- 1. [10 marks]
 - **Conjecture:** For all networks N, C(N) = 2L(N), where C(N) is the sum of the connectivities of all hubs of N and L(N) is the total number of links of N.
 - **Predicate:** Let P(n) be the statement "for all networks N with n links, C(N) = 2L(N)". We prove $\forall n, P(n)$ by induction on n.
 - **Base Case:** Let N be a network with 0 links. Then, the connectivity of each hub is 0 so $C(N) = 0 = 2 \cdot 0 = 2L(N)$.
 - **Ind. Hyp.:** Let $n \in \mathbb{N}$ and suppose that for every network N with n links, C(N) = 2L(N).
 - Ind. Step: Let N be a network with n+1 links. Let N' be obtained from N by removing a single link (this is always possible because $n+1 \ge 1$). Then, N' contains n links and by the IH, C(N') = 2n = 2L(N'). However, C(N') = C(N) 2 because the removal of one link from N reduces the connectivity of both endpoints of that link by 1, and L(N') = L(N) 1 because we've remove a single link. Hence, C(N) = C(N') + 2 = 2L(N') + 2 = 2(L(N') + 1) = 2L(N), as desired.

Note that it was also possible to prove this by induction on the number of hubs in the network. Obviously, you did not have to give *both* proofs (one is sufficient), but we include both of them here for your reference.

Predicate: Let P(n) be the statement "for all networks N with n hubs, C(N) = 2L(N)". We prove $\forall n, P(n)$ by induction on n. In the proof, we use C(h) to denote the connectivity of a hub h.

Base Case: Let N be a network with 0 hub. Then, $C(N) = 0 = 2 \cdot 0 = 2L(N)$.

Ind. Hyp.: Let $n \in \mathbb{N}$ and suppose that for every network N with n hubs, C(N) = 2L(N).

- Ind. Step: Let N be a network with n + 1 hubs. Let N' be obtained from N by removing a single hub h, along with each link involving h (this is always possible because $n + 1 \ge 1$). Then, N' contains n hubs and by the IH, C(N') = 2L(N'). However, C(N') = C(N) 2C(h) because the removal of hub h from N removes C(h) from the connectivity of N twice: once for h and a second time for each hub h was linked with. Also, L(N') = L(N) C(h) because the removal of hub h from N removes C(h) links. Hence, C(N) = C(N') + 2C(h) = 2L(N') + 2C(h) = 2(L(N') + C(h)) = 2L(N), as desired.
- 2. [10 marks] First, a little review of modulo arithmetic. For all $n \in \mathbb{Z}$, $n \mod 11$ denotes the remainder when dividing n by 11 (*i.e.*, $n \mod 11 = n 11\lfloor \frac{n}{11} \rfloor$). It can be proved that for all $m, n \in \mathbb{Z}$, $(n \mod 11) \mod 11 = n \mod 11$ and $(m+n) \mod 11 = (m \mod 11 + n \mod 11) \mod 11$. In particular, for all $n \in \mathbb{N}$, $-n \mod 11 = (11 n) \mod 11 = (11 n \mod 11) \mod 11$. For example, $-26 \mod 11 = (11 26 \mod 11) \mod 11 = (11 4) \mod 11 = 7 \mod -33 \mod 11 = (11 33 \mod 11) \mod 11 = 11 \mod 11 = 0$.
 - **Predicate:** Let P(n) be the predicate " $n \mod 11 = (S_0(n) S_1(n)) \mod 11$ ". We prove $\forall n, P(n)$ by induction on n.

Base Cases: • For $0 \le n \le 9$, $n \mod 11 = (n-0) \mod 11 = (S_0(n) - S_1(n)) \mod 11$.

- 10 mod 11 = (11 1) mod 11 = -1 mod 11 = (0 1) mod 11 = (S_0(10) S_1(10)) mod 11.
- **Ind. Hyp:** Let n > 10 and suppose $j \mod 11 = (S_0(j) S_1(j)) \mod 11$ for $0 \le j < n$.
- Ind. Step: Say $n = d_k d_{k-1} \dots d_1 d_0$ is the decimal representation of n and let $m = d_k d_{k-1} \dots d_1$, *i.e.*, $m = \lfloor n/10 \rfloor$, so $n = 10m + d_0$. Then, $0 \leq m < n$ because n > 10 so the IH implies $m \mod 11 = (S_0(m) S_1(m)) \mod 11$. Also, $S_1(n) = S_0(m)$ and $S_0(n) = S_1(m) + d_0$ and $d_0 \mod 11 = d_0$, so we get exactly what we need:

