The lemma says that the sum of the squares of the diagonals of a quadrilateral
is at most the sum of the squares of its edges. Note here that for our convenience we
will work with ||·||2 instead of||·||.
Lemma 2.1. (Short diagonal inequality) Letx1, x2, x3, x4 be arbitrary points in a
Euclidean space. Then

||x1 − x3||2 + ||x2 − x4||2 ≤ ||x1 − x2||2 + ||x2 − x3||2 + ||x3 − x4||2 + ||x4 − x1||2
(1)
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Proof. If x1, x2, x3, x4 ∈ Rm then||xi||2 =
∑m
j=1 |xi(j)|2 and therefore in order to

prove (1), it suffices to show that this is valid for each of the coordinates i.e. work in
R. Trivially then we just observe that for any realsa, b, c, d the following is true

(a− b)2 + (b− c)2 + (c−d)2 + (d−a)2− (a− c)2− (b−d)2 = (a− b+ c−d)2 ≥ 0.

The previous lemma can be directly applied to the Hamming cubeQ2 = {0, 1}2.

Corollary 2.2. The cubeQ2 cannot be embedded into`2 with distortion less than
√

2.

Proof. We can assume w.l.o.g. that ifQ2
D
↪→ `2 then the embedding is contracting

only; that is, for anyi ∈ Q2, if xi is its image iǹ 2 then

‖xi − xj‖2 ≤ dH(i, j) ≤ D‖xi − xj‖2 ∀i, j ∈ Q2. (2)

Now note thatd2
H(1, 2) + d2

H(2, 3) + d2
H(3, 4) + d2

H(4, 1) = 4 andd2
H(1, 3) +

d2
H(2, 4) = 8, or in other words

d2
H(1, 2) + d2

H(2, 3) + d2
H(3, 4) + d2

H(4, 1) =
1
2
(
d2
H(1, 3) + d2

H(2, 4)
)
.

Hence by (2) and Lemma 2.1

‖x1 − x2‖22 + ‖x2 − x3‖22 + ‖x3 − x4‖22 + ‖x4 − x1‖22
≤ d2

H(1, 2) + d2
H(2, 3) + d2

H(3, 4) + d2
H(4, 1)

=
1
2
(
d2
H(1, 3) + d2

H(2, 4)
)

≤ 1
2
D2
(
‖x1 − x3‖22 + ‖x2 − x4‖22

)
≤ 1

2
D2
(
‖x1 − x2‖22 + ‖x2 − x3‖22 + ‖x3 − x4‖22 + ‖x4 − x1‖22

)
which proves thatD ≥

√
2.

A simple observation allows us to see that the previous bound is tight when we
embedQ2 into `2 with the identity map, i.e.xi = i ∈ {0, 1}2.

Now we try to generalize this idea to prove lower bounds for then-dimensional
cubeQn. What we want is to find the analog of (1) in higher dimensions. First we can
rewrite this inequality as

||x1 − x3||2 + ||x2 − x4||2 − ||x1 − x2||2 − ||x3 − x4||2 − ||x4 − x1||2 ≤ 0.

Note that we can write the previous inequality in the form∑
i,j

bibj‖xi − xj‖22 ≤ 0,

wherebi ∈ {−1, 1}. ForQ2 what we did is to assign to eachxi a bi such thatb1 =
b3 = 1, b2 = b4 = −1. Note here thatb1 + b2 + b3 + b4 = 0 and this gives rise to the
following observation.
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Lemma 2.3. (General parallelogram inequalities - A Poincaré inequality) For any
xi ∈ Rd, bi ∈ R, i = 1, . . . , n such that

∑n
i bi = 0 the following is true:∑

i,j

bibj‖xi − xj‖22 ≤ 0.

