
CSC2411 - Linear Programming and
Combinatorial Optimization

�

Lecture 11: Solving SDPs and Applying LP to
Combinatorial Optimization Problems

Notes taken by Vinod Nair

April 6, 2005

Summary: The two main topics of this lecture are:

1. Solution methods for semidefinite programs: We look at using the
Ellipsoid algorithm and interior point methods for computing an ap-
proximate solution for semidefinite programs in polynomial time.

2. Application of linear programming to combinatorial optimization
problems: We consider a number of examples of combinatorial opti-
mization problems. Initially these problems are expressed as integer
programs, which are then “relaxed” to obtain a related linear pro-
gram. The relationship between the integer program and its corre-
sponding linear program is discussed.

1 Algorithms for Solving Semidefinite Programs

We have already seen how the Ellipsoid algorithm and interior point methods can be
used to solve linear programs. These two methods are applicable to problems more
general than just LP. Here we look at how they can be used to solve semidefinite pro-
grams (SDPs).

1.1 Ellipsoid Algorithm for SDP

Recall that the Ellipsoid algorithm is a procedure for finding a point in the feasible
set of the optimization problem. Roughly speaking, it starts off by putting a large
enough ellipsoid around the feasible set. It tests whether the centre of the ellipsoid is
in the feasible set. If the centre point is not feasible, the algorithm finds a hyperplane
that defines a half-space separating the feasible set from the ellipsoid’s centre. Then a

�
Lecture Notes for a course given by Avner Magen, Dept. of Computer Sciecne, University of Toronto.

1

new, smaller, ellipsoid that contains the intersection of this half-space and the original
ellipsoid is computed, and the same procedure is repeated.

A key step in this procedure is to test whether a given point is in the feasible set,
and if not, compute a hyperplane that separates that point from the feasible set. We
need to design a separation oracle that can carry out this step in polynomial time if
we want to solve an SDP with the ellipsoid algorithm in polynomial time. In the case
of SDP, a separation oracle is a procedure that efficiently tests whether a symmetric
matrix

�
is positive semidefinite, and if not, computes a hyperplane that separates

�
from the convex cone corresponding to the set of all positive semidefinite matrices (of
the same dimension as

�
).

An efficient separation oracle for positive semidefinite matrices works as follows.
Any symmetric matrix

�
can be written in the form�����������

where
�

and
�

are square matrices of the same dimension,
�

is nonsingular, and�
is a diagonal matrix that is positive semidefinite if and only if

�
is. Since the

diagonal entries of
�

are its eigenvalues, they must all be nonnegative for it to be
positive semidefinite. This condition provides an easy test for whether

�
is positive

semidefinite.
If
�

has a negative entry, then we want to compute a separating hyperplane that
places

�
on one side and all positive semidefinite matrices on the other side. In other

words, we want to compute a matrix 	 such that 	�
 ���� (
 stands for matrix inner
product) and 	�
���� � for any positive semidefinite matrix � .

Without loss of generality, let
���������

. Then � � � � � ������������� , where � � is a
vector with the first element set to 1 and all others set to 0. Let � ����

�
� � . We get

� � � � � � � �"! �
�$# � ��� � � �%� � � � � � �&�'�)(

Therefore, � � � � � ! �*� �
#

 �+�,�

. For any positive semidefinite matrix � , by
definition,

! �*� �
#

)� � � � �%�-� �

. That means the matrix �.� � is a separating
hyperplane for

�
. All computations needed to test positive semidefiniteness and to

find the separating hyperplane can be done in polynomial time.
Now that we have an efficient separation oracle, we can use the Ellipsoid algorithm

to solve an SDP in polynomial time. However, unlike in LP, it may not be possible
to compute an exact solution in polynomial time. For example, in assignment 3 we
saw that an SDP can have an irrational solution, even if the SDP itself consists of only
rational numbers. In such cases, the best we can hope for is an approximate solution.
It can be shown that the Ellipsoid algorithm can approximate the true optimal solution
within / in a running time that is polynomial in

�
0 .

