
CSC2414 - Metric Embeddings∗

Lecture 13: Nonembeddability intò1

Notes taken by Hamed Hatami

Summary: In this lecture we see two nonembeddability result for`1. The
first result introduces an example of a`22 metric which does not embed with
distortion 16

15 − ε into `1.

The second example shows that the edit distance on the hypercube{0, 1}n
does not embed intò1 with distortion better thanΩ(log n). The proof
uses the celebrated inequality of KKL.

1 Tensoring the cube

In this section we use tensoring of the cube to construct an`22 metric which is not
`1 [HMM06]. There is an`22 metric space due to Khot and Vishnoi [KV05] which
requires distortionΩ(log log n) to be embedded intò1, but the proof of that theorem
is very complicated (see [KR06] for theΩ(log log n) bound).

For two vectorsu ∈ Rn andv ∈ Rm, their tensor productu⊗ v is a vector inRmn

defined with coordinates indexed by ordered pairs(i, j) ∈ [n]× [m] that assumes value
uivj on coordinate(i, j). For example:

(1, 2)⊗ (1, 2, 3) = (1, 2, 3, 2, 4, 6).

Tensor product behaves nicely with respect to the direct product: Letu, u′ ∈ Rn
andv, v′ ∈ Rn, then

〈u⊗ v, u′ ⊗ v′〉 = 〈u, u′〉〈v, v′〉. (1)

To prove (1) note that

〈u⊗ v, u′ ⊗ v′〉 =
n∑
i=1

m∑
j=1

uivju
′
iv
′
j = (

n∑
i=1

uiu
′
i)(

m∑
j=1

vjv
′
j) = 〈u, u′〉〈v, v′〉.

Consider the hypercube{−1, 1}n, and the mappingf : u → u ⊗ u. Note thatf
maps the vertices of{−1, 1}n to the vertices of the larger hypercube{−1, 1}n2

(why?).
Note that

‖f(u)−f(v)‖22 = 〈f(u)−f(v), f(u)−f(v)〉 = 2n2−2〈f(u), f(v)〉 = 2n2−2〈u, v〉2.
(2)
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Since in the hypercube{−1, 1}n the`22 distance is just a scaling of the`1 distance,
we have that thè2

2 distance on{−1, 1}n is in fact a metric. However this does not
hold if we add the origin0 to this set. This is because for every vectorv ∈ {−1, 1}n,
the three pointsv, 0, −v constitute a180 degree angle, and to have a`22 metric the
maximum degree that we allow to have is90. We will show that after applying the
functionf to the hypercube we do not face this problem anymore.

Lemma 1.1. The set{f(u) : u ∈ {−1, 1}n} ∪ {0} together with thè 2
2 distance

constitutes a semi-metric space.

Proof. Since{f(u) : u ∈ {−1, 1}n} is a subset of the larger hypercube{−1, 1}n2
,

the`22 distance on this set satisfies the triangle inequality. So we only need to check the
triangle inequalities that involve0. Using (2) we get

‖f(u)− 0‖22 + ‖f(v)− 0‖22 = 2n2 ≥ ‖f(u)− f(v)‖22

and trivially
‖f(u)− 0‖22 + ‖f(u)− f(v)‖22 ≥ ‖f(v)− 0‖22.

The reason that in Lemma 1.1 we obtain a semi-metric instead of a metric is thatf
is not an injection:f(u) = f(−u).

Now we show that{f(u) : u ∈ {−1, 1}n} ∪ {0} together with̀ 2
2 metric does not

embed well intò 1. We need to use the isoperimetric inequality for the cube. Denote
byQn the hypercube{−1, 1}n:

Theorem 1.2. For every setS ⊆ Qn,

|E(S, S̄)| ≥ |S|(n− log2 |S|).

Exercise 1.3.Use induction to prove Theorem 1.2.

Theorem 1.2 implies the following Poincaré inequality.

Proposition 1.4. (Poincaŕe inequality for the cube and an additional point) Letg :
Qn ∪ {0} → `1. Then the following Poincaré inequality holds.

