
CSC2411 - Linear Programming and
Combinatorial Optimization∗

Lecture 9: Ellipsoid Algorithm (Contd.) and
Interior Point Methods

Notes taken by Vincent Cheung

March 16, 2005

Summary: The ellipsoid algorithm is shown to be capable of solving cer-
tain LP problems where the number of constraints is exponential in poly-
nomial time. This lecture then introduces interior point methods, which
is one of the most commonly used algorithms for solving linear program-
ming problems. In particular, Ye’s algorithm, that takes a primal-dual ap-
proach, is discussed.

1 Ellipsoid algorithm for LP with “too many” constraints

Recall that for the ellipsoid algorithm to work, we need these oracles:

1. Membership oracle - is x ∈ P ?

2. Separation oracle - what is a plane separating x from P ?

The ellipsoid algorithm tells us that given these oracles to a problem, guarantees
of not too large of an initial search space, and not too small of a possible volume for
P �= 0, we get a polynomial solution. With this observation, we may hope to achieve
polynomial algorithms to certain LP with many more constraints than the natural para-
meters of the problem. Specifically, if m, the number of constraints, is exponential in
the number of variables n, and the entries of A, b, and c are not big in terms of n, we
may still get a polynomial algorithm in n as long as we have a separation oracle.

Example 1.1. Given an undirected graph G with n edges and cost, c, on the edges and
k terminal pairs of sources and sinks, (si, ti). The goal is to find the minimal weight
set of edges, F , that leaves si connected to ti. This problem can be formulated as a
linear program.

∗ Lecture Notes for a course given by Avner Magen, Dept. of Computer Sciecne, University of Toronto.

1

Let Si be the set of partitions S of the nodes which separate si and ti, i.e. |S ∩
{si, ti}| = 1. The problem is characterized by the following integral program.

min
∑

cexe

∀ i = 1, . . . , k, ∀ S ∈ Si

∑
e in the cut of S

xe ≥ 1

xe ∈ {0, 1}

Relaxing the binary constraints on x and permitting values in the interval [0, 1]
gives the following formulation.

min
∑

cexe

∀ i = 1, . . . , k, ∀ S ∈ Si

∑
e in the cut of S

xe ≥ 1

0 ≤ xe ≤ 1

Recall that for the ellipsoid algorithm, we had bounds that relates to n and to the
size of n x n matrices since all coefficients of A, b, and c are 0, 1 this means that
really, if we can only show separation oracle, we actually know the ellipsoid algorithm
is polynomial. For x ∈ R

n, we need to know if

1. x is feasible

2. a separating hyperplane, a, such that 〈a, y〉 < 〈a, x〉 ∀ feasible y

Algorithm 1.2.

Input: x ≥ 0
Output: x feasible or separating hyperplane, a

for i = 1, . . . , k

1. look at network flow problem with si source, ti sink, and capacities are the xe

2. run max flow-min cut algorithm on this network

3. if flow < 1 and S is the min-cut, then
∑

e in the cut of S

xe < 1 is a separating hyper-

plane

if all the k “max flows” we get are ≥ 1, then xe is feasible.

For a single source, si, and sink, ti, if the max flow-min cut algorithm yields a
maximum flow less than 1, then it cannot be the case that the edges have binary weights
in forming a path between si and ti. Thus, step 3 forms a separating hyperplane for the
original formulation of the LP, as required.

2

c

Figure 1: Moving through the polytope.

2 The Interior Point Method

The simplex algorithm performs well in practice, but has a poor theoretical worst case
performance and works only with linear programming problems. The ellipsoid algo-
rithm does not provide much in terms of practical performance improvement over the
simplex algorithm, but has a polynomial time theoretical complexity and is able to
solve more than just linear programming problems. Karmakar’s paper in 1984 intro-
duced a new method that not only performs well in practice and in theory, but, as we
will see, is even more extendable beyond linear programs than the ellipsoid algorithm.
This method is called “interior point”.

