CSC2414 - Metric Embeddings
Lecture 6: Reductions that preserve volumes and
distance to affine spacésLower bound
techniques for distortion when embedding idio

Notes taken by Costis Georgiou
revised by Hamed Hatami

Summary: According to Johnson-Lindenstrauss Lemma there is a pro-
jection from a Euclidian space to a subspace of dimen@@ﬁg—"), that
scales distances within a factor bf- €. A natural extension of this result
suggests the preservation of other geometric characteristics like angles, ar-
eas and volumes of simplexes spanned by many vectors. In this direction
we see how to obtain similar results when our concern is the preservation
of general geometric characteristics.

On the other hand we have stated that certain metrics (su€h)asmnnot

be isometrically embedded inth. We make this fact more concrete by
introducing a class of inequalities (Poineanequalities) that provide a
technique for proving lower bounds for the required distortions. We also
apply this result to the hyperculég, and obtain a/n lower bound.

1 Reductions that preserve angles and volumes

In last lecture we saw a lemma by Johnson and Lindenstrauss that allows us to embed
an n-point metricd € /5 to aO(lOgQ”) dimensional Euclidean space with distortion

1+ e. The idea was to project the original space onto a rané@?—l-dimensional
subspace of the original space, suggesting a probabilistic algorithm for producing the
low-distortion embedding.

Theorem 1.1. (Johnson-Lindenstrauss) For amy> 0, anyn-point ¢, metric can be
logn)

(1+ ¢)-embedded int6” ).

A natural question to ask is whether we can do any better with the dimension.
A negative result by Alon (unpublished manuscript) shows that ifrthe 1 points
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0,e1,...,e, € R™ (where thee;’s are the standard orthonormal basis) érer ¢)-
embedded intd%, where100n=1/2 < e < 1 thenk = Q (ﬁlogn). In other
words the bound of Theorem 1.1 is almost tight. ‘

The previous bounds concern embeddings that preserve the pairwise distances which
is one of many characteristics of a subset in the Euclidean space. Some other charac-
teristics include center of gravity, angles defined by triplets, volumes of sets, distances
between points to lines or even higher dimensional affine spaces [Mag02]. It is easy
to see that these characteristics are independent. For example, a function that “almost”
preserves the distance between any two points can affect dramatically the angles de-
fined by triplets as shown in Figure 1. Additionally, we can note that since the three
points that define a right angle are mapped to three “almost” collinear points, even the
areas of triangles cannot be preserved.

Figure 1: A low distortion embedding that does not preserve angles.

The new challenge is to generalize the notion of a good embedding that preserves
pairwise distances, to a dimension reduction that preserves distances, angles and vol-
umes of simplexes spanned bypoints (for more details we refer to [Mag02]). Of
course such an embedding might be more demanding regarding the lower bound of the
dimension that it needs to guarantee good distortion.

First, one has to consider good dimension reductions with respect to area preser-
vation. Keeping in mind that this can be generalized to a dimension reduction that
preserves the volume éfdimensional simplexes we can expect thateds to appear
in the lower bound of the dimension.

Now consider the problem of determining a low-dimensional embedding that pre-
serves pairwise distances, areas of triangles and distance of points from lines. Note
here that the preservation of these characteristics is strongly related to the low distor-
tion on heights of triangles. So, in order to extract the properties of a good dimensional
reduction for these characteristics, it is useful to look for specific instances where the
distance-preservation implies low distortion on heights. In the next lemma, our restric-
tion to 2 dimension hardly affects its validity for higher dimensions.

Lemma 1.2. Let A, B,C € R" be the vertices of a right angle isosceles, where the
rightangle is at4, and letf be a contracting embedding of its vertices into a Euclidean
space with distortionl +¢,¢ < . Letalsoh = ||[A— B|,b=C—A,c= B— Aand

let »’ be the height that corresponds f¢B). Then
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Figure 2: The triangle that preserves heights

Proof. Recall thatf is non expanding with contraction at mdst- e. It is easy to see
that|(b, c)| = [[|b]|> + [[cl|* — [Ib — cl[?| /2, is maximized when[b|[* = [|c[? = .
For these value$b — c||?> = v/2h. Combining this with the previous observation we
obtain|(b, c)| < 2eh?.