Let 1,24365 be a convex body. Define 7 ! 198�/
�;:=< 243%5?>A@ ! 148 <

#%B
/=C , where@ stands for Euclidean distance. This is the set of points that are within / distance from

the boundary of 1 (for small / , these are points in the vicinity of 1 ’s boundary). Also
define 7 ! 198$D*/

��:=< 2E3654>F@ ! 1G8 <
#
��/=C , where 1 is the complement of 1 . This

is the set of points inside 1 that are more than / away from its boundary (i.e., points
that are deep inside 1). Figure 1 shows an example of these sets. Now we state a
theorem that says the Ellipsoid algorithm can compute an approximate optimum of a
rational, linear objective function over a convex body in polynomial time.

2

Figure 1: 7 ! 198�/
#

is the set of points that are within / of the boundary of 1 . 7 ! 198$D*/
#

is the set of points inside 1 that are more than / away from its boundary.

Theorem 1.1. (Adapted from [GLS93].) Let 1 be a convex body in 3.5 such that� ! � 8��
#��

1
� � ! � 8��

#
, where ���	�
� � . Assume that an efficient separation

oracle exists for 1 . Let the objective function we want to minimize be ��"8 <�� , where� 2 365 is a rational vector. For a given (rational) /�� � , the Ellipsoid algorithm can

1. find a rational vector �?2E3*5 such that �?2E7 ! 148�/
#

and ��� 8�� �
B
���"8 <���� / for

all
< 247 ! 148$D*/

#
.

or else,

2. assert 7 ! 198$D*/
���

,

in a running time that is polynomial in � , ����� ! � �!�
#

and
�
0 .

Note there are three different approximations being made here: 1) the solution found
by the Ellipsoid algorithm may only be in the vicinity of 1 , 2) the cost of this solution
will be only within / of the cost of points in 1 that are 3) only deep inside 1 . But
the Ellipsoid algorithm’s approximate solution can be made arbitrarily close to the true
solution at the expense of more running time.

1.2 Interior Point Method for SDP

The Ellipsoid algorithm for SDP is interesting mainly as a proof of the existence of a
polynomial time algorithm, because it is often too slow to be practically useful. The
interior point method gives a practical algorithm for solving SDPs. Here we give a
high-level overview of how the method can be applied to SDPs.

We need to define a barrier function that keeps the algorithm away from the bound-
ary of the feasible set. We have seen that a symmetric matrix " must be positive

3

semidefinite for it to be feasible, i.e., its eigenvalues must be nonnegative. So the
boundary of feasibility is reached when an eigenvalue becomes 0. Therefore, the bar-
rier function should be designed so that it keeps the eigenvalues of " away from 0.
This can be done by defining the barrier function to be

� !�� # � D���� � � � !�� � ! " #�# � D �����
	�� !�� � ! " # # � D � � � ! @F�� ! " #�# 8
where

� � ! " # are the eigenvalues of " . The value of this function increases as an
eigenvalue approaches 0 and blows up to infinity at 0.

With this barrier function, we can apply the interior point method to SDP in much
the same way as it was used for LP. It can be shown that the interior point method can
approximate the optimum within some / in a running time that is polynomial in ����� !

�
0
#
.

2 LP in Combinatorial Optimization

Now we look at how LP can be used in combinatorial optimization problems. We begin
by considering integer programming (IP). An integer program (or more specifically
an integer linear program) is a linear program with the additional constraint that the
optimization variable can take on only integer values:

����� ��"8 <���*< B��
8< � � 8< 2?� 5 (

Integer programming is NP-hard, so there is no known algorithm to efficiently solve
it. One natural idea for solving IPs is to “relax” the integrality constraint and allow x
to take on real values. The resulting problem is an LP, which we know how to solve
efficiently. Clearly, the LP’s optimum need not be the IP’s optimum (see figure 2). We
can somehow try to round the solution of the LP to a feasible integral point and take
that as the solution. But determining how to do the rounding so as to obtain the true
optimum can be as hard as solving the original IP itself. The next best thing we can do
is develop methods that go from the optimum of the LP to points that are nearby the
true optimum, and bound how far off the the true optimum is.