Like the simplex algorithm, the interior point method holds a feasible solution in
each iteration, but unlike simplex, all this is happening in the interior of the polytope,
int(P), rather than the vertices of the polytope. The interior point method proceeds
by moving through the polytope towards the optimal value. Figure 1 illustrates this
movement through the polytope. How can we hope to find the optimum, opt(P), if we
are always in the interior? We know that the optimal solution lies on a vertex of the
simplex, so intuitively, we can stop when the solution is within some small distance to
the optimum and declare the nearest vertex to be the optimum.

Definition 2.1. A feasible solution is “almost optimal” if 〈x, c〉 < opt(P) + 2−2L,
where L is the size of the LP.

Claim 2.2. If x is almost optimal and if v is a vertex with 〈v, c〉 ≤ 〈x, c〉, then v is
optimal.

Proof. If u1 and u2 are vertices such that 〈u1, c〉 < 〈u2, c〉, then 〈u1, c〉 ≤ 〈u2, c〉 −
2−2L because of the bounds on the size of the LP. So, if v is not optimal, then the
optimal solution, w, is such that 〈w, c〉 ≤ 〈v, c〉 − 2−2L ≤ 〈x, c〉 − 2−2L, which is in
contradiction to x being almost optimal.

The simplex can be quite complicated and it might seem obvious to move through
the polytope with the interior point method by moving in the direction that best de-
creases the objective function. However, this naı̈ve improvement is inefficient when

3

Figure 2: The barrier function.

the solution is near the boundary, as seen Fig. 1. The first movement in the polytope
moves the solution away from the boundary, while doing something reasonable with
respect to the objective function so that the following steps can make better gains. This
desire to stay away from the boundary of the polytope is formulated in the form of a
barrier function. A barrier function, as shown in Fig. 2, is like a deep well, where it
has a low value in the most interior of the polytope and has infinitely steep walls at
the boundary. Staying within the interior of the polytope is essential for the interior
point algorithm and it is the minimization of both the barrier and objective functions
that gives an efficient and optimal solution.

Definition 2.3. A barrier function is a convex function on the affine hull, int(P) that
tends to infinity on the boundary of P .

Consider a linear programming problem in standard form,

min〈x, c〉
Ax = b

x ≥ 0

A barrier function that is commonly used is

Φ(x) = −
∑

ln(xi)

This barrier function clearly goes to infinity as x approaches the boundary of the poly-
tope, i.e. as xi approaches 0. This barrier function is convex because it is simply a
negative summation of concave logarithmic functions.

Equipped with a barrier function for P , we can define a potential function that takes
into account both the barrier and objective function. The interior point method proceeds
by taking a step in the direction that minimizes this potential function. Interior point
is not a specific algorithm, but rather, a method, and so, a family of algorithms exist,
which differ by:

• their setting as primal, dual, and primal-dual

• their barrier function and their potential function

• how a step is performed

4

2.1 Ye’s Interior Point Algorithm

Ye took a primal-dual approach for interior point in 1990 when he introduced a barrier
function called the primal-dual potential function.

2.1.1 A primal-dual approach

Consider the following linear program:

min〈x, c〉
Ax = b

x ≥ 0

It’s dual is given by:

max〈y, b〉
yA ≤ c

y ≷ 0

By adding a slack variable, the dual becomes:

max〈y, b〉
yA + s = c

s ≥ 0

The interior point algorithm holds x and s as solutions. Note that s is just part of
the dual solution. The algorithm will hold pairs (x(0), s(0))→ (x(1), s(1))→ · · ·

From complementary slackness,

〈x, c〉 − 〈x, s〉 = 〈x, c− s〉 = yT Ax = 〈y, b〉
thus, 〈x, s〉 is an upper bound to the distance of 〈x, c〉 (〈y, b〉) from the optimal in the
primal (dual), thus, we require both the primal and dual to be close to the optimal. An
abstract visualization of this concept is shown in Fig. 3. The primal polytope is shown
below the dual polytope. Note that in this particular instance, the dual quickly gets
close to the optimal, but the primal requires several more steps. Another thing to notice
is that the interior point method may actually increase the objective function in order
to decrease the barrier function in a given iteration, as seen in the second step in the
primal polytope.

