
Temporal XML: Model, Language and Implementation

Alejandro A. Vaisman
avaisman@cs.toronto.edu

University of Toronto

Alberto O. Mendelzon
mendel@db.toronto.edu
University of Toronto

Enrique Molinari
epmolina@ub.edu.ar

Universidad de Belgrano

Pablo Tome
ptome@ub.edu.ar

Universidad de Belgrano

Abstract

We address the problem of modeling and implement-
ing temporal data in XML by proposing a data model
for tracking historical information in an XML docu-
ment, and for recovering the state of the document as
of any given time. After presenting an abstract model
for temporal XML, we discuss four different ways of
mapping this abstract representation into a (tempo-
ral) XML document. Finally, we introduce TXPath,
a temporal XML query language that extends XPath
2.0. We describe the main features of the language
and present its current implementation and the re-
sults of preliminary testing on real-world data.

1 Introduction

The topic of representing, querying and updating tem-
poral information has received little attention in the
XML literature. Of course, time is present in almost
any real-world application, especially in web and e-
business applications. In this paper we will show how
temporal database concepts [16] can be applied to de-
fine, query and manage temporal XML documents,
i.e. XML documents that can be navigated across
time.

Consider for example the graph depicted in Fig-
ure 1, representing a portion of the NBA1 database.
We will be using this example throughout the paper.
The league is composed of franchises, which maintain
teams, such that each team has a set of players, that
may change over time. Some franchises may have

1National Basketball Association, a professional basketball
league

players directly associated to them, not included in
teams. The database also records some statistics for
each player. In this database, node 12 represents a
player (McGrady), playing for the Toronto Raptors
between instants ‘0’ and ‘3’. After that, he played for
the Orlando Magic (represented by node 2), from in-
stant ‘4’ to the present time (note the edge between
nodes 2 and 12). There is also a reference (dashed
line) indicating that between times ‘2’ and ‘3’, the
franchise was interested in acquiring McGrady. Note
some of the dynamics that this example graph models:
players move from one franchise to another, usually
from year to year, while their statistics change from
match to match; franchises have different sponsors in
different time periods, and sponsors may contribute
different amounts of money at different times. In the
next sections we will describe in detail the components
of Figure 1.

In this work we address the problem of modeling
and implementing temporal features in XML docu-
ments. We start by defining an abstract model for
temporal XML documents, as a graph with annotated
edges of two kinds: containment edges, describing ele-
ment nesting and attribute values, and reference edges
describing IDREF to ID references. Both kinds of
edges may be annotated with temporal elements; at
any given instant, a snapshot of the temporal docu-
ment is a conventional XML document. We define up-
dates and their effect on the temporal document. We
also discuss four ways of mapping the abstract tempo-
ral model into a concrete XML document, and present
the results of implementing these mappings on a real
instance of the NBA database. Finally, we introduce
TXPath, a query language that extends XPath for
supporting temporal queries. We describe our cur-

1

franchise
franchise

name city

Toronto

player

name

last first

McGrady

Vince Carter

stats

stats

goals

team

Raptors

32.1

ID

name

ID

0

1 2

6 7

11 12

13 14

15 16

17 18

19

<0,3>

<17,Now>

33.2

5−24−79

day−of−birth

4.33.7

assists
<15,Now>

sponsor

<21,Now>
<0,5>

10OOK 2000K

<24,32>

<21,32> 101

102

103

ID

NBAdb

<0,14>

21

assists

minutes

<21,23>

22

104

35

25

2445

name

player

10city

Magic

<2,3>

1

2

3

4

player

GM

ID name

89

85

40

interestedIn

7

Christie

85
amount amountname

Orlando

<4,Now>

6.5

rebs

REF

Figure 1: Example database

rent implementation of TXPath, and show that it can
be easily integrated into the ToX (Toronto XML) en-
gine [18] framework. Our approach, unlike other pro-
posals [10], is not based in translating TXPath into
a non-temporal query language. This makes it easier
to develop query optimization and indexing methods
specialized for temporal data.

The remainder of the paper is organized as follows:
in Section 2 we review previous efforts in temporal
semistructured data and XML. In Section 3 we in-
troduce the temporal data model and XML updates.
Section 4 presents four alternatives for mapping the
abstract representation to a concrete XML document.
TXPath is introduced in Section 5, and its implemen-
tation and testing results are discussed in Section 6.
We conclude in Section 7.

2 Related Work

A model for managing historical semistructured data
was proposed by Chawathe et al [2]. They extend the
Object Exchange Model (OEM) [3] with the ability to
represent updates and to keep track of them by means
of “deltas.” They do not apply this work to XML.
Dyreson et al [7] go further, allowing annotations on
the edges of the database graph that can not only
refer to valid or transaction times, but other kinds of

metadata as well.
Not many proposals address updates or versioning

for XML documents. In a non-temporal framework,
Tatarinov et al [17] propose a language for updating
XML documents as an extension to XQuery. A model
for granting access to temporal XML documents was
introduced by De Capitani [6]; however, the focus here
is the authorization model, not the temporal features
of the document. Grandi and Mandreoli [12] present
an infrastructure for managing temporal web docu-
ments. Amagasa et al [1] present a temporal data
model based on XPath, but not a model for updates,
nor a query language taking advantage of the tem-
poral model. Dyreson [8] proposed an extension of
XPath with support for transaction time by means
of the addition of several temporal axes for specifying
temporal directions. This work’s focus is on document
versioning over the web in the absence of explicit time
stamps. Manukyan et al [13] attemp formalizing tem-
poral constituents of XML documents. They do not
address querying temporal XML documents, neither
discuss implementation issues.