On the other hand the same values||6f], ||| maximize |cos(6)|, wheref =
Z(b, c). More specificallyf cos(6)| < 2¢+¢* and since: < ¢, we get sin(0)| > £t
Hence

h h 1+e€

= <h <ecsinf <h
1+ 2 14+el+2e

O

The idea is now to enrich the stability of any triangle by considering a right isosce-
les for any of the edges of the triangle. For example, consider a triangle that is formed

by the vectorss, v, z. For the edge.w, and for any other edge respectively, we will
introduce a right isosceles with edge defined by the height corresponding 8o let
u’ be the projection of to the affine hull of{u, v} (i.e. the linewu,v).Let alsov’ be
a vector such that, v’, v are collinear and|z — v'|| = ||v" — «/|| (Figure 3). We will

refer to this as the stabilization of a space. Clearly then, if we are able to preserve the
pairwise distances within the pairs of all vectors, then the distortion on the angles and

the areas will be low.
If the original space has points, we can stabilize it with a total 6[(;‘) points.

What we have in mind is to apply Theorem 1.1 to the stabilized space. Clearly, the new

bound for the dimension is at mast?log(n + 6(;)) ~ 3¢~ 2logn.

Till now, our concern was to preserve areas or in other words the volume of a

simplex spanned by three vectors (note here that the choi¢®) ofectors might not



Figure 3: The stabilization of a triangle

be just a coincidence). Clearly the number of additional points that we need in order to
preserve higher dimensional volumes of simplexes defingdpmyints, should depend

onk. Just to get a flavor, and for simplexes defined by 4 points, we can define an analog
of aright isosceles triangle (see Figure 4) that has good behavior when embedded with
low distortion.
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Figure 4: Simplexes defined lypoints that preserve their volume

Note here that the initial space could livelki*. As far as we are interested in
preserving the volume of simplexes definedkbyectors, we can treat them as if they
lived in R¥—1. We can introduce an appropriate notation that will be useful for volumes
of simplexes of higher dimensions. Having in mind the analogies (see Figure 4), and
now for a simplex that is defined by 4 vectoisB, C, D, we introduce a new simplex
with the same height and with edge§ K — M || = ||K — L|| = h, while the vectors
K — L, K — M define a right angle (see Figure 5). We can thinkiais the norm
of the vectordA — P(A,{B,C, D}), whereP(A, {B, C, D}) is the projection of4 to
the affine hull(S) = {31% Niai : a; € S, A > 0} of S = {B,C, D}. Then if
we denote by.d(z, S) the distance of x t&(S), and byry, ..., 75— a collection of
orthonormal vectors of (S), thenL = P(A,{B,C, D})+ad(A,{B,C,D})-r, and
K =P(A,{B,C,D})+ ad(A,{B,C,D}) - rs.

For the simplex defined by 4 points above we introd@cﬁéﬁ)) vectors to preserve
its volume. For extending the previous construction to simplexes definéd/bgtors



Figure 5: The stabilization of the tetrahedrd®3C' D

one has to be careful with the relation between the number of points of the initial space
and the value of the distortion. However, in the general case it suffices to introduce
©((})) vectors in order to preserve the volumekefimensional simplexes giving rise
to the following corollary of Theorem 1.1.
Corollary 1.3. For anye > 0, anyn-point {2 metric can be(1 + ¢)-embedded in

O( k loan)
o -
points.

so that the embedding also preserves the volume of simplexes defihed by

2 Lower bounds for the distortion when embedding into
Uy

We are interested in providing lower bounds for the required distortion for embeddings
into ¢>. So far we have seen thatpoints metric spaces can be embedded fptwith
distortion O(log n) (Bourgain’s Theorem). Here we provide a weaker lower bound
for the cube{0,1}™. More specifically we prove that the cule, 1} (with n =
2™), equipped with the Hamming distance @), suffers distortiorf2(1/logn) to be
embedded intds.

As a motivating example we can refer to the 2-dimensional eéppés-cycleCy)
which cannot be isometrically ebmedded ifto The reason is that a mapping that
preserves the distances for the edges has to expand the diagonals. Actually, the distor-
tion we have to suffer is/2, something that as we will see is related to the fact that
the cube is 2-dimensional. The main idea for this is captured by the following lemma
[Mat02]. The lemma says that the sum of the squares of the diagonals of a quadrilateral
is at most the sum of the squares of its edges. Note here that for our convenience we
will work with ||-]|* instead off|-||.