1
2n

16
15

(4α+1/2)
∑

u,v∈Qn

‖g(u)−g(v)‖1 ≤ α
∑
uv∈E

‖g(u)−g(v)‖1+
1
2

∑
u∈Qn

‖g(u)−g(0)‖1

(3)
whereα = ln 2

14−8 ln 2 .

Proof. LetV = Qn∪{0}. As we have already seen many times, instead of considering
g : V → `1 it is enough to prove the above inequality forg : V → {0, 1}. Further, we
may assume without loss of generality thatg(0) = 0. AssociatingS with {u : g(u) =
1}, Inequality (3) reduces to

1
2n

16
15

(4α+ 1/2)|S||S̄| ≤ α|E(S, S̄)|+ |S|/2. (4)
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From the isoperimetric inequality of Theorem 1.2 we have that|E(S, Sc)| ≥ |S|x for
x = n− log2 |S| and so(

αx+ 1/2
1− 2−x

)
1
2n
|S||Sc)| ≤ α|E(S, S̄)|+ |S|/2.

It can be verified thatαx+1/2
1−2−x attains its minimum in[1,∞) atx = 4 whenceαx+1/2

1−2−x ≥
4α+1/2
15/16 , and Inequality (4) is proven.

Theorem 1.5. LetV = {u ⊗ u : u ∈ Qn} ∪ {0}. Then for the semi-metric spaceX,
the`22 metric onV , we havec1(X) ≥ 16

15 − ε, for everyε > 0 and sufficiently largen.

Proof. Let ũ = u ⊗ u. We may viewX as a distance function with points inu ∈
Qn ∪ {0}, andd(u, v) = ‖ũ− ṽ‖2. For everyu, v ∈ Qn, we have

d(u, 0) = ‖ũ‖2 = 〈ũ, ũ〉 = 〈u, u〉2 = n2,

andd(u, v) = ‖ũ − ṽ‖2 = ‖ũ‖2 + ‖ṽ‖2 − 2〈ũ, ṽ〉 = 2n2 − 2〈u, v〉2. In particular, if
uv ∈ E we haved(u, v) = 2n2 − 2(n− 2)2 = 8(n− 1). We next notice that∑
u,v∈Qn

d(u, v) = 22n×2n2−2
∑
u,v

〈u, v〉2 = 22n×2n2−2
∑
u,v

(
∑
i

uivi)2 = 22n(2n2−2n),

as
∑
u,v uiviujvj is 22n wheni = j, and0 otherwise.

Let f be a nonexpanding embedding ofX into `1. Using Inequality (3) we get that

α
∑
uv∈E ‖f(ũ)− f(ṽ)‖1 + 1

2

∑
u∈Qn ‖f(ṽ)− f(0)‖1

1
2n

∑
u,v∈Qn ‖f(ũ)− f(ṽ)‖1

≥ 16
15

(4α+ 1/2). (5)

On the other hand,

α
∑
uv∈E d(u, v) + 1

2

∑
u∈Qn d(u, 0)

1
2n

∑
u,v∈Qn d(u, v)

=
8α(n2 − n) + n2

2n2 − 2n
= 4α+ 1/2 + o(1). (6)

The discrepancy between (5) and (6) shows that for everyε > 0 and for sufficiently
largen, the required distortion ofV into `1 is at least16/15− ε.

2 Edit Distance

In this section we prove a result of Krauthgamer [KR06] that embedding the edit dis-
tance into`1 requires distortionΩ(log n). The edit distance (a.k.a. Levenshtein dis-
tance) between two strings is the minimum number of character insertions, deletions,
and substitutions needed to transform one string to the other. Letu, v ∈ {0, 1}n. De-
note byed(u, v) the edit distance between them. It is easy to see that({0, 1}n, ed)
forms a metric space on the hypercube{0, 1}n.

