:ap Fibonacci heap
2) {amortized)
e
aq)
(L)
20
e
T e
Ogn)

three implementations of mergeable heaps. The
yperation is denoted by n.

heaps.” whose worst-case time bounds are
, the UNION operation takes only O{lg n)
a total of n elements.

nacci heaps, which have even better time
ever, that the running times for Fibonacci
bounds, not worst-case per-operation time

ting nodes prior to insertion and freeing
1at the code that calls the heap procedures

iibonacci heaps are all inefficient in their
1 take a while to find a node with a given
DECREASE-KEY and IDELETE that refer
at node as part of their input. As in our
1 6.5, when we use a mergeable heap in
: to the corresponding application object
| as a handle to corresponding mergeable-
The exact nature of these handles depends
n.

ter first defining their constituent binomial
:sentation of binomial heaps. Section 19.2
ns on binomial heaps in the time bounds

£,

i IXLHLHLAL Ef €D Wid D e L i wprn

19.1 Binomial trees and binomial heaps

A binomial heap is a collection of binomial trees, so this section starts by defining
binomial trees and proving some key properties. We then define binomial heaps

and show how they can be represented.

19.1.1 Binomial trees

The binomial tree B, is an ordered tree (see Section B.5.2) defined recursively.
As shown in Figure 19.2(a), the binomial tree By consists of a single node. The
binomial tree By consists of two binomial trees By_; that are linked together: the
root of one is the leftmost child of the root of the other. Figure 19.2(b) shows the

binomial trees Bg through B4.

Some properties of binomial trees are given by the following lemma.

Lemma 19.1 (Properties of binomial trees)
For the binomial tree By,

1.
2.
3
4.

there are 2* nodes,
the height of the tree is &,
there are exactly AU nodes at depth ¢ fori =0, 1, ..., k, and

the root has degree k, which is greater than that of any other node; moreover if
the children of the root are numbered from left toright by k — 1,k —2,...,0,
child { is the root of a subtree B;.

Proof The proof is by induction on k. For each property, the basis is the binomial
tree By. Verifying that each property holds for By is trivial.

For the inductive step, we assume that the lemma holds for 8.

Binomial tree B, consists of two copies of By_1, and so By has 2671 257! = 2¢
nodes.

Because of the way in which the two copies of B,_; are linked to form By, the
maximum depth of a node in By is one greater than the maximum depth in B;—.
By the inductive hypothesis, this maximum depth is (k — 1) + 1 = £.

Let D(k,{) be the number of nodes at depth i of binomial tree By. Since By
is composed of two copies of By_; linked together, a node at depth 7 in By,
appears in B, once at depth i and once at depth 7 + 1. In other words, the
number of nodes at depth i in B, is the number of nodes at depth [in By, plus

458

Chapter 19 Binomial Heaps

(@)

(b

©)

G

=]
=]
=

Figure 19.2 (a) The recursive definition of the binomial tree By. Triangles represent rooted sub-
trees. (b) The binomial trees Bg through By. Node depths in B4 are shown, (¢} Another way of
locking at the binomial tree By.

the number of nodes at depth i — 1 in By_;. Thus,

Dk,i) = Dhk—-~1LD+Dk—1i— 1) (by the inductive :%@o%mmmmv
= k I ! + » - m (by Exercise C.1-7)
i i—
k

[

The only node with greater degre¢ in By than in By is the root, which
has one more child than in By_;. Since the root of B,_, has degree k - L
the root of B, has degree k. Now, by the inductive hypothesis, and as Fig-
ure 19.2(c) shows, from left to right, the children of the root of By arc 100t3
of Bya. By_s - .., Bo. When By_1 is linked to By, therefore, the children of

the resulting root are roots of By_y, By 2, ..., Bo. .

Y

19.1 Binomial trees and binomial heaps 459

Corollary 19.2
The maximum degree of any node in an n-node hinomial tree is g #.

Proof Immediate from properties 1 and 4 of Lemma 19.1.)

The term “binomial tree” comes from property 3 of Lemma 19.1, since the
terms @ are the binomial coefficients. Exercise 19.1-3 gives further justification

for the term.

19.1.2 Binomial heaps

A binemial heap H is a set of binomial trees that satisfies the following binomial-
heap properties.