Next, we give examples of NP-hard combinatorial optimization problems expressed
as IPs, and look at the LPs corresponding to their relaxed versions.

2.1 Minimum vertex cover

We want to find the smallest subset of vertices of an undirected graph that contains at
least one endpoint of every edge in the graph. To represent this problem as an IP, first
define for each vertex � an indicator variable

< �
that indicates whether it is in the vertex

4

Figure 2: The optimum for an IP can be different from that of the LP given by relax-
ation.

subset 7 . So
< �

= 1 if � 247 , and
< �

= 0 otherwise. The IP is:

� ��� � � < �
For every edge � �;: � 8 � CF8 < � � <�� ���A8< � �;:�� 8��AC (

The first constraint makes sure that for every edge, at least one of the two vertices that
it connects is in 7 .

We can relax the integrality constraint to obtain the following LP:

� ��� � � < �
For every edge � �;: � 8 � CF8 < � � < � ���A8� B < � B � (

Note that optimum of this LP can be different from the optimum of the IP. For
example, for a graph with � vertices and edges between all pairs of vertices (i.e., a
clique on � vertices), the LP’s optimum is attained when

< � � �
� for all � , with an

optimal cost of 5 � . But the optimum of the IP is � D�� .
2.2 Knapsack

Given � items, each with value � � and weight � � (� � �A8 (((8��), we want to find the
subset of items with the maximum total value, subject to the constraint that its total

5

weight is at most � . To write this as an IP, again define an indicator variable
< �

, where< �
= 1 if item � is in the subset and 0 otherwise. So the IP is:

����� � � � � < �
� � � � < � B ��8
< � 2 :�� 8�� C (

As before, rewriting the integrality constraint as
� B < � B � gives the LP for the

relaxed version.

2.3 Maximum independent set

We want to find the largest subset of vertices of a graph such that no two vertices in the
subset are connected by an edge. Define, for each vertex � , an indicator variable

< �
that

has value 1 when � is in the subset, and 0 otherwise. Then the IP is

����� � � < �
For every edge � �;: � 8 � CF8 < � � <�� B �A8< � 2 : � 8��AC (

Again, the LP for the relaxed version replaces the integrality constraint with
� B< � B � . For a complete graph with � vertices, the LP’s optimum is attained when< � � �� for all � , with an optimal value of 5 � . But the optimum of the IP is 1.

2.4 Satisfiability

Given a set of Boolean variables, and a Boolean expression containing conjunctions
(ANDs) and disjunctions (ORs) of these variables and their negations, we want to
know whether there is a setting of the variables that can make the expression true.
For example, let

< �
,
< � , and

<��
be Boolean variables. We want to know whether the

expression

! < �
	 < � #�� ! < � 	 < � #

can be made true by setting
< �

,
< � and

<��
to either 0 (false) or 1 (true). This can be

formulated as the problem of finding a feasible solution to an IP. The constraints of the
IP are:

< � � < � � � 8! �%D < �
� <� � �A8< � 2 : � 8��AC for all i.

(Here there is no objective function to optimize, but since the feasibility problem is
equivalent to the optimization problem, it is possible to convert the above problem into

6

an equivalient ordinary IP.) The relaxed version of the problem replaces the integrality
constraint with

� B < � B � . Note that determining how to round the solution of the
relaxed problem so as to obtain the true optimum is as hard as solving the original
problem itself. For example, a feasible solution for the relaxed version of the above
problem is

< � � < � � < � � �� . But rounding this solution to get the true optimum is
equivalent to solving the satisfiability problem.

