1. [10 marks]

For a contradiction, suppose $\exists p \in \mathbb{N}, \exists m \in \mathbb{N}, \forall k \in \mathbb{N}, (m+1)^p \neq km+1$. Consider the set $S = \{p \in \mathbb{N} : \exists m \in \mathbb{N}, \forall k \in \mathbb{N}, (m+1)^p \neq km+1\}$. By our assumption, $S \neq \emptyset$ so by the principle of well ordering, there is a smallest element $\hat{p} \in S$. By definition of $S, \exists m \in \mathbb{N}, \forall k \in \mathbb{N}, (m+1)^{\hat{p}} \neq km+1$.

- $\hat{p} \neq 0$ because for all $m \in \mathbb{N}$, $(m+1)^0 = 1 = 0 \cdot m + 1$, *i.e.*, $\forall m \in \mathbb{N}, \exists k \in \mathbb{N}, (m+1)^0 = km + 1$.
- So $\hat{p} > 0$ and $\forall m \in \mathbb{N}, \exists k \in \mathbb{N}, (m+1)^{\hat{p}-1} = km+1$ (since \hat{p} is the smallest element of S). However, for all $m \in \mathbb{N}$,

$$(m+1)^{\hat{p}} = (m+1)(m+1)^{\hat{p}-1}$$

= $(m+1)(\hat{k}m+1)$
= $\hat{k}m^2 + \hat{k}m + m + 1$
= $(km+m+1)m + 1$
= $k'm + 1$

where \hat{k} is the natural number whose existence is guaranteed by $\forall m \in \mathbb{N}, \exists k \in \mathbb{N}, (m+1)^{\hat{p}-1} = km+1$. Hence, $\forall m \in \mathbb{N}, \exists k \in \mathbb{N}, (m+1)^{\hat{p}} = km+1$, which contradicts the definition of \hat{p} .

Therefore, it must be the case that S is empty, *i.e.*, the original statement is true.

2. [10 marks]

Claim: For all $n \ge 1$, every set of size n has exactly 2^{n-1} even-sized subsets.

Proof: By induction on n.

Base Case: Let S be a set of size 1, *i.e.*, $S = \{a\}$. Then, S has subsets \emptyset and $\{a\}$, and only one of them has even size: \emptyset . Hence, S has exactly $1 = 2^{1-1}$ even-sized subsets.

Ind. Hyp.: Let $n \ge 1$ and suppose that every set of size n has exactly 2^{n-1} even-sized subsets.

- **Ind. Step:** Let S be a set of size n + 1, *i.e.*, $S = \{a_1, \ldots, a_n, a_{n+1}\}$. Then, the even-sized subsets of S that do not contain a_{n+1} are exactly the same as the even-sized subsets of $\{a_1, \ldots, a_n\}$, so there are 2^{n-1} many such subsets by the IH. In addition, the even-sized subsets of S that contain a_{n+1} are exactly the same as the odd-sized subsets of $\{a_1, \ldots, a_n\}$ to which a_{n+1} has been added, so there are 2^{n-1} many such subsets by the IH (since there are 2^n many subsets, as proved in class, and 2^{n-1} many even-sized subsets by the IH). Therefore, S has exactly $2^{n-1} + 2^{n-1} = 2^n = 2^{n+1-1}$ even-sized subsets, as desired.
- 3. [10 marks]
 - (a) P(n) holds for all even $n \in \mathbb{N}$: P(0) holds, P(2) holds because $P(0) \to P(2)$, P(4) holds because $P(2) \to P(4), \ldots$ Also, $P(1) \to P(3), P(3) \to P(5), \ldots$, but we do not know that P(n) holds for any odd value of n.
 - (b) P(n) holds for all $n \in \mathbb{N}$: P(0) holds, P(1) holds because $P(0) \to P(1)$, P(2) holds because $P(1) \to P(2)$, ...
 - (c) P(n) holds for n = 0 only: P(0) holds. Also, $P(1) \rightarrow P(2)$, $P(2) \rightarrow P(3)$, ... but we cannot say P(n) holds for any n > 0.
 - (d) P(n) holds for all $n \ge 1$: P(1) holds, P(2) holds because $P(1) \rightarrow P(2)$, P(3) holds because $P(2) \rightarrow P(3)$, ... However, we do not know whether P(0) holds.
 - (e) P(n) holds for all $n \ge 1$: P(2) holds, P(1) holds becasue $P(2) \rightarrow P(1)$, P(3) holds because $P(1) \rightarrow P(3)$, P(4) holds because $P(2) \rightarrow P(4)$, ... However, we do not know whether P(0) holds.

4. [10 marks]

We prove that for all $k \ge 1$, there is a walk that visits $k^2 - k + 1$ sub-triangles and that ends at a corner of the triangle array of size k.

- **Base Case:** For k = 1, there is only one sub-triangle in the triangle array, and only one possible "walk" that starts and ends on the sub-triangle (which happens to be a corner). This walk visits exactly $1 = 1^2 1 + 1$ sub-triangles.
- Ind. Hyp.: Let $k \ge 1$ and suppose that for all triangle arrays of size k, there is a walk that visits at least $k^2 k + 1$ sub-triangles and that ends at a corner.

Ind. Step:

Consider a triangle array of size k+1. This consists of a sub-array of size k above one last row of sub-triangles. By the Ind. Hyp., there is a walk that visits $k^2 - k + 1$ sub-triangles and that ends at a corner of the sub-array of size k. Without loss of generality, we can ensure that the last corner of that walk is the rightmost one on the bottom row of the sub-array of size k (by rotating and/or flipping the walk as needed). Then, the walk can be extended to the last row in the "obvious" way, to visit $(k^2 - k + 1) + 2k =$ $(k^2 + 2k + 1) - k - 1 + 1 = (k + 1)^2 - (k + 1) + 1$ sub-triangles and end at a corner. This is illustrated on the right.

