
CSC2411 - Linear Programming and
Combinatorial Optimization∗

Lecture 12: Approximation Algorithms using
Tools from LP

Notes taken by Matei David

April 12, 2005

Summary: In this lecture, we give three example applications of ap-
proximating the solutions to IP by solving the relaxed LP and rounding.
We begin with Vertex Cover, where we get a 2-approximation. Then we
look at Set Cover, for which we give a randomized rounding algorithm
which achieves aO(log n)-approximation with high probability. Finally,
we again apply randomized rounding to approximate MAXSAT.

In the associated tutorial, we revisit MAXSAT. Then, we discuss primal-
dual algorithms, including one for Set Cover.

LP relaxation It is easy to capture certain combinatorial problems with an IP. We
can then relax integrality constraints to get a LP, and solve the latter efficiently. In
the process, we might lose something, for the relaxed LP might have a strictly better
optimum than the original IP. In last class, we have seen that in certain cases, we can
use algebraic properties of the matrix to argue that we do not lose anything in the
relaxation, i.e. we get an exact relaxation.

Note that, in general, we can add constraints to an IP to the point where we do not
lose anything when relaxing it to an LP. However, the size of the inflated IP is usually
exponential, and this procedure is not algorithmically doable.

1 Vertex Cover revisited

In the IP/LP formulation of VC, we are minimizing
∑

xi (or
∑

wixi in the weighted
case), subject to constraints of the formxi + xj ≥ 1 for all edgesi, j. In the IP,xi is
1 when we have to pick seti, and 0 otherwise. In the LP relaxation, we only ask that
0 ≤ xi ≤ 1. Actually, the upper bound onxi is redundant, as the optimum solution
cannot have anyxi > 1.

∗ Lecture Notes for a course given by Avner Magen, Dept. of Computer Sciecne, University of Toronto.
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Let OPT (G) denote the optimum to the IP (which is what we want), and let
OPTf (G) denote the (fractional) optimum solution of the LP (which we can get ef-
ficiently). To see that for someG, OPTf (G) < OPT (G), look atK3. In that case,
OPT (K3) = 2, butx1 = x2 = x3 = 1/2 is a feasible LP solution with cost3/2, so
OPTf (K3) < 3/2. In fact, by symmetry we can argue thatOPTf (G3) = 3/2.

So we can get an optimal fractional solution to the LP with costOPTf , but what
we want is a good integral solution to the IP, with cost close toOPT . If we were able to
always find the best integral solution, then we would solve VC, soP = NP . Therefore,
we’ll settle for an integral solution which is “not too far” fromOPT . The idea we are
going to use is toroundcertain fractionalxi’s to integers. We will then argue about the
factor by which the objective function grows during the rounding. Before describing
the algorithm for VC, note the following Lemma.

Lemma Every vertex of the LP relaxation of VC is half-integral, meaning that all its
coordinates have values 0, 1/2 or 1.

Algorithm Let x∗ denote an optimal fractional solution. Given the fact above, the
most natural rounding is to take the ceiling, i.e. we setxi = 0 if x∗i = 0, andxi = 1 if
x∗i ∈ {1/2, 1}. In order to argue that we get a 2-approximation, we need to show that
(i) x is still feasible, and that (ii) at most a factor of 2 is lost in the rounding. The ratio
of the approximation algorithm is a measure of how far the integral optimumOPT is
from the integral solution we are building. In general, we do not knowOPT , so we
useOPTf instead, which is a lower bound onOPT .

To argue (i), assume that some constraintxi + xj ≥ 1 for some edge(i, j) is
now unsatisfied. Thenxi = xj = 0. By the rounding,x∗i = x∗j = 0. But then
x∗i + x∗j = 0 < 1, contradicting the assumption thatx∗ is feasible. As for (ii),

∑
xi ≤∑

2 · x∗i = 2 ·OPTf ≤ 2 ·OPT .
Note that even without the Lemma, we could round anything below 1/2 to 0, any-

thing equal to or greater than 1/2 to 1, and the argument would still work.