1. Fach binomial tree in H obeys the min-hieap property. the key of a node is
greater than or equal to the key of its parent. We say that each such tree is

min-heap-ordered.

2. For any nonnegative integer k, there is at most one binomial tree in H whose
root has degree k.

The first property tells us that the oot of a min-heap-ordered tree contains the
smallest key in the tree.

The second property implies that an n-node binomial heap H consists of at most
lgr) + 1 binomial trees. To see why, observe that the binary representation of n
has lgn) + 1 bits, say {Biign)s Bligaj—t» - -+ bob, 50 that n = 35 b2, By
property 1 of Lemma 19.1, therefore, binomial tree B; appears in H if and only if
bit b; = 1. Thus, binomial heap H contains at most |1g»] + 1 binomial trees.

Figure 19.3(a) shows a binomial heap H with 13 nodes. The binary represen-
tation of 13 is {1101), and H consists of min-heap-ordered binomial trees Bs, Ba,
and By, having 8, 4, and 1 nodes respectively, for a total of 13 nades.

b i i i e

ymial tree By, Triangles represent rooted sub-
depths in B4 are shown. (¢) Another way of

_1. Thus,

~ 1) (by the inductive hypothesis) Representing binomial heaps

(by Exercise C.1-7) -
As shown in Figure 19.3(b), each binomial iree within a binomial heap is stored

in the left-child, right-sibling representation of Section 10.4. Each node has a key
field and any other satellite information required by the application. In addition,
each node x contains pointers p[x] to its parent, child{x] to its leftmost chitd, and
sibling[x] to the sibling of x immediately to its right. If node x is a root, then
plx] = NIL. If node x has no children, then child[x] = NIL, and if x is the
rightmost child of its parent, then sibling[x] = NIL. Each node x also contains the
field degree[x], which is the number of children of x.

As Figure 19.3 also shows, the roots of the binomial trees within a binomial
heap are organized in a linked list, which we refer (o as the roof list. The degreces

By than in B,_; is the root, which
e the root of By_; has degree & — I
the inductive hypothesis, and as Fig-
: children of the root of Bg_; are roots
iked to B;_, therefore, the children of
..., Bo. -

COMPUTER SCLENCE DEY

RYU330784.......

4169468498

Mode Page Results
/ 000 No Answer
' QG0 Comm. Error
' 000G Comm. Error
M 002 O.K
: 000 Comm Error
! 000 Stop Pressed
j 000 Comm Error
| 000 Comm. Error
; 0oz C.K
™ 001 O-K
] 002 O.K
M 001 O.K
M 00% O.K
M 002 O.K
M 003 O.K
™ 005 O.K
M 002 O.K
: 001 O.K
™ ooz O.K
: Dos O.K
M 001 O.K
™ 004 O.K
M 002 O.K
: 002 O.K
™ 001 G.K
. 020 O.K
) 001 O.K
2 00s O.K
M 002 O.K
M 002 Q.K
3 002 O-K
b Q06 O.K
: 002 O.K
: 003 O.K
bl 002 O.K
M 008 O.K
M 002 a.K
M 010 0.K
M 008 O. K
M 008 O.K
M 002 O.K
3 002 O.K
M 004 O.K
o 001 O.K
) 001 Co.K
oM 003 O.K
oM 001 O.K

(a)

(b)

WTRRES 1Y DEROIRIAL Heaps

Figure mc.m. A binomial heap # with # = 13 nodes, (a) The heap consists of biromial trees By, B
H&E .m.uv which have 1, 4, and 8 nodes tespectively, totaling » = 13 nodes. Since each E:oau.&,qom.
is EE-_.HEU.;E.&@EP the key of any node is na less than the key of its parent. Also shown is the root
list, which is a linked list of roots in order of increasing degree. {b) A more detailed representation

of binomial heap #. Each binomial tree is stored j ild, ri ibli
. red in the lefi-child, right- i
each node stores its depree. ehtreibling represeniation, und

of the roots strictly increase as we traverse the root list. By the second binomial-
heap property, in an n-node binomial heap the degrees of the roots are a subset
of (0,1,..., |lgn]}. The sibling field has a different meaning for roots than for
nonroots. If x is a root, then sibling[x] points to the next root in the root list. (As
usual, ..n__..wtxwﬁi = NIL if x is the last root in the root list.)