2.5 Maximal weight matching in a bipartite graph

Given a bipartite graph with a nonnegative weight we assigned to each edge, we want
to find the subset of the edges that has the largest total weight, subject to the constraint
that no two edges in this subset share an endpoint. Let

<��
be an indicator variable for

edge � with value 1 when � is included in the subset, and 0 when it is not. Then we get
the following IP:

����� � � � � <��
For every vertex � , �

edges incident on �

<�� B �
<��%��: � 8 � C (

In the relaxed version, the integrality constraint is changed to
< � � � . (We don’t

have to explicitly enforce
< � B � because this is already done by the first constraint.)

We will now show that the optimum of the LP corresponding to the relaxed version
of this problem is the same as that of the IP. In other words, for this problem, relaxation
does not change the optimum.

Definition 2.1. The relaxation of an IP is exact if all vertices of the relaxed LP’s poly-
hedron are integer vectors.

It easily follows from this definition that if a relaxation is exact, the optimum of the
relaxed LP must be the same as the optimum of the IP. We can see this intuitively from
figure 3.

Claim 2.2. Relaxation for maximal weight matching in a bipartite graph is exact.

To prove this claim, we first need the following definition.

Definition 2.3. A matrix
�

is totally unimodular (TUM) if the determinant of every
square submatrix of

�
is either -1, 0 or 1.

This definition is useful here because it is possible to show that if
�

is TUM, then all
vertices of the polyhedron

� �:=< > �*<
B �
8 < � � C are integer vectors when

�
is an

integer vector. Note that total unimodularity restricts the entries of
�

to be -1, 0 or 1,
since the determinant of a 1x1 submatrix is itself.

In the maximal weight matching problem, the constraint matrix
�

of the relaxed LP
is the incidence matrix of the bipartite graph. (The incidence matrix of an undirected
graph with � vertices and � edges is an ���	� matrix in which the entry at

! � 8 � # is 1

7

Figure 3: Both the LP and the IP have the same optimum, regardless of the objective
function, when the vertices of the feasible set are integer vectors.

if vertex � is an endpoint of edge
�
, and

�
otherwise. For a directed graph, the entry at! � 8 � # is 1 if edge

�
goes out of vertex � , -1 if edge

�
goes into vertex � , and 0 otherwise.)

It turns out (as we will show) that the incidence matrix of a bipartite graph is TUM.
This then implies that the relaxed LP can only have an integer solution, and therefore,
the relaxation is exact.

We start by proving the following claim:

Claim 2.4. All vertices of the polyhedron
� �.� :�< > �.<

B �
C are integer vectors if

�
is TUM and

�
is an integer vector.

Proof. Recall that the vertices of
� �

are solutions to
��� < � � �

, where
���

is a nonsin-
gular submatrix formed from a subset of linearly independent rows of

�
, and

� �
is the

corresponding subvector of
�
. Using Cramer’s rule to solve for

<
gives

< � � @F�� ! � � #
@F�� ! � � # 8

where
< �

is the � th element of
<

, and � �
is
���

with column � replaced by
� �

. Determinant
of � �

must be an integer because all its elements are integers. Determinant of
���

must
be either -1 or +1 because it is a submatrix of a TUM matrix and

���
is nonsingular.

Therefore, each element of
<

must be an integer.

We can apply this result to a polyhedron of the form
� � :=< > �*<

B��
8 < � � C by

rewriting the constraints in the form� �
D�� 5	� < B

� �
�
5	�

8

where � is the dimensionality of
<

, � 5 is the � � � identity matrix, and
�
5 is the

� -dimensional zero vector.
All we have left to show is that the incidence matrix of a bipartite graph is TUM.

But before we do that, consider the following lemma:

Lemma 2.5. The incidence matrix
�

of a directed graph is TUM.

Proof. First, note some properties of the incidence matrix of a directed graph. All of
its entries are -1, 0 or 1. Every column has exactly one -1 and one +1 (i.e. every edge
must go into a vertex and must come out of a vertex). So, for any square submatrix of�

, a column can have at most two nonzero entries, and if there are two nonzero entries,
then they must be -1 and +1.