Proof of Lemma Let x be a feasible solution which contains other than half-integral
values. So, for certaini, xi ∈ (0, 1/2) and for certainj, xj ∈ (1/2, 1). We claim that
x is not a BFS of the LP. To prove this, we show thatx is not extreme.

The first thing to note is that there can be no edges in between verticesi, j with both
xi < 1/2 andxj ≤ 1/2, because the constraintxi + xj ≥ 1 would not be satisfied.
For some small but positiveε, consider the solutions

x+
i =





xi + ε xi ∈ (1/2, 1)
xi − ε xi ∈ (0, 1/2)
xi otherwise

x−i =





xi − ε xi ∈ (1/2, 1)
xi + ε xi ∈ (0, 1/2)
xi otherwise

We can chooseε small enough so that values of all vertices do not leave the intervals
(0, 1/2) and(1/2, 1), i.e. x+

i ∈ (1/2, 1) iff xi ∈ (1/2, 1) etc.
Clearly,x = (x++x−)/2. We claim bothx+, x− are still feasible. The only edges

(i, j) whichx+ might violate are those which have at least one vertex, sayi, with xi ∈
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(0, 1/2). But thenxj > 1/2, for otherwisex would not be feasible. Ifxj = 1, then
x+

i +x+
j ≥ 1. Otherwise,xj ∈ (1/2, 1) andx+

i +x+
j = (xi−ε)+(xj+ε) = xi+xj ≥ 1

by feasibility ofx. A similar argument shows thatx− is feasible. Hence,x is a convex
combination of two different feasible solutions, therefore it’s not an extreme and not a
BFS.

Notes There are trivial 2-approximation algorithms for VC, the entire machinery of
IP/LP solving and rounding wasn’t really necessary. However, it does make for a nice
application. The algorithm consists of the following steps.

• relax the IP to an LP;

• solve the LP;

• map the fractional optimum to the LP to a feasible integral solution;

• analyze that not much is lost in the translation.

Approximation ratios An algorithmA for a minimization problem is called anα-
approximation ifα = supI

A(I)
OPT (I) ≥ 1. Note thatα might depend on the size of the

input I (e.g.α = log n). For VC, we’ve seen a constant factor 2-approximation. For a
maximization problem, an algorithm is anα-approximation ifα = infI

A(I)
OPT (I) ≤ 1.

Integrality Gap The integrality gap for a certain IP/LP formulation of a problem is
a bound on the ratio between the true integral optimum and the fractional optimum.
The IG of a minimization problem issupI

OPT (I)
OPTf (I) . and the IG of a maximization

problem isinfI
OPT (I)
OPTf (I) . Intuitively, the closer the IG is to 1, the better we hope the

approximation will be.
To analyze the IG for the VC formulation we’ve seen before, considerKn. For this

instance, we haveOPT (Kn) = n−1. Butx1 = · · · = xn = 1/2 is a feasible solution
to the LP, soOPTf (Kn) ≤ n/2. HenceIG ≥ 2 − 2/n. Since on any instanceI, the
cost of the integral solution we produce is at leastOPT (I) and at most2 · OPTf (I),
we getIG ≤ 2. Therefore, for this formulation of VC, taking the supremum we get
IG = 2.

Tightening an IP Suppose we have an IP for a minimization problem, and we have
to relax it to an LP. The LP might achieve smaller optimum cost than the IP by using
fractional solutions. Consider some constraint thatany integral solution must satisfy.
We can safely add any such constraint to the IP/LP formulation, without affecting the
integral optimum. However, the new constraint might eliminate certain fractional so-
lutions, so the fractional optimum can only increase, bringing it closer to the integral
optimum and lowering the IG.