A given binomial heap H is accessed by the field head[H], which is simply 2

pointer to the first root in the root list of H. If binomial heap A has no elements,
then head[H] = NIL.

46/

19.2 Operations on binomial freaps

Figure 19.4 The hinomial tree B4 with nodes labeled in binary by a postorder walk,

Exercises

19.1-1
Suppose that x is a node in a binomial tree within a binomial heap, and assurme

that sibling[x] # NIL. If x is not a root, how does %%%m?.@:.;%?: compare to
degree[x]? How about if x is a root?

19.1.2
If x is a nonroot node in a binomial tree within 2 binomial heap, how does degree[x]

compare to degreef p[x]]?

19.1.3

Suppose we label the nodes of binomial tree B, in binary by a postorder walk, as
in Figure 19.4. Consider a node x labeled / at depth £, and let J =k ~1i. Show
that x has j 1’s in its binary representation. How many binary £-strings are there
that contain exactly j 1's? Show that the degree of x is equal to the number of I's
to the right of the rightmost 0 in the binary representation of /.

192 Operations on binomial heaps

In this section, we show how i0 perform operations on binomial heaps in the time
bounds shown in Figure 19.1. We shall only show the upper bounds; the lower
bounds are left as Exercise 19.2-10.

Creating a new binomial heap

To make an empty binomial heap, the MAKE-BINOMIAL-HEAP procedure sim-
ply allocates and returns an object H, where head[H] = NIL. The running time

is ®(1).

462

Chapter 19 Binomial Heaps

Finding the minimum key

The Eoommﬁm wEDZ;r-Em%-ZEHZdZ returns a pointer to the node with the

minimum key in an n-node binomial heap H . This implementation assumes that
there are no keys with value co. (See Exercise 19.2-3))

BiNOMIAL-HEAP- MINIMUM (H)

1 y < NL

2 x < headlH)

3 pn < 09

4 whilex # NIL

5 do if key[x] < min
) then min <— key(x]
7 y X

8 x < sibling{x]

0 returny

Since a binomial heap is min-heap-ordered, the minimum key must reside In a
root node. The m_zoZ;r-Em»v-EE;\Ez_ procedure checks all Tools, which
pumber at most [1g n) + 1, saving the current minimum in- min and a pointer to
the current minimum in y. When called on the binomial heap of Figure 19.3,
m_zoz_:»r-mm}w-gﬁz_zﬁwg returns a pointer to the node with key 1.

Because there are at most |lgn} + 1 roots 10 check, the ruaning time of
wmzoz;r-mmzu-gzidz s O(lgn).

Uniting two pinomial heaps

The operation of unidng two binomial heaps is used as a subroutine by most of the
remaining operations. The wwzoggr-mm>m-czaz procedure repeatedly links
binomial trees whose roots have the same degree. The following procedure links
the By, tree rooted at node y 10 the By tree rooted at node z; that is, it makes Z
the parent of Y- Node z thus becomes the root of a By tree.

BINOMIAL-LINK(y, ?)

1 ply) <z

n siblingly] child[z]

% childlz] < ¥

4 degreelz] < degreelz] + 1

The BINOMIAL-LINK procedure makes node y the new head of the Jinked list
of node z’s children in O(1) time. It works because the left-child, H._mrﬂlw.__u::m
representation of each binomial tree matches the ordering property of the tree: i
a By tree, the leftmost child of the root is the root of a By tree.

(NIMUM returns a pointer to the node with the
| heap H. This implementation assumes that

: Exercise 19.2-5.)

e in a
which
inter to

»-ordered, the minimum key maust resid
_MINIMUM procedure checks all roots,
 the current minimum in min and a po
1 called on the binomial heap of Figure 19.3,

rns a pointer to the node with key 1.
n| + 1 roots to check, the running time of

g n).

y most of the
eatedly links
cedure links

mial heaps is used as a subroutine b
MiAL-HEAP-UNION procedure rep
the same degree. The following pro
the By tree rooted at node z; that is, it makes 2

mes the root of a By tree.

e makes node y the pew head of the i

ne. It works because the left-child, right-
tree matches the ordering property of the

1e root is the root of a By tree.

