
CSC 2414H - Assignment 3

Due Apr 1 , 2008

General rules : In solving this you may consult books and you may also consult with
each other, but you must each write your own solution. In each problem list the people
you consulted. This list will not affect your grade.

1. Let G = (L,R,E) be a d-regular, bipartite graph on the sets L and R, where
|L| = |R| = n. Let N = |E|(= dn). For A ⊂ L,B ⊂ R we let e(A,B) denote the
number of edges between A and B. It can be shown that certain expander graphs
satisfy that for all A ⊂ L,B ⊂ R∣∣∣∣e(A,B)− d|A||B|

n

∣∣∣∣ ≤ Λd
√
|A| · |B|. (1)

Here 0 < Λ ≤ 1 is some positive constant. Notice that inequality (1) says that
the two sets have roughly as many edges connecting them as would be expected by
random graph with the same density.

Now, let C0 be a [d, d · r0, d · δ0]2 linear code to which we have a decoding algorithm
that corrects up to d · δ0/2 errors. We now present a new code C, based on G and
on C0.

Assume that the vertices in L and R are ordered in some arbitrary way. An as-
signment of bits to the edges of G, {ce}e∈E , where ce ∈ {0, 1} for every e ∈ E, is a
received corrupted codeword of a code that will be shortly defined. For a vertex v
of G, let Ev be the set of edges adjacent to v. Now, define c|v = (ce)e∈Ev . We can
view c|v as a vector in {0, 1}d which is the restriction of c to Ev. The orderings of
the vertices of L and R induce the order of the coordinates of c|v. Now, define

C = {c ∈ {0, 1}N : c|v ∈ C0 ∀v ∈ V (G)}.

(a) Show that C is a linear code and bound its rate from below.

We shall assume from here on that Λ ≤ δ0/3. Our goal is to show an efficient
decoding algorithm for C that corrects upto δ2

0
8 (1 − 2Λ/δ0)N errors. Consider the

following algorithm.

Decoding Algorithm:

i. Given a word w ∈ {0, 1}N correct w to w(1) so that w(1)|v ∈ C0 for all v ∈ L.
This is done by running the decoding algorithm for C0 on the words w|v for
v ∈ L.
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ii. Repeat the same process on the R vertices starting with the word w(1). The
word produced w(2) satisfies w(2)|v ∈ C0 for all v ∈ R.

iii. Go back to step i. until you get w(j) ∈ C.

We will show that the algorithm terminates with the correct codeword after O(log n)
rounds. Here is a suggested plan to do it:

Set Vi to L when i is odd and to R when i is even. Let Xi be the set of erroneous
edges after round i (so X0 is the set of the originally corrupted edges). Let Si =
{v ∈ Vi|Ev ∩Xi 6= ∅}.

(b) Let i > 0. Prove that for all v ∈ Si, |Ev ∩Xi−1| ≥ δ0d/2 and that for all v ∈ Si,
|Ev ∩Xi| ≥ δ0d.

(c) Deduce that |S1| ≤ n
2 (δ0/2− Λ).

(d) Using inequality (1) for appropriate sets and the bound on S1 to show that
|S2| ≤ 2

3 |S1|; continue inductively (using the obtained upper bound on Si) to
show that |Si+1| ≤ 2

3 |Si|.
(e) Conclude that the decoding algorithm terminates with the correct code word

after O(log n) rounds.

2. (a) Recall that in the discussion about Delsarte LP, we have defined αi as the
value of a symmetrized version of 1C ∗ 1C , where C is a code. Specifically, for
x ∈ {0, 1}n we define

g(x) =
1
n!

∑
σ∈Sn

(1C ∗ 1C)(σ(x)),

where σ(x) is defined as the permuted version of x by σ. In other words
σ(x)i = xσ(i). Now, let αi = g(x) for |x| = i. What quantity of C is captured
by αi?

The Krawtchouk polynomial is defined as Kt(x) =
t∑

i=0

(−1)i

(
x

i

)(
n− x

t− i

)
. No-

tice that we can define
(y
k

)
where y is real and k is a nonnegative integer as(y

k

)
= y·(y−1)·...·(y−k+1)

k! (and notice that
(y
0

)
is always 1). The Delsarte Linear

Program we defined in class is

max
n∑

i=0

αi

s.t.
αi ≥ 0 for all i
α1 = α2 = . . . = αd−1 = 0
α0 = 1
n∑

j=0

αjKt(j) ≥ 0 for all 0 ≤ t ≤ n

We have shown that if C is a code of block length n and distance d then |C| is at
most the solution to the LP. Therefore, to bound the size of a code it is possible
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to analyze the LP and provide an optimal solution. We show an alternative
formulation that allows to get the bound by presenting one particular solution
to a (different) LP.

(b) Let β(x) = 1 +
∑n

t=1 βtKt(x) be any polynomial with βt ≥ 0 (1 ≤ t ≤ n) such
that β(j) ≤ 0 for j = d, d + 1 . . . , n. Show that |C| ≤ β(0) whenever C is a
code of block length n and distance d.

(c) Using the above, Show that a code with block length n with distance at least
n/2 cannot contain more than 2n words. (We saw this already as part of Plotkin
bound). Hint: use the polynomial β(x) = 1 + K1(x) + 2

nK2(x).

3. In class we saw that if C ′ is a code with dual distance d (namely 1̂C′(S) = 0 for
0 < |S| < d) , and if B ⊂ {0, 1}n with λB ≥ n− 2d + 1 then∣∣∣∣∣∣

⋃
z∈C′

(z + B)

∣∣∣∣∣∣ ≥ 2n/n.

(a) Show that if C ′ is a linear code with distance d then its dual code as dual
distance d.

(b) From the above deduce that if C is a linear code with distance d, and if B is a
set with λB ≥ n− 2d + 1 then

|C| ≤ n|B|.
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