Definition 2.4. The primal-dual potential function associated with the primal-dual lin-
ear program is

G(x, s) = (n +
√

n) ln(〈x, s〉)−
n∑

i=1

ln(xi, si)

Claim 2.5. If G(x, s) ≤ 2
√

nL, then x is “almost optimal”

5

c

P

Q

Figure 3: Primal-dual approach to interior point.

Proof. It is enough to show that if G(x, s) ≤ 2
√

nL, then 〈x, s〉 < 2−2L to prove this
claim since 〈x, s〉 is an upper bound to the distance of 〈x, c〉 from the optimal and x is
almost optimal.

G(x, s) =
√

n ln(〈x, s〉) + [n ln(〈x, s〉)−
∑

ln(xisi)]

The term in brackets can be shown to be ≥ 0 by using Jensen’s inequality because
of the concavity of the logarithm function.

ln(〈x, s〉) = ln(
∑

xisi) = ln(n
1
n

∑
xisi) ≥ ln(n) +

1
n

∑
ln(xisi)

n ln(〈x, s〉) ≥n ln(n) +
∑

ln(xisi)

n ln(〈x, s〉)−
∑

ln(xisi) ≥n ln(n) ≥ 0

2
√

nL ≥ G(x, s) ≥ √n ln(〈x, s〉) and

e−2L ≥ 2−2L ≥ 〈x, s〉 as required.

2.1.2 The algorithm

One way to decrease the potential function, G, is to fix s and move x in a manner that
follows the opposite direction of g, the gradient of G with respect to x evaluated at
(x(i), s(i)). At iteration i, the solution held is (x(i), s(i)). For now, assume that x(i) is
the all ones vector, i.e x(i) = 1 (it is later shown how a linear transform can transform

6

x into this form).

g = ∇xG(x, s)
∣∣∣
(x(i),s(i))

=
n +
√

n

〈x, s〉 s−

⎛
⎜⎝

1/x1

...
1/xn

⎞
⎟⎠

∣∣∣∣∣
(x(i),s(i))

=
n +
√

x∑
si

s− 1

We can not simply move x(i) in the direction of −g because A(x(i) − εg) = b −
εAg �≡ b. Consequently, the step must be restricted to the nullspace of A to satisfy the
constraints.

Ax(i) = b

A(x(i) − εd) = b

Ax(i) − εAd = b⇒ Ad = 0

Let d be the projection of g onto the kernel of A

d = (I −AT (AAT)−1A)g

At this point, we know the preferred direction and we only need to determine the
size of the step. One obvious limiting factor is that x(i+1) ≥ 0. Suppose a step size of
1
4 in the direction of −d,

x(i+1) = x(i) − 1
4

d

‖d‖2
, clearly x

(i+1)
j = 1− 1

4
dj

‖d‖2
≥ 3

4

s(i+1) = s(i)

Claim 2.6. If ‖d‖2 ≥ 0.4, then G(x(i), s(i))−G(x(i+1), s(i+1)) ≥ 7
120

Proof.