nked list
sibling
tree: 10

i
= WAESET LELURLY OFL DILHETEEU L \mmhh»ﬂh
I} 463

The following procedure unites binomi

. _ tal heaps f; an 1

s h“%mw Mmmﬂ_ H Mﬂh W_MMMME Mﬁ representations of M, mwa MNMN. %MEH.MHm,Em o

iges DINOMIALL 59,, t owﬁwooomc.ao uses an auxiliary ﬁacn@aﬁoww;ﬂwﬂ ol

e e H.Eo.mmm the root rmﬁm. of H; and H, into a single linked li o

N Do monotonically increasing order. The BINOMIAL M._mﬁ o

MERaE pr Eoowm,cw Y 05e ﬁmwcmonoﬁ_@ we leave as Exercise 19.2-1, i n .m>w-
in Section 2.3.1. = s stmilar to

BINOMIAL-HEAP-UNION (H;, H»)

1 H <« MAKE-BINOMIAL-HEAP()
W Maa&h] « BINOMIAL-HEAP-MERGE (H;, H>)
> ee the objects H; and H, but not the lists mwo o
if head[H] = NIL Y P
5 then return H
6 prev-x <« NIL
7 x « head[H]
8 next-x < sibling[x]
9 while next-x # NIL
10 do if amm.mwmmmi # degree[next-x]) or
sibling[next-x] % NIL and d. bl
m then prer et egreelsibling [next-x]] M degree[x])
prov < > Cases 1 and 2
M else if key[x] < key[next-x] > Cases Land 2
1 then sibling[x] < sibling[next-x]
” .w_zoZEr-sz (next-x, x) > e
5 else if prev-x = NIL D e
" then a.ma&m 1 « next-x W Mmmo ;
- else sibling[prev-x] < next-x [Ommo :
" BINOMIAL-LINK (x, next-x) e
o o , X <« next-x " Mmm@ p
bl > Case 4
22 return H winslel

Figure 19.5 shows an ex
%%M r_gwn_a mmmsaono%m%ww .o_. BINOMIAL-HEAP-UNION in which all four cases
€ DINOM -

Formed by the M.M__m OMWWMM“/:OZ procedure has two phases. The first phase, per-
heaps H, and o imo a iom E.r-mm»m-gmzom. merges the root lists of E.:m._%:m_
cally increasing order ﬁwnm e :.ESQ list H that is sorted by degree into monotoni-
degree, howoner s Q._w m@nam might be .mm_ many as two roots (but no more) of each
00t remins o mma: oe cond phase r:wm. roots of equal degree until at most one
perform all the Lk o gree. wmuomcmo the linked list H is sorted by degr

perations quickly. gree, we e

464

@} head(H]

{b) headiH)

(c) head[H)

Chapter 19 Binomial Heaps

head[H,)

X nexi-x

Case 3

X next-x

Figure 19.5 The execution of BINOMIAL-HEAP-UNICON. (a) Binomial heaps H and H;. (b} Bi-
nomial heap H is the output of BINOMIAL-HEAP-MERGE(H), F3). Initially, x is the first root on
the root list of /. Because both x and rext-x have degree 0 and key[x] < kev[next-x], case 3 applies.
{c} After the link occurs, x is the first of three roots with the same degree, so case 2 applies. (d) After
all the pointers move down one position in the root list, case 4 applies, since x is the first of two
roots of equal degree. (e} After the link occurs, case 3 applies. (f) After another link, case 1 applies,
because x has degree 3 and nexs-x has degree 4. This iteration of the while loop is the iast, because
after the peinters move down one position in the root list, rext-x == NIL.

In detail, the procedure works as follows. Lines 1-3 start by merging the root
lists of binomial heaps H; and H, into a single root list . The root lists of Hi
and H, are sorted by strictly increasing degree, and BINOMIAL-HEAP-MERGE 1€~
turns a root list A that is soried by monotonically increasing degree. If the root lists
of H, and H, have m roots altogether, BINOMIAL-HEAP-MERGE runs in O{(m)
time by repeatedly examining the roots at the heads of the two root lists and ap-
pending the root with the lower degree to the output root list, removing it from it
input root list in the process.

192 Qperations on binomial heaps 465

prev-x X next-x

(e) head[H]

() headlH]

The BINOMIAL-HEAP-UNION procedure next initializes some pointers into the
root list of H. First, it simply returns in lines 4-5 if it happens to be uniting two
empty binomial heaps. From line 6 on, therefore, we know that H has at least one
root. Throughout the procedure, we maintain three pointers into the root list:

* x points to the root currently being examined,

* prev-x points to the root preceding x on the root list: sibling[prev-x] = x (since
initially x has no predecessor, we start with prev-x set to NIL), and

* next-x points to the root following x on the root list: sibling[x] = next-x.

