
CSC2414 - Metric Embeddings∗

Lecture 1: A brief introduction to metric
embeddings, examples and motivation

Notes taken by Costis Georgiou
Revised by Hamed Hatami

Summary: We are interested in representations (embeddings) of one
metric space into another metric space that preserve or approximately pre-
serve the distances. In this lecture we provide the basic definitions as well
as many examples and a brief overview of the history and main theorems
in the area.

1 Introduction

In recent years, the study of distance-preserving embeddings has introduced a powerful
tool to algorithm designers due to the connection between combinatorics and geome-
try. The “embedding method” is considered to be one of the important methods in the
design of approximation algorithms, and has gained a lot of popularity in the computer
scientists community in the past decade. Its application in the algorithm design is usu-
ally in the following framework: One often takes a problem defined over a “difficult”
metric and reduce it to a problem over an “easier” metric. Since the solution of many
problems is strongly connected to the geometric properties of their input, embeddings
are advisable for solving problems over metric spaces.

A finite metric space is simply a set of points with distances between them that sat-
isfy triangle inequality and that two distinct points have nonzero distance. A Euclidean
metric, on the other hand, is a metric that is obtained when points are placed in some
Euclidean space and distances are inherited from the Euclidean norm. We will discuss
such families of metric spaces and their differences, as well as develop algorithms to
“embed” one metric space into the other. We will introduce techniques for obtaining
negative results saying that some spaces cannot be well embedded into certain normed
spaces and discuss the issue of dimension of normed spaces, i.e. when can we reduce
dimension and at what cost. We will also draw a link between combinatorial properties
of graphs (e.g. expansion, girth, planarity) to the quality in which their metric embeds
into certain normed spaces.
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Much of the discussion ties these questions to the art of algorithmic design. One
aspect of this connection is the following: many problems deal explicitly or implicitly
with a distance measure between items. When these distances come from a simple
geometrical space, say low dimensional Euclidean space, an efficient algorithm is typ-
ically available or easy to find. For a general class of metric spaces it is therefore
useful to embed the items in such geometrical spaces so that the new distances approx-
imate the original ones. Then, applying the simple algorithm in the geometrical space
gives an approximation algorithm for the original problem. We will also discuss less
obvious connections to approximation algorithms. For example, we will link certain
LP-relaxations or Semi-Definite relaxations to the quality of embeddings of particular
metric spaces.

2 Metric spaces and embeddings

Many practical problems that relate metric spaces arise from many different disciplines.
To illustrate the need for metric embeddings, it is good to start with such a problem
from bioinformatics.

Example 2.1. Biological data, such as DNA or proteins are usually represented as
sequences of elements taken from an alphabet. After many years of research, more than
half a million different proteins have been discovered with known sequences. Finding
the similarity of two different proteins is a fundamental concern and is related to a
notion of distance. Thus a set of biological data can been thought as a finite metric
space.

Assume that we are given a set of biological0− 1 sequencesX,

0110011000110011101
0100110010010011000
0110111011010001001
1001100011100011110
0100110001110001111

We can observe that the last two sequences seem more similar. We would ask the
question that “is there a functionf that mapsX to a plane with Euclidean distance,
keeping the distances the same?”

A mapping of a metric space to a Euclidean space might be useful but not always
possible to achieve, as this is the case for the following example:

Example 2.2. Consider the metric spaceX defined in Figure 1.
Our claim is that it is not possible to realizeX in Euclidean space of any dimen-

sion. We Prove the claim by contradiction: assume that there is an integerk, such
that f : X = {a, b, c, d} → R

k and moreoverf preserves the distances. Since
the4-inequality is tight for the elementsd, a, b we conclude thatf(d), f(a), f(b) are
collinear in the spaceRk. Using the same argumentf(d), f(a), f(c) are collinear too.
But then‖f(b) − f(c)‖2 = 0 contradicting the fact that the distance betweenb andc
is 2.
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Figure 1: The metric spaceX

A nice property is the ability to embed sequences into the Euclidian space so that
distances are preserved. Example 2.2 indicates that we can only hope to approximate
this property. To discuss the relation between metric spaces, first we have to formally
define the notion of a metric space.

Definition 2.3. A metric spaceis a pair(X, ρ), whereX is a set ofpoints and a
functionρ : X ×X → R

≥0 so that

1. ρ(x, y) = 0⇔ x = y

2. ρ(x, y) = 0 = ρ(y, x) (symmetry)

3. ρ(x, y) + ρ(y, z) ≥ ρ(x, z) (4-inequality)

A mappingρ that satisfies (1) and (2) is called adistance, while a distance that satisfies
property (3) is called ametric. Moreover, if we allowρ(x, y) = 0 then the metric is
calledsemi-metricor pseudometric. Let (X, ρ) and(Y, µ) be two metric spaces. Any
one-to-one mapf : X → Y is called anembedding.

It is easy to see that alternatively, having the elements ofX ordered, we can think
of a symmetric|X| × |X|matrix to describe the metric space.