We can do induction on the size of the submatrices of
�

. The base case is a � � �
submatrix. Since the entries of

�
are in

: D �A8 � 8��AC , the determinant of any �	� �
submatrix must be in

: D � 8 � 8 � C .
Now we have to show that if the determinant of any � ��� submatrix is in

: D �A8 � 8��AC ,
then the same is true for any

! � � �
#
� ! � � �

#
submatrix. Let � be a

! � � �
#
� ! � � �

#
submatrix. There are three possible cases:

1. � has a column of all zeros: In this case, @F� ! � # � � .
2. � has a column with exactly one nonzero element: By expanding the determi-

nant of � along that column, we get @F�� ! � # ��� � �E@F�� ! ��� # , where ��� is a
� ��� submatrix of � . Determinant of ��� is in

: D �A8 � 8��AC (by the induction
hypothesis), and therefore the determinant of � must also be so.

3. The only remaining case is where � has exactly one -1 and one +1 in every
column. In this case, the sum of all the rows of � is the zero vector, which
implies that @F�� ! � # ��� .

In all three cases @F�� ! � # is -1, 0 or 1. Therefore, the incidence matrix of a directed
graph is TUM.

From this lemma it follows that the incidence matrix of a bipartite graph is also
TUM. Too see this, first note that the incidence matrix of a bipartite graph has entries
of either 0 or 1. We can then transform the graph into a directed one by assigning
directions to the edges as going from the vertices on the left to the vertices on the right.
The zero-entries in the original incidence matrix will still remain zero, but the one-
entries may change sign as a result of this transformation. This will affect only the sign
of the determinant of the incidence matrix and any of its submatrices. Therefore, the
incidence matrix of the bipartite graph must also be TUM.

Putting all these results together, we finally reach the conclusion that relaxation
for maximal weight matching in a bipartite graph is exact. So, Optimum(LP) = Opti-
mum(IP).

9

2.6 Duality, maximal weight matching and vertex cover

The LP for the relaxed version of the maximal weight matching problem can be written
as:

����� � � 8 <���.< B�� 8< � � 8
where � is the vector of weights on the edges,

<
is the vector of indicator variables, 1

is the vector with all elements set to 1, and
�

is the incidence matrix. Its dual is

����� � � 8 � ��.� ��� � 8
� � � (

Restrict � to be a vector of all ones, i.e. look for the maximal matching. Then we can
write the dual as:

� � � � � � �
For every edge � � : � 8 � C 8 � � � � � ���
� � � � (

The IP corresponding to the dual LP can be obtained by imposing the constraint
that � � 2 :�� 8 � C . This is exactly the same IP as that for the minimum vertex cover
problem discussed earlier. Looking at the relationship between the different integer
and linear programs, we get:

Max. matching = IP
B

Relaxed LP
B

Dual LP
B

IP of dual LP = Vertex cover.

We have already shown that for the maximal weight matching problem, Opti-
mum(IP) = Optimum(LP), so the first inequality above holds as an equality. From
LP duality theorem we also know that Optimum(LP) = Optimum(Dual LP), which con-
verts the second inequality into an equality. Since

�
is TUM,

� �
(appearing in the dual

LP) is also TUM because total unimodularity is invariant to transposition. Therefore,
Optimum(Dual LP) = Optimum(IP of dual LP), so the last inequality is also an equality.
In other words, for a bipartite graph, the size of the maximal matching is the same as
the size of the minimum vertex cover. So, by using LP duality and relaxation, we were
able to link together two different problems in graph theory.

References

[GLS93] Martin Grötschel, Lászlo Lovász, and Alexander Schrijver. Geometric Algo-
rithms and Combinatorial Optimization, volume 2 of Algorithms and Com-
binatorics. Springer, second corrected edition edition, 1993.

10