Initially, there are at most two roots on the root list / of a given degree: because
H; and H, were binomial heaps, they each had at most one root of a given degree.
Moreover, BINOMIAL-HEAP-MERGE guarantees us that if two roots in H have
the same degree, they are adjacent in the root list.

In fact, during the execution of BINOMIAL-HEAP-UNION, there may be three
roots of a given degree appearing on the root list A at some time. We shall see

466

Chapter 19 Binomial Heaps

in a moment how this situation could occur. At each iteration of the while loop of
lines 9-21, therefore, we decide whether to link x and next-x based on their degrees
and possibly the degree of sibling[next-x]. An invariant of the loop is that each time
we start the body of the loop, both x and next-x are non-NIL. (See Exercise 19.2-4
for a precise loop invariant.)

Case 1, shown in Figure 19.6(a), occurs when degree[x] # degree[next-x], that
is, when x is the root of a B,-tree and next-x is the root of a B-tree for some { > %
Lines 11-12 handle this case. We don’t link x and next-x, so we simply march the
pointers one position farther down the list. Updating next-x to point to the node
following the new node x is handled in line 21, which is common to every case.

Case 2, shown in Figure 19.6(b), occurs when x is the first of three roots of equat
degree, that is, when

degree[x] = degree[next-x] = degree[sibling[next-x]] .

We handle this case in the same manner as case 1: we just march the pointers one
position farther down the list. The next iteration will execute either case 3 or case 4
to combine the second and third of the three equal-degree roots. Line 10 tests for
both cases 1 and 2, and lines 11-12 handle both cases.

Cases 3 and 4 occur when x is the first of two roots of equal degree, that is, when

degree[x] = degree[next-x] # degree[sibling[next-x]] .

These cases may occur in any iteration, but one of them always occurs immediately
following case 2. In cases 3 and 4, we link x and next-x. The two cases are
distinguished by whether x or next-x has the smaller key, which determines the
node that will be the root after the two are linked.

In case 3, shown in Figure 19.6(c), key[x] < key[next-x], so next-x is linked to x.
Line 14 removes next-x from the root list, and line 15 makes next-x the leftmost
child of x.

In case 4, shown in Figure 19.6(d), next-x has the smaller key, so x is linked to
next-x. Lines 16~18 remove x from the root list; there are two cases depending
on whether x is the first root on the list (line 17) or is not (line 18). Line 19 then
makes x the leftmost child of next-x, and line 20 updates x for the next iteration.

Following either case 3 or case 4, the setup for the next iteration of the while
loop is the same. We have just linked two By-trees to form a By, -tree, which x
now points to. There were already zero, one, or two other By ;-trees on the root
list resulting from BINOMIAL-HEAP-MERGE, 50 x is now the first of either one,
two, or three B, ;-trees on the root list. If x is the only one, then we enter case 1
in the next iteration: degree[x] # degree[next-x]. If x is the first of two, then W&
enter either case 3 or case 4 in the next iteration. It is when x is the first of three
that we enter case 2 in the next iteration,

The running time of BINOMIAL-HEAP-UNION is O(lgn), where n is the total
number of nodes in binomial heaps H; and H,. We can see this as follows. Let f1

ey

19.2 Operations on binomial heaps 467

prev-x X :QM%.H siblinglnext-x] _EMW.\H X next-x
@ @ i Case __ f
. By By B, B, :
prev-x X next-x sibling[next-x]
() .) &) aes
B, B, B, n
prev-x x next-x siblinglnext-x] , 7
© A Case 3 |
B, B, B, |
key[x] < key[next-x] |
next-x siblinglnext- B
(d)

wm ; By B,
keylx] > kevlnext-x]