G(x(i), s(i))−G(x(i+1), s(i+1)) = G(1, s(i))−G(1− 1
4

d

‖d‖2
, s(i))

= (n +
√

n) ln(1T s(i))−
n∑

j=1

ln 1−
n∑

j=1

ln s
(i)
j

− (n +
√

n) ln(1T − dT s(i)

4‖d‖2
)

+
n∑

j=1

ln(1− dj

4‖d‖2
) +

n∑
j=1

ln s
(i)
j

=
n∑

j=1

ln(1− dj

4‖d‖2
)

− (n +
√

n) ln(1− dT s(i)

4‖d‖2
1T s(i+1))

7

Using the following inequality obtained from the Taylor series expansion of ln(1−
x):
−x− x2

2(1−a) ≥ ln(1− x) ≤ −x, for |x| ≤ a < 1

for a = 1
4 ,

G(x(i), s(i))−G(x(i+1), s(i+1)) ≥ ‖d‖2
4
− 1

24
≥ 7

120
, if ‖d‖2 ≥ 0.4

If ‖d‖2 is small, i.e. ‖d‖2 < 0.4, which can occur when g is almost perpendicular
to the kernel of A, then a move in x does not gain much. In such a situation, we keep
x(i) unchanged and move the dual variable in the opposite direction of the gradient,
g = ∇sG(x, s)

∣∣
(x(i),s(i))

, in an analogous manner to x above. It can be shown that
also in the event, G decreases by a constant.

Up to this point, we had assumed that x(i) = 1. Of course, this will not hold
in general, but the problem can be transformed by a linear transformation, X̂ , so that
x′ = X̂−1x = 1,

X̂ =

⎛
⎜⎝

x̂1

. . .
x̂n

⎞
⎟⎠

Let Â = AX̂ and ĉ = cX̂ . The transformed problem then becomes

min〈ĉ, x′〉
Âx′ = b

x′ ≥ 0

In the dual, the transformation is S → X̂s, so x′
js

′
j remains unchanged, i.e.

x′
js

′
j = xjsj and G is related to x and s through xjsj .

Algorithm 2.7.
Ye’s primal-dual interior point algorithm, adopted from [Mei97].

Input: m,n ∈ N, ε > 0, andA ∈ R
mxn of full row rank, c ∈ R

n, b ∈ R
m and initial

x(0), y(0), s(0) such that
Ax(0) = b, x(0) > 0, y(0)T A + s(0)T = cT , s(0) > 0.

Output: A feasible pair (x(k), s(k)) such that s(k)T x(k) < ε.

while(s(k)T x(k) < ε)

1. Transform the feasible solution with respect to x(k):
x′(k) = X̂−1x(k) = 1, s′(k) = X̂s(k), A′ = AX̂

2. g ← n+
√

x(k)
�

s
(k)
i

s(k) − 1

8

3. d← (I −A′T (A′A′T)−1A′)g

4. If ‖d‖2 ≥ 0.4, then do a primal step: x′(k+1) ← 1− 1
4‖d‖2

d,

else, do a dual step: s′(k+1) ← s′T 1
n+

√
n
(d + 1)

5. Transform the solution back to the original domain:
x(k+1) ← X̂x′(k+1), s(k+1) ← X̂−1s′(k+1)

6. k ← k + 1

2.1.3 Analysis

Ye showed that that an initial pair (x(0), s(0)) can always be constructed cheaply such
that G(x(0), s(0)) = O(

√
n). In each iteration, the potential function, G is decreased by

at least some constant amount. From claim 2.5, the algorithm then requires O(
√

nL)
iterations for the duality gap, sT x to be guaranteed to be less than ε, i.e. for x to
be almost optimal. Further, the operations in each iteration are rather minimal, with
the most expensive being the computation of the projection, d, of the gradient, which
requires O(n3) operations.

2.1.4 Implementation issues

• Robust to rounding because ‖d‖2 ≥ 0.4 is arbitrary

• There are a few with respect to precision we may have, that unlike the ellipsoid
algorithm, are not critical - they don’t have bad performance consequences

References

[Mei97] G. Meinsma. Interior point methods. Mini course, Spring 1997.

[Tun98] L. Tunel. Convex optimization: Barrier functions and interior-point meth-
ods. Technical Report B-336, Department of Mathematical and Computing
Sciences, Tokyo Institute of Technology, Tokyo, Japan, March 1998.

9