For example, consider any triangle(i, j, k) in a graph instance of VC. No (integral)
vertex cover of the graph can include less than 2 vertices from that triangle. Hence, we
can safely add a constraint of the formxi + xj + xk ≥ 2 to the IP/LP formulation.
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We do not changeOPT , since any feasible solution of the IP satisfies this constraint.
However, we might potentially increaseOPTf , thus reducing the IG.

What can we hope to get in this way? Can we get a better than 2-approximation?
What other LP formulation can we consider? For example, if we apply the general
tightening technique by Lovasz-Schrijver [LS91], we get in one step constraints about
all odd cycles in the graph. Namely, ifC is an odd cycle containing verticesx1, . . . , xl,
we can add the constraint

∑l
i=1 xi ≥ b l

2c. This is strictly stronger than what we

can derive from individual edges, which is
∑l

i=1 ≥ l
2 . Arora, Bollobos and Lovasz

[ABL02] consider all LP formulations which involve a constant fraction of the ver-
tices and that use the “natural” 0/1 variables, i.e.xi for each vertexi indicating if it
is taken in the cover. They also contain formulations that contain all odd cycle con-
straints among others. They show that despite these relatively strong formulations, the
integrality gap is still2− o(1).

2 Randomized Rounding for Set Cover

In the Set Cover problem, we have a universeU of n elements, andm subsetsS1, . . . , Sm ⊆
U . In the unweighted case, we simply want to minimize the number of sets we pick
in order to coverU . Notice that VC is a special instance of SC, where the elements
of the universe are the edges, and we have a set for every vertex, containing the edges
incident to that vertex.

IP/LP formulation For the IP/LP formulation os SC, we consider then × m 0/1
matrix A, which hasaij = 1 if i ∈ Sj and 0 otherwise. The sets correspond to
columns inA, and elements of the universe to rows ofA. The variablexj is 1 if we
have to takeSj and 0 otherwise. So, the IP/LP formulation is

min
∑

xj

subject to

A · x ≥ 1

In the IP,xj ∈ {0, 1}. In the LP, we only askx ≥ 0. So, given the IP, we relax it to an
LP and solve the LP to get optimal fractional solutionx∗. How do we map this to an
integral solution?

The idea is to think of the quantityx∗i as a probability. So, instead of directly
mappingx∗ to an integral solution, we define a stochastic procedure to do this step.
For example, if the optimal fractional solution isx∗ = (0, 1/10, 9/10), we would like
to be more likely to selectS3 thanS2, and we will never selectS1. So, in one pass
of randomized rounding, we (independently) pick the setSi with probabilityx∗i . Note
that this rounding has the nice property of leaving integer values unchanged. Suppose
we do several (aroundlog n) such passes, and we let our final cover be the union of all
the covers in the individual passes. In other words, we takeSi in the final cover, if we
takeSi in any one pass. We would like to say that with high probability we get a cover
of U , and that with high probability, the objective function does not increase much.
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We do not cover a certain elementa in one pass if none of the setsa belongs to
are taken in that pass. So, the probabilitya is not covered is exactly

∏
j:a∈Sj

(1− x∗j ).
The constraint corresponding toa in the LP says that

∑
j:a∈Sj

x∗j ≥ 1. So,

Pr[a not covered in one pass] =
∏

j:a∈Sj

(1− x∗j ) ≤
∏

e−x∗j = e−
P

x∗j ≤ e−1 =
1
e

After (log n + 2) iterations, we haven’t covereda iff we haven’t covered it in any iter-
ation, i.e. with probability at moste−(log n+2) ≤ 1

4n . By union bound, the probability
that there exists an uncovered element after(log n + 2) passes is at most 1/4.

On the other hand,E[
∑

xj ] = (log n + 2) · ∑ x∗i ≤ (log n + 2) · OPTf . By
Markov’s inequality,

Pr[
∑

xj > 4 · (log n + 2) ·OPTf ] ≤ 1
4

Therefore, the probability that after(log n + 2) iterations we have a cover of cost
at most4 · (log n + 2) ·OPTf is at least1− 1/4− 1/4 = 1/2. We can apply the same
algorithm several times to amplify the probability of success.