By |

Figure 19.6 The four cases that occur in BINOMIAL-HEAP-UNION. Labels a, b, ¢, and d serve
only to identify the roots involved; they do not indicate the degrees or keys of these roots. In
each case, x is the root of a By-tree and { > k. (a) Case L: degree[x] 3 degree[nexi-x]. The
pointers move one position farther down the root list. {(b) Case 2: degree[x] = degreeinext-x] =
degreelsibling[next-x]]. Again, the pointers move one position farther down ihe list, and the i
next iteration executes either case 3 or case 4. (e) Case 3: degree[x] = degree[next-x] #
degreelsibling[nexs-x]] and key[x] < key[rexr-x]. We remove next-x from the root list and link it
to x, creating a By -tree. (d) Case 4: degreefx] = degree[nexi-x] # degree[sibling[next-x]] and _
key[next-x] < key[x). We remove x from the root list and link it to nexi-x, again creating a By j-tree, ;

contain #; nodes and H, contain 1, nodes, so that n = n|+n;. Then H; contains at
most [lgn;|+1 roots and H- contains at most |1g 72 f+1 roots, and so H contains at
most [lgn, |+ [lgns]+2 < 2 |lgn]+2 = O(lg r) roots immediately after the calt
of BINOMIAL-HEAP-MERGE. The time to perform BINOMIAL-HEAP-MERGE is L
thus O(lgn). Each iteration of the while loop takes O(1) time, and there are at ,
most |lgn,] + llgna| + 2 iterations because each iteration either advances the L

SeSuREEILE Lh e ~‘~N;»__L_.u

pointers one position down the root list of 77 or removes a root from the root lis,
The total time is thus Olgn).

Inserting a node

The following procedure inserts node x into binomial heap H, assuming that x hag
already been allocated and key[x] has already been filled in,

BINOMIAL-HEAP-INSERT (H,x)

H « Z»mm-wﬁzozﬁ;r-mm%o

plx] «— NIL

child[x] «— NIL

sibling[x] <= NIL

degree[x] «— Q

head[H'] « x

H «~ BINOMIAL-HEAP-UNION (H, H"

SN R L p =

‘The procedure simply makes a one-node binomial heap H' in O (1) time and unites
it with the n-node binomial heap H in O(1gn) time. The call to BinOMIAL-HEAP-
UNION takes care of freeing the temporary binomial heap H'. (A direct implemen-
tation that does not call BINOMIAL-HEAP-UNION is given as Exercise 19.2-8.)

Extracting the node with minimum key

The following procedure extracts the node with the minimum key from binomial
heap A and returns a pointer to the extracted node.

BINOMIAL-HEAP-EXTRACT-MIN (H)
I find the root x with the minimum key in the root list of H,
and remove x from the root list of A
2 H « MAKE-BINOMIAL-HEAP()
3 reverse the order of the linked list of x’s children,
and set head[H'] to point to the head of the resulting list
4 H « BINOMiaL-HEAP-UNION (H, HA
return x

Ln

This procedure works as shown in Figure 19.7. The input binomial heap H is
shown in Figure 19.7(a). Figure 19.7(b) shows the situation after line 1: the root x
with the minimum key has been removed from the root list of H. If x is the root
of a By-tree, then by property 4 of Lemma 19.1, x’s children, from left to right,
are roots of By_ -, By -, ..., By-trees. Figure 19.7(c) shows that by reversing the
list of x’s children in line 3, we have a binomial heap H' that contains every node

192 Operations on binomial heaps 469

(W headlH] - e

(h) head{H]

(¢) head[H]

(@) head[H)

Figure 19.7 The action of BINOMIAL-HEAP-EXTRACT-MIN. (2) A binomial heap #. (b) The
Toot x with minimum key is removed from the oot list of H. (c) The linked [ist of x’s children is
reversed, giving another binomial heap H'. (d) The result of uiting # and H'.

In x’s tree except for x itseif. Because x’s tree was removed from in line 1, the
binomial heap that results from uniting H and /' in line 4, shown in Figure 19.7(d),
contains all the nodes originally in H except for x. Finally, line 5 returns x.

Since each of lines 1-4 takes O (g #) time if H has n nodes, BINOMIAL-HEAP-
EXTRACT-MIN runs in O (lg n) time.