On the other hand a normed space is defined as in the following:

Definition 2.4. A normed space is a pair(V, ‖ · ‖), whereV is a vector space overR
orC and‖ · ‖ is a function fromV toR≥0 satisfying

1. ‖x‖ = 0 iff x = 0;

2. ‖λx‖ = |λ|‖x‖ for all x ∈ V and scalarλ;

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V .

It is easy to see that every normed space is a metric space with the distance function
defined asd(x, y) = ‖x− y‖, for everyx, y ∈ V .

Example 2.5. Some examples of the finite metric spaces are stated in the following.
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1. Every graph induces a metric on its vertices that is characterized by the shortest
path between vertices. Consider a path with 5 nodes and edges of length 1. A
matrix that describes this metric space is

0 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
4 3 2 1 0


2. We can represent a cycle with 5 nodes and edges of length 1 with the matrix

0 1 2 2 1
1 0 1 2 2
2 1 0 1 2
2 2 1 0 1
1 2 2 1 0


3. Given a setX and its subsetS, we can think of the partitionS, S as a semi-

metric space in the following way. Elements of different sets have distance 1
while elements of the same set have distance 0. This is known as a cut metric
(see Figure 2).

Figure 2: A cut metric

If we denote by0n×m, then ×m zero matrix and withJn×m the all onen ×
m matrix, then the previous semi-metric can be represented as a matrix in the
following way (

0|S|×|S| J|S|×|S|
J|S|×|S| 0|S|×|S|

)
.

4. In the Euclidean space consider a1× 1 square. Clearly this metric space can be
described as 

0 1
√

2 1
1 0 1

√
2√

2 1 0 1
1
√

2 1 0

 .

Having defined an input or output space as a metric space, we would hope that
analyzing the corresponding metrics will provide us useful information. Therefore it is
desirable to look for simple metrics such as:
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• A metric which has a short description;

• A low dimensional normed space;

• A metric that comes from “simple” graphs such as a cycle, a tree, a sparse or
planar graph.

The infinite spacesRk equipped with the so called Minkowski norm‖ · ‖
p

(for
p ∈ [1,∞]) gives rise to the most commonly used metric spaces. Recall that the norm
`p onRk is defined as

‖x‖
p

=

(
k∑
i=1

|xi|p
) 1
p

,

where1 ≤ p <∞, while ‖x‖∞ is defined asmaxi |xi|.

Definition 2.6. We say that a finite metric space(X, ρ) is realizedin `kp if there is a
functionf : X → R

k so thatρ(x, y) = ‖f(x) − f(y)‖
p
. We also call a finite metric

space(X, ρ) an`p-metric if it can be realized iǹkp for somek.

The following simple theorem shows that it is possible to realize every metric space
in `∞.

Theorem 2.7. Every metric space embeds isometrically into`∞.

Proof. We will prove this lemma only for finite metric spaces. Consider a metric space
(X, d), whereX = (x1, . . . , xn). It suffices to find a functionf : X → Rn such that
(X, d) embeds isometrically into(Rn, ‖ · ‖). Forxi ∈ X we define

f(xi) = (d(x1, xi), d(x2, xi), . . . , d(xn, xi))

Clearly it suffices to show for everyxi, xj ∈ X that‖f(xi)−f(xj)‖∞ = d(xi, xj).
First we note that sinced is a metric, it respects the4-inequality, thusd(xi, xk) −
d(xj , xk) ≤ d(xi, xj) for k = 1, . . . n. It follows that

max
k
|d(xi, xk)− d(xj , xk)| ≤ d(xi, xj),

or in other words

‖f(xi)− f(xj)‖∞ ≤ d(xi, xj). (1)

On the other hand, thej-th coordinate of the vectorf(xi) − f(xj) is d(xj , xi) −
d(xj , xj) = d(xi, xj). Therefore the maximum coordinate off(xi)− f(xj) is at least
d(xi, xj) or in other words

‖f(xi)− f(xj)‖∞ ≥ d(xi, xj). (2)

The lemma follows then from (1) and (2).
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3 Similarity of metric spaces

Solving the TSP in a graph is a difficult problem. An embedding of the metric of the
graph into a tree that preserves the distances makes the problem trivial. However, as we
saw in Example 2.2, we cannot always hope to achieve such embeddings. This gives
rise to the following definition that tries to capture the idea of approximately preserving
the distances of a metric space.

Definition 3.1. Let f be an embedding from the finite metric space(X, ρ) into another
finite metric(Y, µ). We define

expansion(f) = max
x,y∈X

µ (f(x), f(y))
ρ(x, y)

contraction(f) = max
x,y∈X

ρ(x, y)
µ (f(x), f(y))

Thedistortionof an embeddingf , distortion(f), is defined as the product of expansion(f)
and contraction(f). An embeddingf with distortion(f) = 1 is calledisometric.