Proof. Since
∑n
i bi = 0 we get that

∑
i,j bibj

(
‖xi‖22 + ‖xj‖22

)
= 0. Therefore

∑
i,j

bibj‖xi − xj‖22 =
∑
i,j

bibj
(
‖xi‖22 + ‖xj‖22 − 2xi · xj

)
=

∑
i,j

bibj
(
‖xi‖22 + ‖xj‖22

)
− 2

∑
i,j

bibj (xi · xj)

= −2
∑
i,j

bibj (xi · xj)

Let nowX be a matrix whosei’th row is the vectorxi, andbT = (b1, . . . , bn).
Then

∑
i,j bibj (xi · xj) = btXtXb = ‖Xb‖2

2
> 0 and the lemma follows.

It is interesting that the way we defined thebi’s for Q2, we have that the matrix
P = (bibj)i,j is positive semidefinite (PSD).

P =


1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

 .

Indeed, the matrix is symmetric (Pi,j = bibj = bjbi = Pj,i) and for allx ∈ R4 we
have

xtPx ≥ 0

The reason is thatP = btb, whereb = (b1, b2, b3, b4). HenceP = xtbtbx = (bx)2 ≥
0. Moreover it is trivial to see thatP

−→
1 = 0. Lemma 2.3 says that forP we have∑4

j=1 pi,j‖xi − xj‖22 ≤ 0. This can be generalized by the following lemma.

Lemma 2.4. LetP = (pi,j) be a symmetric PSD matrix such thatP
−→
1 = 0. Then for

anyxi ∈ Rd, i = 1, . . . , n the following is true:∑
i,j

pi,j‖xi − xj‖22 ≤ 0.

Proof. First note that similarly to Lemma 2.1, we can treatxi’s as being real numbers.
SinceP is symmetric andP

−→
1 = 0 we have

∑n
j=1 Pi,j = 0 and

∑n
i=1 Pi,j = 0, and

therefore
∑
i,j pi,j

(
x2
i + x2

j

)
=
∑
i,j Pi,j

(
x2
i + x2

j

)
= 0. What we get then is
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∑
i,j

pi,j(xi − xj)2 =
∑
i,j

pi,j
(
x2
i + x2

j − 2xixj
)

=
∑
i,j

pi,j
(
x2
i + x2

j

)
− 2

∑
i,j

pi,j (xixj)

= −2
∑
i,j

pi,j (xixj)

Recall here that the matrixP is PSD, and therefore lettingxt = (x1, . . . , xn) we
have ∑

i,j

pi,j (xixj) = xtPx ≥ 0,

completing the proof1.

Let nowc2(d) = inf{t : (X, d)
t
↪→ `2}. We are ready to prove the main theorem.

Theorem 2.5.

1. For every symmetric positive semidefinite matrixP with P
−→
1 = 0 and for every

metricd we have

c2(d) ≥

√√√√ ∑
{i,j}:pi,j≥0 pi,jd

2(i, j)∑
{i,j}:pi,j<0−pi,jd2(i, j)

2. If c2(d) = D then there exists a symmetric positive semidefinite matrixP =
(pi,j) with P

−→
1 = 0 so that

c2(d) =

√√√√ ∑
{i,j}:pi,j≥0 pi,jd

2(i, j)∑
{i,j}:pi,j<0−pi,jd2(i, j)

Proof. We only prove the first part and postpone the proof of the second part to the
next lectures.

By applying Lemma 2.4 we get
∑
i,j pi,j‖xi − xj‖22 ≤ 0, which shows that∑

{i,j}:pi,j≥0

pi,j‖xi − xj‖22 ≤
∑

{i,j}:pi,j<0

−pi,j‖xi − xj‖22. (3)

Now assume that the mappingi 7→ xi, givesd
D
↪→ `2. Now without loss of gener-

ality we can assume that the embedding is not expanding i.e.

