CSC 2411H - Assignment 2

Due March 2, 2009

- 1. In class we saw that a linear program P has an optimal solution if and only if a certain linear program that includes the dual program is feasible. Write down an LP that is feasible if and only if P is unbounded. Assume P is given in standard form.
- 2. You have an inventory of m different kinds of raw material. Specifically, you have b_j units of raw material of kind j. They are n different kinds of products that you can make from these raw material. Each unit of product i takes a_{i1} unit of raw material 1, a_{i2} units of raw material 2 etc. to create and can be sold at the price c_i dollars. It is possible to sell fractional amounts of any product. Your goal is to produce the most profitable set of products with your available material.
 - (a) Formulate the above optimization problem as a linear program:
 - (b) Write the dual of this program and give a natural interpretation of it (tell a story) as an optimization problem.
 - (c) Use strong duality to connect the optimum of these two programs.
- 3. Let p_1, p_2, \ldots, p_r and q_1, q_2, \ldots, q_s be points in \mathbb{R}^n , and let $P = \operatorname{conv}(p_1, p_2, \ldots, p_r)$ and $Q = \operatorname{conv}(q_1, q_2, \ldots, q_r)$ be their convex hulls (recall that $\operatorname{conv}(s_1, \ldots, s_n)$ is the set $\{\sum_i \lambda_i s_i | \lambda_i \ge 0; \sum_i \lambda_i = 1\}$.)

We say that a hyperplane H is a strict separating hyperplane between P and Q if $P \subset H^- \setminus H$ and $Q \subset H^+ \setminus H$, where H^- and H^+ are the two halfspaces associated with H. Show that P and Q have a strict separating hyperplane if and only if they are disjoint.

- 4. Theorem: if K_1, K_2, \ldots, K_t are convex bodies in \mathbb{R}^n such that every n+1 of them intersect, then all of them intersect $(\bigcap_i K_i \neq \emptyset)$.
 - (a) Prove the theorem for the special case where the K_i are halfspaces.
 - (b) Prove the theorem for the (less) special case where the K_i are polyhedra.
- 5. Assume that you are given a linear program in standard form with n variables and m constraints, such that m is very small (a constant, say). In this question we are considering algorithms that solve the linear program in time linear in n (but not necessarily linear in m). For example a running time of $O(n^{2m})$ will be acceptable but a running time of $O(n^{2m})$ will not be. You may give randomized algorithms, in which case you should consider the *expected* running time of the algorithm.

Remember that a linear program in standard form is

Minimize
$$c \cdot x$$

subject to
 $Ax = b$
 $x \ge 0.$

- (a) Devise an algorithm that finds the optimum *value* of the objective function, i. e., the minimum of $c \cdot x$. Your algorithm should run in time linear in n.
- (b) (Bonus) Devise an algorithm that finds an optimal solution x. Your algorithm should run in time linear in n.