470

Chapter 19 Binonial Heaps

Decreasing a key

The following procedure decreases the key of anode x in a binomial heap # 19 4
new value &. It signals an error if 4 Is greater than x’s current key.

mHzoZEr-zmb?Umowm}mm-Wm<Qﬁ X, k)
1 ifk > keylx]

*y

2 then error “new key is greater than current key
3 keylx] < k
4 vy x
3z < plyl
6 while z £ N1I, and key[y] < key[z]
7 do exchange key[y] < key[z]
8 > If y and z have satellite fields, exchange them, too,
9 Y -z
10 z < piy]

As shown in Figure 19.8, this procedure decreases a key in the same manner
as in a binary min-heap: by “bubbling up” the key in the heap. After ensuring
that the new key is in fact no greater than the current key and then assigning the
new key to x, the procedure goes up the tree, with y initially pointing to node x.
In each iteration of the while loop of lines 6-10, key[y1 is checked against the
key of y’s parent z. If ¥ is the root or key(y] > keylz], the binomial tree is now
min-heap-ordered. Otherwise, node y violates min-heap ordering, and so its key is
exchanged with the key of its parent z, along with any other satellite information.
The procedure then sets ¥ o z, going up one level in the tree, and continues with
the next iteration,

The Ezoz:»r-mm>?Umnwm>mm-mm< procedure takes Q(lgn) time, By
property 2 of Lemma 19.1, the maximum depth of x is [1g 7], so the while loop of
lines 6-10 iterates at most {1gn} times,

Deleting a key

It is easy 1o delete a node x’s key and satellite information from binomial heap m
in O(lgn) time. The following implementation assumes that no node currently in
the binomial heap has a key of —e0.

BINOMIAL-HEAP-DELETE (H,x)

1 92025r-Em»w-Umomm>mm-Wm<Qc. X, ~o0)
2 wHzozw>r-:m>w-qux>nﬂ.§HzTS

The BINOMIAL-HEAP-DELETE procedure makes node x have the unique mini-
mum key in the entire binomial heap by giving it a key of —oo. (Exercise 19.2-6

9.2 Operations on binomial heaps 474

@ head{H)—>{FF

(b} headiH]

Figure 19.8 The action of BINOMIAL-HEAP-DECREASE-KEY. {a} The situation just before line 6
of the first jteration of the while loap. Node y has had its key decreased fo 7, which is less than the
key of p’s parent z. (b) The keys of the two nodes are exchanged, and the situation Jjust before line 6
of the second iteration is shown. Pointers y and z have moved up one level in the tree, but min-heap
order is still violated, {¢) After another exchange and moving pointers y and z up one more level, we
find that min-heap order is satisfied, so the while loop terminates.

deals with the situation in which —©0 cannot appear as a key, even temporarily.) It
then bubbles this key and the associated satellite information up to a root by calling
BINOMIA L-HEAP-DECREASE-KEY. This root is then removed from H by a call
of wMzoz_;r-Em\yw-mx;»nﬁgﬁz.

The BINOMIAL-HEAP-DELETE procedure takes G (Ig n) time.

Exercises

19.2-1
Write pseudocode for BINOMIAL-HEAP-MERGE.

472

Chapter 19 Binomial Heaps

19.2-2
Show the binomial heap that results when a node with key 24 is inserted into the
binomial heap shown in Figure 19.7(d).

19.2-3
Show the binomial heap that results when the node with key 28 is deleted from the

binomial heap shown in Figure 19.8(c).

19.24
Argue the correctness of BINOMIAL-HEAP-UNION using the following loop in-

variant;

At the start of each iteration of the while loop of lines 9-21, x points to a
root that is one of the following:

* the only root of its degree,
* the first of the only two roots of its degree, or
* the first or second of the only three roots of its degree.

Moreover, all roots preceding x's predecessor on the root list have unique
degrees on the root list, and if x’s predecessor has a degree different from
that of x, its degree on the root list is unique, too. Finally, node degrees
monotonically increase as we traverse the root list,

19.2-5
Explain why the BINOMIAL-HEAP-MINIMUM procedure might not work correctly
if keys can have the value oc. Rewrite the pseudocode to make it work correctly in

such cases.

19.2-6
Suppose there is no way to represent the key —oco. Rewrite the BINOMIAL-HEAP-
DELETE procedure to work correctly in this situation. It should still take O(lgn)

time.

19.2-7
Discuss the relationship between inserting into a binomial heap and incrementing a
binary number and the relationship between uniting two binomial heaps and adding

two binary numbers.

19.2-8
In light of Exercise 19.2-7, rewrite BINOMIAL-HEAP-INSERT to insert a node di-

rectly into a binomial heap without calling BINOMIAL-HEAP-UNION.