This is probably the easiest algorithm using randomized rounding. Note that if
OPT is the true integral optimum,OPTf is the fractional optimum andA is the re-
sult of roundingOPTf to an integral solution, we haveOPTf ≤ OPT ≤ A. The
ratioOPT/OPTf is controlled by the IG, and the ratioA/OPTf is controlled by the
rounding process. Ultimately, we are interested in bounding the ratioA/OPT . In
particular, if we have a small IG, we also need a small loss in rounding to get a good
ratio.

For Set Cover, the IG isΩ(log n). Feige [F??] showed that ifP 6= NP , no other
technique will do better. For Vertex Cover, the trivial 2-approximation algorithms are
essentially the best known.

3 Randomized Rounding for MAXSAT

The input to MAXSAT is a CNF formula, which is a collection of clauses. Each clause
is a disjunction of literals, and each literal is a boolean variable or the negation of a
variable. For example,C = x1 ∨ x3 ∨ x5 ∨ x7 is a clause. The output in the MAXSAT
problem is an assignment that maximizes the number of satisfied clauses.

IP formulation In the IP formulation, we introduce 0/1 variablesxi for every vari-
able in the formula, and 0/1 variablesZC for every formulaC. The semantics is that
xi is 1 in the IP iffxi should be set totrue in the formula, andZC is 1 iff C is satisfied
by the assignment tox variables.

For every clauseC, let L+
C be the set of indices of variables appearing positively in

C, and letL−C be the set of indices of variables appearing negatively. For example, if
C = x1 ∨ x5 ∨ x7, we haveL+

C = {1, 5} andL−C = {7}.
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With this notation, the IP/LP is

max
∑

C

ZC

such that∑

i∈L+
C

xi +
∑

i∈L−C

(1− xi) ≥ ZC

The IP requiresxi, ZC ∈ {0, 1}, while the LP relaxation requires0 ≤ xi, ZC ≤ 1. To
see that the IP captures the problem, note that there is no point inZC being 0 whenC
is satisfied, for we are maximizing the sum of theZC ’s. Unlike in the case of VC, we
do need the≤ 1 constraints. The only constraint we do not actually need isZC ≥ 0.

Let (x∗, Z∗) denote an optimal fractional solution to the LP relaxation, with cost
OPTf . Next, setxi to true in the formula with probabilityx∗i . There’s no need to set
ZC , we simply set it to 1 ifC is satisfied. Note that with MAXSAT, there are no issues
about feasibility of the constructed solution, as in the case of VC and SC.

Let us now study the probability a certain clauseC is not satisfied. Wlog,C =
x1 ∨ · · · ∨ xk. We are assuming all literals are different, for two opposite occurences
of the same variable make the clause always true, and two occurences of the same sign
are redundant. Furthermore, we are assumingC contains only positive literals, for
otherwise we can replacexi by yi, and1 − x∗i by y∗i . For every clauseC, we seek to
relateZ∗C with the probability we satisfied clauseC.

Pr[C not satisfied] =
k∏

i=1

(1− x∗i )

≤
(∑k

i=1 (1− x∗i )
k

)k

, geometric mean at most arithmetic mean

=

(
1−

∑k
i=1 x∗i
k

)k

≤
(

1− Z∗C
k

)k

, as
k∑

i=1

x∗i ≥ Z∗C

The functionh(z) = 1− (
1− z

k

)k
on the intervalz ∈ [0, 1] is concave, as

d

dz
h(z) = (−1) · k ·

(
1− z

k

)k−1

·
(
−1

k

)
,

d2

dz2
h(z) = (k − 1) ·

(
1− z

k

)k−2

·
(
−1

k

)
< 0.