Lemma 2.1. (Short diagonal inequality) Let, z2, x3, x4 be arbitrary points in a
Euclidean space. Then

w1 — 23|* + |22 — 2al® < |21 — 22| + [lo2 — 23] + [Jos — 24l >+ ||z — 1]

1)



Proof. If zy, x5, 3,24 € R™ then||z||* = >y |z;(j)|? and therefore in order to
prove (1), it suffices to show that this is valid for each of the coordinates i.e. work in
R. Trivially then we just observe that for any reals, ¢, d the following is true

(a—b)*+(b—c) +(c—d)*+(d—a)*—(a—c)*—(b—d)? = (a—b+c—d)* > 0.
O

The previous lemma can be directly applied to the Hamming ¢be- {0, 1}2.
Corollary 2.2. The cube&Q, cannot be embedded intg with distortion less thar/2.

Proof. We can assume w.l.o.g. thatdjs & {5 then the embedding is contracting
only; that is, for anyi € Qa, if z; is its image in¢; then

||{I?Z—£L'jH2 SdH(Z,_]) SD”{,Cl—(L'sz V’L,] €Q2. (2)
Now note thatd?, (1,2) + d2,(2,3) + d2(3,4) + d%(4,1) = 4 andd?(1,3) +

d%(2,4) = 8, or in other words

d3(1,2) +d3(2,3) + d3(3,4) + d;(4,1) = = (d}(1,3) + d};(2,4)) .

| —

Hence by (2) and Lemma 2.1

o1 — @ol? 4+ w2 — @3] + los — a4l2 + |24 — 212
< dy(1,2) + d(2,3) + dF (3, 4) + di(4,1)

— %(d%(LS) +d3(2,4))

IN

1
§D2 (llz1 — sl + llw2 — z4l2)
1
< §D2 (lz1 — w22 + w2 — @32 + |23 — 24l + [lzs — 21]]2)

which proves thaD > /2. O

A simple observation allows us to see that the previous bound is tight when we
embedQ- into ¢, with the identity map, i.ex; =i € {0,1}>.

Now we try to generalize this idea to prove lower bounds for/thdimensional
cube@®,. What we want is to find the analog of (1) in higher dimensions. First we can
rewrite this inequality as

|21 — @3|* + ||lo2 — 2al]® = [Jo1 — z2])® = [|23 — 24|” = ||2a — 21| < 0.
Note that we can write the previous inequality in the form
> bibjlla; — a1 <0,
i,j
whereb; € {—1,1}. For @, what we did is to assign to eaah a b; such that; =

bz = 1,bs = by = —1. Note here thab; + b + b3 + by = 0 and this gives rise to the
following observation.



Lemma 2.3. (General parallelogram inequalities - A Poindainequality) For any
z; € R4 b; € R,i=1,...,nsuchthaty_ b; = 0 the following is true:

(2%

Proof. Since}"}" b; = 0 we getthad~, ; b;b; (||zl|Z + [|=;]|2) = 0. Therefore

> biby (lal2 + 112 - 22 - ;)
]
S by (llall? + 5112) =23 by (- )
1,9 47
=23 bib; (@i - 2;)

1)

> bibsllwi — a2
i

Let now X be a matrix whosé'th row is the vectorz;, andb” = (by,...,b,).
Then}",  bibj (z; - z;) = b' X' Xb = || Xb]|2 > 0 and the lemma follows.
’ O

It is interesting that the way we defined thgs for ()2, we have that the matrix
P = (b;b;); ; is positive semidefinite (PSD).

Indeed, the matrix is symmetrid*(; = b;b; = b;b; = P;;) and for allz € R* we
have
2Pz >0
The reason is thaP = b'b, whereb = (by, bo, b3, by). HenceP = z'btbr = (bx)? >
0. Moreover it is trivial to see thaP1 = 0. Lemma 2.3 says that faP we have
Z?lei,jﬂxi — x;]|2 < 0. This can be generalized by the following lemma.

Lemma 2.4. Let P = (p; ;) be a symmetric PSD matrix such thiatl = 0. Then for
anyz; € R4 i =1,...,nthe following is true:

Zpi,j

2]

I.l?i — Z‘JHE S 0.

Proof. First note that similarly to Lemma 2.1, we can treds as being real numbers.
SinceP is symmetric and® 1 = 0 we havey ;_, P, ; =0and)_;_, P, ; = 0, and
therefore} ", ; pi j (¢ +23) = 32, ; Pij (¢7 + 27) = 0. What we get then is



Zpi,j(wi - xj)Q = Zpi,j (Iff + x? — 2xixj)
i 07
= D pig(af +a3) —2) pij (ziy)
i 7
~2) pij (wi;)
i

Recall here that the matrik is PSD, and therefore lettingd = (z1,...,z,) we
have

me- (ziz;) = 2" Pz > 0,

i
completing the prodt O
Let nowey(d) = inf{t : (X, d) <4 l5}. We are ready to prove the main theorem.