Clearly the best the distortion that we can hope for is 1 (this is achieved when the
new distances are just a scaling of the old distances with some numberβ > 0. Note
that the distortion of an embeddingf can also be equivalently defined as the minimum
α ≥ 1 such that there existsβ > 0 such that for everyx, y ∈ X:

βµ (f(x), f(y)) ≤ ρ(x, y) ≤ αβµ (f(x), f(y)) .

4 Algorithmic application

Consider a problem that is defined on a set of points in a metric space M. Our aim will
be to efficiently “place” the points in a simpler spaceM ′ so that

1. The distortion is small;

2. It is easy to solve the problem inM ′.

Some possible scenarios include the following cases

1. Embed a metric space into a low dimensional`p space.

2. Start with high dimensional normed space and embed it into a low dimensional
normed space.

3. Embed a metric space into “tree-metrics” and usually solve the problem using a
divide& conquer approach on the tree.

While embedding metric spaces with small distortion into tree-metrics might be
useful, this is not always possible. For instance, embedding a metric space into one tree
is problematic in the sense that any such embedding could be very poor. For example
it is not possible to embed ann-cycle,Cn, into a tree-metric with good distortion.
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Example 4.1. The n-cycles cannot be embedded into a tree metric with distortion
better thanΩ(n). For instance, the attempt to discard any of the edges creates expansion
n − 1. Furthermore, the contraction is 1 since by discarding an edge the distance
between any two nodes cannot be decreased. Therefore,n− 1 is a lower bound for the
distortion of this specific embedding.

On the other hand we can embedCn into a distribution of trees. Those trees are
once again paths that arise by discarding an edge chosen uniformly at random. Below,
the expected value is computed with respect to the random choice of the edgee that we
discard, or in other words the random treeTe that is obtained. We denote byfe the em-
bedding that is defined by discarding the edgee and byde(·, ·) the cost of the minimum
path of any two nodes inTe. Thus the embeddingfe is defined as the mapping

fe : (Cn, d)→ (Te, de)

Now, clearly

ETe [de (fe(x), fe(y))] =
d(x, y)
n

(n− d(x, y)) +
n− d(x, y)

n
d(x, y)

= 2d(x, y)
n− d(x, y)

n
≤ 2d(x, y)

improving the distortion to a constant factor.

More algorithmic extensions of metric embeddings arise from linear and semidefi-
nite programming.

Example 4.2. Problems such as MAX -CUT, SPARSEST-CUT or even VERTEX COVER

can be formulated as linear or semidefinite programs (LP/SDP). Their relaxation can be
thought as metric spaces. The partition of the nodes that any of these examples requires
can be thought as a cut metric, while more rich metric spaces follow by relaxing the
LP’s and SDP’s. An embedding from the rich space to a cut metric space gives rise
to an approximation algorithm, where distortion translates to the integrality gap of the
relaxation.

5 Historical notes

In this section we review the history of this area and state some of the most structural
theorems that we will discuss in the course.

Although the study of the dissimilarity of normed spaces goes back to the first half
of the 20th century and works of mathematicians such as Stefan Banach, Stanislaw
Mazur, Fritz John[Joh48], Isaac Schoenberg, Dvoretzky [Dvo61], etc, the minimum
distortion required to embed a metric space into a normed space remained unstudied
until 1985 when Bourgain [Bou85] in a short paper proved an upper-bound for this
quantity in a very general case.
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Theorem 5.1 (Bourgain). Every metric space onn points embeds intòO(log n)
p with

distortion and dimensionO(log2 n).

Meanwhile due to a striking result of the Russian mathematician E. D. Gluskin [Glu81],
many great mathematicians including G. Pisier [Pis89], M. Talagrand [LT91], G. Schecht-
man and V. Millman [MS86], etc, started to restudy the dissimilarity of normed spaces.
There is a tight connection between this area and the area of metric embeddings, so
that some theorems regarding normed spaces has immediate corollaries or analogues
in metric spaces. For example the following theorem of W.B. Johnson and J. Linden-
strauss [JL84] is originally proved as a problem in this area.

Theorem 5.2. Givenn points in`n2 , they can be embedded into`O(log n/ε2)
2 with dis-

tortion 1 + ε.

Although the research of Bourgain on metric spaces carried further by himself [Bou86,
BFM86], J.Matousek [Mat92], M. Deza and H. Maehara [DM90], etc, it was not until
1995 when the seminal paper of N. Linial, E. London, and Y. Rabinovich [LLR95] is
published that the algorithmic importance of Bourgain’s theorem and other problems
in this area is revealed.
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[Mat92] Jǐrı́Matoǔsek. Note on bi-Lipschitz embeddings into normed spaces.Com-
ment. Math. Univ. Carolin., 33(1):51–55, 1992.

[MS86] Vitali D. Milman and Gideon Schechtman.Asymptotic theory of finite-
dimensional normed spaces, volume 1200 ofLecture Notes in Mathematics.
Springer-Verlag, Berlin, 1986. With an appendix by M. Gromov.

[Pis89] Gilles Pisier. The volume of convex bodies and Banach space geometry,
volume 94 ofCambridge Tracts in Mathematics. Cambridge University
Press, Cambridge, 1989.

9