Soh(z) = h((1− z) · 0 + z · 1) ≥ (1− z) · h(0) + z · h(1) = z · h(1). Therefore,

Pr[C satisfied] ≥ 1−
(

1− Z∗C
k

)k

= h(Z∗C) ≥ Z∗C · h(1) = Z∗C ·
(

1−
(

1− 1
k

)k
)
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Since
∑

C Z∗C = OPTf andOPT ≤ OPTf , we now have

E[number of satisfied clauses] =
∑

C

Pr[C satisfied]

≥
∑

C

Z∗C

(
1−

(
1− 1

|C|
)|C|)

≥ OPTf ·
(

1− 1
e

)

≥ OPT ·
(

1− 1
e

)

So, if the objective function “gains”Z∗C , the rounded solution “gains”(1−1/e) ·Z∗C in
expectation. We thus get an assignment that satisfies at least(1− 1/e) ·OPTf clauses
in expectation. As before, the analysis involved bounding individually everyZC .

Derandomizing the rounding Can we derandomize this algorithm, that is, decide
how to set the variables deterministically in such a way that we obtain the same number
of satisfied clauses, this time no longer in expectation? It turns out that for this problem,
we can. We know that the expectation over all choices ofx1 is at least someT . What
we can do is to setx1 to true, simplify the formula, count the numberT1 of clauses
we satisfy directly and recompute the numberT2 of clauses we expect to satisfy over
the choices over the remaining variables. IfT1 + T2 ≥ T , we leavex1 set totrue and
continue. Otherwise, we setxi to false. We know that at least one of these choices
gives the number of clauses at leastT .

E[# satisfied] =
∑

C

Pr[C satisfied]

=
∑

C

(Pr[xi = 1] · Pr[C satisfied|xi = 1] + Pr[xi = 0] · Pr[C satisfied|xi = 0])

= x∗i ·
∑

C

Pr[C satisfied|xi = 1] + (1− x∗i ) ·
∑

C

Pr[C satisfied|xi = 0]

= x∗i · E[# satisfied|xi = 1] + (1− x∗i ) · E[# satisfied|xi = 0]

At least one of the two conditional expectations must be at least the unconditional one.

4 Tutorial - Half-Approximation for MAXSAT

We are given a CNF formula with variablesx1, . . . , xn, and clause weightswC . We
want to find a truth assignment that maximizes the sum of the weights of the satisfied
clauses.

Suppose we randomly and independently assign eachxi to eithertrue andfalse
with probabilities 1/2 and 1/2. A clause of size|C| is not satisfied with probability
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2−|C| (we assume each variable occurs exactly once in every clause, either positively
or negatively). LetW be the random variable denoting the weight of the satisfied
clauses. Than

E[W ] =
∑

C

wC Pr[C satisfied] =
∑

C

wC

(
1− 2−|C|

)

Since|C| ≥ 1, we haveE[W ] ≥ 1/2 ·∑C wC . Furthermore, the best we can hope for
is to satisfy all clauses, so

∑
C wC ≥ OPT , and thereforeE[W ] ≥ 1/2 · OPT . This

is an easy 2-approximation.
We can derandomize this algorithm, so we can get a half-approximation determin-

istically. Consider a complete binary tree of depthn. We can label every node by
the set of literals that are set to true everywhere in the subtree below that node. So
label the root node with∅, label the two children of the root with{x1} and{x1}, re-
spectively. In all nodes below the child labelled{x1}, the variablex1 is set totrue.
Conversely, below{x1}, x1 is set tofalse. The labels on level 2 below root are
{x1, x2}, {x1, x2}, {x1, x2}, {x1, x2}. Our algorithm can be seen as selecting a cer-
tain leaf of this tree, where all vaiables are assigned to eithertrue or false.

