CSC2414 - Metric Embeddings
Lecture 13: Nonembeddability intG

Notes taken by Hamed Hatami

Summary: In this lecture we see two nonembeddability resultforThe
first result introduces an example ofzmetric which does not embed with
distortion{2 — € into ¢;.

The second example shows that the edit distance on the hypefeubé
does not embed inté, with distortion better thaf2(logn). The proof
uses the celebrated inequality of KKL.

1 Tensoring the cube

In this section we use tensoring of the cube to constructZametric which is not
¢, [HMMO6]. There is an/3 metric space due to Khot and Vishnoi [KV05] which
requires distortiorf2(log log n) to be embedded inté;, but the proof of that theorem
is very complicated (see [KR06] for tHe&(log log n) bound).

For two vectors, € R™ andv € R™, their tensor produat ® v is a vector inR™"
defined with coordinates indexed by ordered péirg) € [n] x [m] that assumes value
u;v; on coordinatds, j). For example:

(1,2) ®(1,2,3) = (1,2,3,2,4,6).

Tensor product behaves nicely with respect to the direct productu éte R™
andv, v’ € R™, then
(u@v,u' @) = (u,u)(v,v"). 1)

To prove (1) note that

(u@v,u' @) = Z Z UV UV = (Z ulug)(z vjvi) = (u,u') (v, v').

i=1 j=1 i=1 j=1

Consider the hypercubg-1,1}", and the mapping : © — u« ® u. Note thatf

maps the vertices df~1, 1}™ to the vertices of the larger hypercupel, 1}"2 (why?).
Note that

1f (@)= f )3 = (f(w) = (v), f(u)=f(v)) = 2n°=2{f(u), f(v)) = 27?/2—2(%@2;
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Since in the hypercubg-1, 1}" the /3 distance is just a scaling of tife distance,
we have that the3 distance on{—1,1}" is in fact a metric. However this does not
hold if we add the origird to this set. This is because for every veatos {—1,1}",
the three point®, 0, —v constitute al80 degree angle, and to have/ametric the
maximum degree that we allow to haved8. We will show that after applying the
function f to the hypercube we do not face this problem anymore.

Lemma 1.1. The set{f(u) : v € {—1,1}"} U {0} together with the/3 distance
constitutes a semi-metric space.

Proof. Since{f(u) : u € {—1,1}"} is a subset of the larger hypercupe1,1}"",
the /2 distance on this set satisfies the triangle inequality. So we only need to check the
triangle inequalities that involvé. Using (2) we get

£ (u) = O3 + [1f (v) = O[3 = 2n* = [ (u) — F(v)II3

and trivially
[1f(u) = 013 + 1| f(w) = F(@)II3 = [l f(v) - O]3.
]

The reason that in Lemma 1.1 we obtain a semi-metric instead of a metric j§ that
is not an injection:f (u) = f(—u).

Now we show tha{ f(u) : u € {—1,1}"} U {0} together with/3 metric does not
embed well into/;. We need to use the isoperimetric inequality for the cube. Denote
by @,, the hypercubd —1,1}"™:

Theorem 1.2. For every setS C @Q,,,
|E(S,8)| = |S|(n — logy | S).
Exercise 1.3.Use induction to prove Theorem 1.2.
Theorem 1.2 implies the following Poin@inequality.

Proposition 1.4. (Poincare inequality for the cube and an additional point) Lget
@ U {0} — ¢,. Then the following Poinc&inequality holds.
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wherea = 17575

Proof. LetV = Q,,U{0}. As we have already seen many times, instead of considering
g : V — {; itis enough to prove the above inequality for V' — {0, 1}. Further, we
may assume without loss of generality thy@) = 0. AssociatingS with {u : g(u) =
1}, Inequality (3) reduces to

116

o 1z (4o + 1/2)IS]18] < ol B(S, 9)| +S]/2 (4)



From the isoperimetric inequality of Theorem 1.2 we have tRd5, S¢)| > | S|« for
x =n — log, |S| and so

(M) 2 IS115)] < alB(S,5)| +15]/2.

1—-2-=
It can be verified thai%l_/f attains its minimum i1, co) atx = 4 Whence‘j“;l/f >
—4%;%2, and Inequality (4) is proven. 0

Theorem 1.5. LetV = {u® u : u € Q,} U{0}. Then for the semi-metric spacg,
the (3 metric onV, we haver; (X) > 18 — ¢, for everye > 0 and sufficiently largex.