‖xi − xj‖22 ≤ d2(i, j) ≤ D2‖xi − xj‖22, ∀i, j (4)
1See Tutorial 2
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Then we have∑
{i,j}:pi,j≥0 pi,jd

2(i, j)∑
{i,j}:pi,j<0−pi,jd2(i, j)

≤
∑
{i,j}:pi,j≥0 pi,j‖xi − xj‖22∑
{i,j}:pi,j<0−pi,j‖xi − xj‖22

×D2 ≤ D2,

where in the first inequality we used (3) and in the second inequality we used (4).

Recall here that our goal was to generalize the fact that for the cubeQ2 equipped
with the Hamming distancedH , wherec2(dH) =

√
2. Theorem 2.5 allows us to prove

this generalization.

Proposition 2.6. For the cubeQn equipped with the Hamming distancedH we have
c2(dH) =

√
n.

Proof. Assume that(Qn, dH)
D
↪→ `2. First we will prove thatD ≥

√
n. Define the

matrixP = {pi,j} as follows:

pi,j =


−1 dH(i, j) = 1 (edges)
1 dH(i, j) = n (antipodes)
n− 1 i = j
0 otherwise

We will show below in Lemma 2.7 thatP is PSD. Moreover note that anyi ∈
{0, 1}n has only one antipode andn neighbors. That is

2n∑
j=1

pi,j = n− 1 + 1− n = 0, i = 1, . . . , 2n.

HenceP
−→
1 = 0 and so we can apply Theorem 2.5. Before this, just note that for

any of the2n rowsi of Q we have∑
{j}:pi,j≥0

pi,jd
2
H(i, j) = (n− 1) · 0 + 1 · n2 = n2,

and that ∑
{j}:pi,j<0

pi,jd
2
H(i, j) = −n.

It follows that

D ≥

√√√√ ∑
{i,j}:pi,j≥0 pi,jd

2(i, j)∑
{i,j}:pi,j<0−pi,jd2(i, j)

=

√
2nn2

2nn
=
√
n

The previous lower bound can be proven to be tight. It is easy to see that the
distortion of the identity mapping fromQn toRn is exactly

√
n since forx ∈ {0, 1}n,

by Cauchy-Schwartz inquality we have
√
n‖x‖2 ≥ ‖x‖1 ≥ ‖x‖2.
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It only remains to show that the matrixQ as defined in the previous proposition is
PSD. Note here that ifA is the adjacency matrix ofQn andP the matrix withPi,j = 1
if i andj are antipodes, and 0 otherwise, thenQ = (n− 1)I −A+ P .

Lemma 2.7. The matrixQ = (n− 1)I − A+ P , whereA is the adjacency matrix of
Qn andP is the matrix of the antipodes respectively, is PSD.

Proof. For any vectorx ∈ {0, 1}n, we consider the vectorvx, such that itsy-th coor-
dinate is(vx)y = (−1)〈x,y〉. We will show that each suchvx is an eigenvector forQ
and moreover that it corresponds to a positive eigenvalue.

First let us calculate they-th coordinate ofAvx.

(Avx)y =
∑

z∈Qn:d(y,z)=1

(vx)z

=
n∑
i=1

(vx)(y+ei) mod 2

=
n∑
i=1

(−1)〈x,y+ei〉

=
n∑
i=1

(−1)〈x,y〉(−1)〈x,ei〉

= (−1)〈x,y〉
n∑
i=1

(−1)〈x,ei〉

= (vx)y

(
n− 2

n∑
i=1

xi

)
Similarly, for they-th coordinate forPvx we have

(Pvx)y = (vx)−→
1 −y = (−1)〈x,

−→
1 −y〉 = (−1)−〈x,y〉(−1)〈x,

−→
1 〉 = (vx)y(−1)〈x,

−→
1 〉

Therefore the eigenvalue of(n− 1)I −A+ P that corresponds to the eigenvector
vx is

n− 1 + 2
n∑
i=1

xi − n+ (−1)〈x,
−→
1 〉 = 2

n∑
i=1

xi − 1 + (−1)〈x,
−→
1 〉 ≥ 0

completing the proof.
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