At the root, we haveE[W ]. Setx1 to true. Some clauses will be satisfied (those
that containx1), saya of them. Other clauses will be simplified (those that contain
x1), sayb of them. For the simplified clauses, we can get a 1/2-approximation. So if
continue along this branch, we can get at leasta+b/2 clauses satisfied in total, which is
a lower bound onE[W |x1 = 1]. SinceE[W ] = 1/2 ·E[W |x1 = 1]+1/2 ·E[W |x1 =
0], we know at least one of the conditional expectations is at leastE[W ]. We can
compute lower bounds on bothE[W |x1 = 1] andE[W |x1 = 0], and simply follow
the path along which the expectation is larger.

5 Tutorial - Complementary Slackness

Consider the primal IP/LP

min
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≥ bi, for all 1 ≤ i ≤ m

xj ≥ 0

with its dual

max
m∑

i=1

biyi

subject to
m∑

i=1

aijyi ≤ cj , for all 1 ≤ j ≤ n
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yi ≥ 0

Let (x, y) be optimum solutions to the primal and the dual. The slackness condi-
tions are:

primal : xj 6= 0 ⇒
m∑

i=1

aijyi = cj

dual : yi 6= 0 ⇒
n∑

j=1

aijxj = bi

The idea of a primal-dual algorithm for an IP is to use primal-dual slackness to
solve the IP. This is not possible without breaking some hardness assumptions, but
we can get an approximation algorithm. For example, we can relax dual slackness
conditions and only require, for someα > 1, that

yi 6= 0 ⇒
n∑

j=1

aijxj ≤ α · bi

Note that by feasibility ofx, we getbi ≤
∑n

j=1 aijxj .

Theorem If we can find feasible primal and dual solutions satisfying primal slack-
ness conditions andα-relaxed dual slackness conditions, thenx is anα-approximation.

n∑

j=1

cjxj =
∑

j:xj>0

cjxj , sincexj ≥ 0

=
∑

j:xj>0

xj

(
m∑

i=1

aijyi

)
, by primal slackness

=
∑

j:xj>0

m∑

i=1

aijxjyi

=
∑

i:yi>0

yi


 ∑

j:xj>0

aijxj


, sinceyi ≥ 0

=
∑

i:yi>0

yi




n∑

j=1

aijxj


, added 0 terms

≤
∑

i:yi>0

yi · α · bi, by relaxed dual slackness

= α

(
m∑

i=1

biyi

)
, added 0 terms

≤ α ·OPT, sincey feasible.
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The problem, then, is how to choseα, and how to take steps making sure these
conditions are satisfied. A general primal-dual algorithm look like the following.

start with integral (generally non-feasible) primal solutionx = 0
and with feasible dual solutiony = 0
while there exists a primal constraint not satisfied for somei

increaseyi until one or many dual constraintsj become tight
setxj to 1 for all tight dual constraints

To prove a bound on the approximation ratio, we have to choseα well.

Unweighted Set Cover The primal LP is

min
∑

S

xS

subject to
∑

S:i∈S

xS ≥ 1, for all elementsi

x ≥ 0

and the dual LP is
max

∑

i

yi

subject to
∑

i∈S

yi ≤ 1, for all setsS

y ≥ 0

Relaxed dual slackness can be easily satisfied withα = f . Consider the following
primal-dual algorithm, following the general paradigm above:

start withx = 0, which is integral but not primal feasible
and withy = 0, which is dual feasible
while there exists some elementi not covered (i.e.

∑
S:i∈S xS < 1)

setyi to 1
setxS to 1 for all setsS containingi (i.e. pick all these sets as part of the cover)

The primal slackness conditionxS 6= 0 ⇒ ∑
i∈S yi = 1 is satisfied because in the

while loop we setyi = 1 for exaclty one elementi from eachS. Thef -relaxed dual
slackness conditionyi 6= 0 ⇒ ∑

S:i∈S xS ≤ f · 1 holds because for every elementi,
we can select at most all sets containing it, and there are at mostf of those. So this
algorith is anf -approximation to SC.
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