The main tool that we use in the proof of our lower bound is an important inequality
due to Kahn, Kalai, and Linial [KKL88]: Forx ∈ {0, 1}n and1 ≤ i ≤ n, let x(i)

denote the vector that is the same asx except on theith coordinate.
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Theorem 2.1 (KKL Inequality). Letf : {0, 1}n → {0, 1} be a Boolean function with
Pr[f(x) = 1] = p ≤ 1/2, and define

Ii = Pr
x

[f(x) 6= f(x(i))].

Then

max Ii ≤ δ =⇒
n∑
i=1

Ii ≥ Ω(p) log(1/δ).

The highlevel view of the proof is the following: We considerf as the characteristic
function of a cut. Trivially2n

∑
Ii is just the number of the hypercube edges passing

the cut, i.e.E(S, S̄). When this value is small by KKL we conclude that there is onet
such thatIt is large. Then because of certain symmetries on the problem we can show
that there are many values oft for whichIt is large and this shows that2n

∑
Ii is large

which is a contradiction.
Let V = {0, 1}n and denote byS : V → V the cyclic shift, i.e.

S(x1, . . . , xn) = (xn, x1, . . . , xn−1).

Let
E = {(x, y) : ‖x− y‖1 = 1},

and
ES = {(x, S(x)) : x ∈ V }.

We prove a Poincaré inequality:

Lemma 2.2. Letf : V → `1. Then

Ω
(

log n
n

)
avgx,y∈V ‖f(x)−f(y)‖1 ≤ avg(x,y)∈E‖f(x)−f(y)‖1+avg(x,y)∈ES‖f(x)−f(y)‖1.

Proof. We can assume thatf : V → {0, 1}. Without loss of generality we can assume
thatPr[f(x) = 1] = p ≤ 1/2. Assume towards the contradiction that

avg(x,y)∈ES‖f(x)− f(y)‖1 = Pr[f(x) 6= f(S(x))]

≤ O(
log(n)
n

)avgx,y∈V ‖f(x)− f(y)‖1

≤ c
log(n)
n

p (7)

and

avg(x,y)∈E‖f(x)− f(y)‖1 ≤ c
log(n)
n

p, (8)

for sufficiently small constantc > 0. From (7) we get that for1 ≤ k ≤ n1/4:
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Pr[f(x) 6= f(Sk(x))] ≤
k−1∑
i=0

Pr[f(Si(x)) 6= f(Si+1(x))] ≤ ck log n
n

≤ n−1/2.

Now notice that(Sk(x))(i) = Sk(x(k+i)). Thus fork ≤ n1/4.

Ij = Pr[f(Sk(x)) 6= f((Sk(x))(j))

≤ Pr[f(Sk(x)) 6= f(x)] + Pr[f(x) 6= f(x(l+k))] + Pr[f(x(l+k)) 6= f(Sk(x(l+k)))]
≤ Il+k + 2n−1/2 (9)

Next step is to show that there exists ani such thatIi is large. Combining that with
the above inequality will show that there are many values ofi for whichIi is large and
we get a contradiction from this. First note that

n∑
i=1

Ii = n× avg(x,y)∈E‖f(x)− f(y)‖1.

Thus (8) together with KKL implies that there exists somet ∈ [n] such that

It ≥ n−1/8.

combining this with (9) we get

n1/4∑
k=1

Il+k ≥ 2n1/8 ≥ c log n
n

,

which is a contradiction.

Now we want to use this Poincaré inequality to prove the lower bound. It is easy to
see that

Θ
(

1
n

)
avgx,y∈V ed(x, y) ≥ 2 ≥ avg(x,y)∈Eed(x, y) + avg(x,y)∈ESed(x, y).

Combining this with Proposition 1.4 leads to the following theorem.

Theorem 2.3. The edit distance on{0, 1}n requires distortionΩ(log n) to be embed-
ded into`1.
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beddings intò 1. In SODA, page to appear, 2006.

[KV05] S. Khot and N. Vishnoi. The unique games conjecture, integrality gap
for cut problems and embeddability of negative type metrics into`1. In
Proceedings of The 46-th Annual Symposium on Foundations of Computer
Science, 2005.

6