Theorem 2.5.

1. For every symmetric positive semidefinite maftiwith P71 =0and for every
metricd we have

Z{ivj}ipi,j >0 pi7jd2 (4,7)
Z{ivj}:pi,j <0 _pivjdz (i’ j)

C2 (d) Z

2. If eo(d) = D then there exists a symmetric positive semidefinite ma&trix
(ps,5) with PT =0so that

> (i.gywe, 20 Pig @ (0, 5)
> (i, <0 —Pigd? (i)

Co (d) =

Proof. We only prove the first part and postpone the proof of the second part to the
next lectures.

By applying Lemma 2.4 we gét;, ; p; ;

o piglmi—zli < D —piglle — s 3)

{i,5}:pi,;>0 {i,3}pi,5<0

|z; — x;]|2 < 0, which shows that

Now assume that the mapping— x;, givesd L £5. Now without loss of gener-
ality we can assume that the embedding is not expanding i.e.

l2; — 2513 < d?(i,§) < D?||lzi — 2513, Vi, j (4)

1See Tutorial 2




Then we have

Z{i,j}:pi,jZO pla]d2(l7]) < Z{i,j}:pi,jzo pz,j”sz - x]”%

— < x D* < D?
Z{i,j}:piﬁj<0 —pid*(i, j) Z{i7j}:piyj<0 —pijllwi — 2513

— )

where in the first inequality we used (3) and in the second inequality we used{4).

Recall here that our goal was to generalize the fact that for the QulErjuipped
with the Hamming distancéy;, wherecy(dy) = V2. Theorem 2.5 allows us to prove
this generalization.

Proposition 2.6. For the cube,, equipped with the Hamming distandg we have

CQ(dH) = \/ﬁ

Proof. Assume tha{Q@,,, dx) L 4. First we will prove thatD > /n. Define the
matrix P = {p; ;} as follows:

-1 dg(i,j) =1 (edges)

1 dy(i,j) =n (antipodes)
Pii=Y n-1 i=j
0 otherwise

We will show below in Lemma 2.7 thal is PSD. Moreover note that anye
{0,1}™ has only one antipode andneighbors. That is

2’IL
d pij=n—-1+1-n=0, i=1,...,2"
j=1

HenceP 1 = 0 and so we can apply Theorem 2.5. Before this, just note that for
any of the2™ rowsi of () we have

Z pijd3 (i) =(n—1)-0+1-n*=n?
{3}pi,;20

and that
> pigdiling) = —n.
{7}:pi,;<0

It follows that

2 (i j}ipe, >0 Pii @ (0, 5) onp2
Z{i’j}ipi,j<0 _pi,jd (7’7]) 2nn

The previous lower bound can be proven to be tight. It is easy to see that the
distortion of the identity mapping fro,, to R™ is exactly,/n since forz € {0,1}",
by Cauchy-Schwartz inquality we hayéu||z||2 > ||z]|1 > [|z||2- O



It only remains to show that the matri} as defined in the previous proposition is
PSD. Note here that ifl is the adjacency matrix @,, and P the matrix withP; ; = 1
if  and;j are antipodes, and 0 otherwise, thgn= (n — 1)I — A+ P.

Lemma 2.7. The matrix@Q = (n — 1)I — A + P, whereA is the adjacency matrix of
@, and P is the matrix of the antipodes respectively, is PSD.

Proof. For any vector: € {0,1}"™, we consider the vectar,, such that itg;-th coor-
dinate is(v,), = (—1)®¥. We will show that each such, is an eigenvector fo)
and moreover that it corresponds to a positive eigenvalue.

First let us calculate thg-th coordinate ofdv,..

(Avg)y = Z (vz)2
2€EQy:d(y,z)=1
= Z(vx)(y-‘rei) mod 2
i=1
— Z(_1)<m,y+e7,>
i=1
= Z(_l)wy)(_l)(w,en

=1

= (7]_)<137y> i(*l)@’ei)

<.
—

Similarly, for they-th coordinate forPv, we have

(Poa)y = ()7, = ()T = ()= () = u,), (-1 D
Therefore the eigenvalue 6f — 1)I — A + P that corresponds to the eigenvector
Vg IS
n—142%a—n+ ()@ =23z, 14+ (-1)@ 1) >0
=1 i=1

completing the proof. |
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