Proof. Let & = v ® u. We may viewX as a distance function with points in €
Qn U {0}, andd(u,v) = ||a — ||?. For everyu,v € Q,,, we have

d(u,0) = ||al* = (a,a) = (u,u)* =

(
) = 2n? — 2(u,v)2. In particular, if
n — 1). We next notice that

andd(u, v) = ||a = o|* = [[a]* + |o]* — 2(a, 7
uv € E we haved(u,v) = 2n? — 2(n — 2)% = §(

Z d(u,v) = 2% x2n% -2 Z{u,v = 22 2n? QZ z:uzvZ = 22"(2n%—2n),
UVEQR u,v i

asy_, , uiviu;v; is 22" wheni = j, and0 otherwise.
Let f be a nonexpanding embeddingXfinto ¢;. Using Inequality (3) we get that
a Y er 1F(@) = FO)ll + 5 Xueq, 1) - )||1 16
; f(a) = f(0)l 15

2n Lau,vEQn

On the other hand,

& ZquE d(u’ U) + % ZuGQn d(u7 0) — 8@(712 — n) * ?7,2 =4 + 1/2 + 0(1) (6)

—(da+1/2). (5

2% Zu,vEQn d(u,v) 2n2 — 2n
The discrepancy between (5) and (6) shows that for every) and for sufficiently
largen, the required distortion df into ¢, is at leastl6/15 — e. O

2 Edit Distance

In this section we prove a result of Krauthgamer [KR06] that embedding the edit dis-
tance into/; requires distortiod2(logn). The edit distance (a.k.a. Levenshtein dis-
tance) between two strings is the minimum number of character insertions, deletions,
and substitutions needed to transform one string to the othem,keg {0,1}"™. De-
note byed(u,v) the edit distance between them. It is easy to see(fatl}", ed)
forms a metric space on the hypercylte1}".

The main tool that we use in the proof of our lower bound is an important inequality
due to Kahn, Kalai, and Linial [KKL88]: For € {0,1}" and1 < i < n, letz®
denote the vector that is the samerasxcept on théth coordinate.



Theorem 2.1 (KKL Inequality). Letf : {0,1}™ — {0, 1} be a Boolean function with
Pr[f(x) = 1] = p < 1/2, and define

I; = Pr{f(z) # f(™)).

Then .
max [; <0 = Zji > Q(p)log(1/9).
=1

The highlevel view of the proof is the following: We consideas the characteristic
function of a cut. Trivially2" )’ I; is just the number of the hypercube edges passing
the cut, i.e.E(S,.S). When this value is small by KKL we conclude that there is bne
such thatl, is large. Then because of certain symmetries on the problem we can show
that there are many valuestfor which I is large and this shows that > I; is large
which is a contradiction.

LetV = {0,1}" and denote by : V' — V the cyclic shift, i.e.

Sy y2n) = (Xn, T1, ..., Tp—1).

Let
E={(zy):lz -yl =1}

and
Es ={(z,S(x)):x € V}.

We prove a Poincérinequality:

Lemmaz2.2.Letf:V — ¢1. Then

1
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Proof. We can assume thgt: V' — {0, 1}. Without loss of generality we can assume
thatPr[f(z) = 1] = p < 1/2. Assume towards the contradiction that

avg (e yens [f(®) = FW)l = Prif(z) # f(S(z))]

< OB e, ey 17) Sl
< Clog(n)p @
n
and |
a8l ) — Tl < B, @

for sufficiently small constant > 0. From (7) we get that fot < k < n'/*:



k—1

Pr(f(x) # F(S"(@))] < 3 Prlf(5*(a)) # (5 ()] < OB <12

1=0 n
Now notice tha( S*(z))®) = S*(z(*+9). Thus fork < n'/4.
I = Prlf(S*(z)) # f(S*(x)?)
< Prf(S"(@)) # f(2)] + Pr[f(z) # f(a"TP)] + Pr[f(aFH) # f(S*(HR))]
< Ipp+2n"Y? 9)

Next step is to show that there existsiasuch thatl; is large. Combining that with
the above inequality will show that there are many valuesfof which /; is large and
we get a contradiction from this. First note that

S L= nx avg g gy csll (@) — S

i=1

Thus (8) together with KKL implies that there exists soime [n] such that

It Z n_l/g.
combining this with (9) we get
nl/4
ZIlJrk > ont/8 > Cloﬂ,
k=1 n
which is a contradiction. O

Now we want to use this Poind@imequality to prove the lower bound. Itis easy to
see that

1
() <;) avg, yeved(z,y) > 2 > avg, eped(z,y) +avg, g ed(@, y).

Combining this with Proposition 1.4 leads to the following theorem.

Theorem 2.3. The edit distance of0, 1}™ requires distortior2(log n) to be embed-
ded into/; .
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