 $n \mod 11 = (10m + d_0) \mod 11$ = $(11m - m + d_0) \mod 11$ = $(-m + d_0) \mod 11$ = $(-m \mod 11 + d_0 \mod 11) \mod 11$ = $(11 - m \mod 11 + d_0) \mod 11$ = $(11 - (S_0(m) - S_1(m)) \mod 11 + d_0) \mod 11$ = $(-(S_0(m) - S_1(m)) + d_0) \mod 11$ = $(S_1(m) + d_0 - S_0(m)) \mod 11$ = $(S_0(n) - S_1(n)) \mod 11$

Hence, for all $n \in \mathbb{N}$, $n \mod 11 = 0$ iff $S_0(n) - S_1(n) \mod 11 = 0$, *i.e.*, n is divisible by 11 iff $S_1(n) - S_0(n)$ is divisible by 11.

3. [5 marks]

Let S(n) be the number of sequences of n bits in which there are no consecutive 1s.

- S(0) = 1 because there is a single sequence of 0 bits (the empty sequence) and it does not contain consecutive 1s.
- S(1) = 2 because there are two sequences of 1 bit (0 and 1), neither of which contain consecutive 1s.
- For n > 1, S(n) = S(n-1) + S(n-2) because every sequence of n bits in which there are no consecutive 1s either ends with 0 or with 1. There are S(n-1) sequences of n bits that end with 0 and in which there are no consecutive 1s (one for every sequence of n-1 bits in which there are no consecutive 1s), and there are S(n-2) sequences of n bits that end with 1 and in which there are no consecutive 1s (one for every sequence of n-2 bits in which there are no consecutive 1s), because such sequences must end with last two bits 01 (we know that there are at least two bits because n > 1).
- 4. [15 marks]
 - T(n) = 0 for all even n, because no full binary tree contains an even number of nodes (proved in textbook).
 - T(1) = 1, because there is only one full binary tree with 1 node.
 - $T(n) = \sum_{i=1,3,\dots,n-2} T(i) \cdot T(n-1-i)$ for all odd n > 1, for the following reasons:
 - Every full binary tree with n > 1 nodes consists of a root together with some odd number of nodes $i \ge 1$ in the left subtree, which leaves n i 1 nodes for the right subtree. Moreover, the full binary trees for one value of i are distinct from those for different values of i, so we account for all possibilities exactly once.
 - For each odd value of $i \ge 1$, there are T(i) distinct subtrees with i nodes (for the left subtree) and for each one of those, there are T(n-1-i) distinct subtrees with n-1-i nodes (for the right subtree). In total, this makes $T(i) \cdot T(n-1-i)$ distinct ways to arrange the nodes in both subtrees.

Proof that $T(n) \ge \frac{2^{(n-1)/2}}{n}$ for all odd $n \ge 1$, by induction.

Base Cases: $T(1) = 1 \ge 1 = \frac{2^{(1-1)/2}}{1}$. $T(3) = T(1) \cdot T(1) = 1 \ge \frac{2}{3} = \frac{2^{(3-1)/2}}{3}$.

Ind. Hyp.: Let n > 3, n odd, and suppose that $T(j) \ge \frac{2^{(j-1)/2}}{j}$ for all odd j such that $1 \le j < n$.

Ind. Step:

$$\begin{split} T(n) &= \sum_{i=1,3,\dots,n-2} T(i) \cdot T(n-i-1) \\ &\geq \sum_{i=1,3,\dots,n-2} \frac{2^{(i-1)/2}}{i} \cdot \frac{2^{(n-i-1-1)/2}}{n-i-1} \\ &\geq \sum_{i=1,3,\dots,n-2} \frac{2^{(n-3)/2}}{i(n-i-1)} \quad (need \ n > 3 \ for \ next \ step) \\ &\geq 2^{(n-3)/2} \left(\frac{1}{1(n-1-1)} + \frac{1}{(n-2)(n-(n-2)-1)} + \sum_{i=3,5,\dots,n-4} \frac{1}{i(n-i-1)} \right) \\ &\geq 2^{(n-3)/2} \frac{2}{n-2} \quad (actually \ strictly \ greater) \\ &\geq \frac{2^{(n-1)/2}}{n-2} \\ &\geq \frac{2^{(n-1)/2}}{n} \end{split}$$