Chien et al [4, 5] propose update and versioning
schemes for XML. First, they presented an edit-based
schema [4] in which the most current version of the
document is maintained, and reverse edit scripts allow
moving backward in version time. They later moved
to a scheme where version management is performed
by keeping references to the maximal unchanged sub-
tree in the previous version [5], sharing unchanged
elements among versions. They did not consider ref-
erence attributes. A similar approach is followed by
Marian et al [14]. In addition, the main difference be-
tween their approach and ours is that we maintain a
single temporal document from which versions can be
extracted when needed. We believe this is better for
scenarios where changes are frequent and only affect
a few elements of the document. In this situation,
creating a new physical version each time an update
occurs may lead to large overheads when processing
temporal queries that span multiple versions. More-
over, a version management approach accounts only
for transaction time, while our approach is apt for
handling valid time too.

Closer to our ideas, Gao et al [10, 11] introduced
τXQuery, an extension to XQuery supporting valid
time while maintaining the data model unchanged.
Queries are translated into XQuery, and evaluated

2

by an XQuery engine. Even for simple temporal
queries, this approach results in long XQuery pro-
grams. Moreover, translating a temporal query into
a non-temporal one makes it more difficult to apply
query optimization and indexing techniques particu-
larly suited for temporal XML documents.

3 Temporal XML Documents

First we define a (fairly standard) graph model of an
XML document, and then we extend it to a temporal
model.

For our purposes, an XML document is a directed
labeled graph. We distinguish several classes of nodes:
(a) a distinguished node r, the root of the document,
such that r has no incoming edges, and every node in
the graph is reachable from r; (b) nodes representing
values (text or numeric), denoted value nodes, with no
outgoing edges and exactly one incoming edge, from
attribute or element nodes (or from the root); (c) At-
tribute nodes, labeled with the name of an attribute,
plus possibly one of the ‘ID’ or ‘REF’ annotations; (d)
Element nodes, labeled with an element tag, and con-
taining outgoing links to attribute nodes, value nodes,
and other element nodes. Each node is uniquely iden-
tified by an integer, the node number, and is described
by a string, the node label.

Edges in the document graph are constrained to
be either containment edges or reference edges. A
containment edge e(ni, nj) joins two nodes ni and nj

such that: (a) ni is either r or an element node, and
nj is an attribute node, a value node or another ele-
ment node; or (b) ni is an attribute node, and nj is
a value node containing the value for the attribute.
Attribute nodes must have exactly one outgoing con-
tainment edge (to the attribute’s value). A reference
edge e(ni, nj) links an attribute node ni of type REF,
with an element node nj . We will represent reference
edges with dashed lines and containment edges with
solid lines. For the sake of brevity, we do not address
document order as in the XPath data model, although
it could be easily added. Finally, the node and edge
types in our model allow mixed content, i.e. an el-
ement node may have different kinds of child nodes,
including more than one value node.

We use two mechanisms to add the time dimension
to document graphs: labeling edges with intervals and
grouping nodes into sequences. First we need to de-

scribe the time domain. We will consider time as a dis-
crete, linearly ordered domain. An ordered pair [a, b]
of time points, with a ≤ b, denotes the closed interval
from a to b. A set of such intervals is called a tempo-
ral element. As is common in temporal databases, the
current time point will be represented with the distin-
guished word ‘Now’. The document creation instant
will be denoted t0.

We extend the document graph model by allowing
temporal elements to label edges. A temporal label
is an interval Te labeling a containment or reference
edge e. The meaning of this label is that given an
edge e between nodes ni and nj , if e is a containment
edge, Te will represent the time period where the ele-
ment represented by nj was contained in the element
represented by ni, i.e. the valid time of the contain-
ment relation (we do not deal with transaction time,
which can be addressed in an analogous way). If e is
a reference edge, Te represents the valid time of the
reference, i.e. the interval during which the reference
was valid. We will use Te.TO and Te.FROM to refer
to the endpoints of the interval Te. A temporal con-
tainment (reference) edge such that Te.TO = Now
is called a current containment (reference) edge. A
node is called current if one of its incoming contain-
ment edges is current (as we will see below, at most
one incoming containment edge may be current). The
lifespan of a node n, denoted ln is the union of the tem-
poral elements of all the containment edges incoming
to the node. The lifespan of the root is the interval
[t0, Now].

In addition to the types of nodes defined above, we
introduce the concept of versioned nodes. A versioned
node is a pair (v, Nlist) such that v is a node in the
graph and Nlist is an ordered list of k element nodes
or k attribute nodes of type other than ID or REF,
for some k ≥ 2. All nodes in Nlist have the same node
label, and each node in Nlist can have at most one out-
going edge (to a value node) and has exactly one in-
coming containment edge, coming from v. Moreover,
the time labels Tei of the containment edges ei(v, ni)
are consecutive, i.e. Tei .TO = Tei+1 .FROM − 1, for
all 1 ≤ i < k. Intuitively, a versioned node encapsu-
lates a sequence of versions of the same node.

Example 1 Consider the NBA database of Figure 1.
The fact that McGrady played for the Orlando Magic
between instant ‘4’ and the current time, is repre-
sented by the current containment edge ec(2, 12). The

3

lifespan of node ‘12’ is the union of the elements [0,3]
(the temporal label of the incoming node edge from
node 7) and [4,Now] (the label of the current incom-
ing containment edge). Attribute nodes ‘4’ and ‘35’
are of types ID and REF respectively. The boxes in
bold line represent versioned nodes, composed by two
nodes of type assists, and two nodes of type amount.
To simplify the figures, we omit all temporal labels of
the form [t0, Now].

The definitions above imply some consistency con-
ditions that a graph must satisfy in order to be a tem-
poral XML document. The following definition spells
these conditions out.

Definition 1 (Temporal XML Document) A
Temporal XML Document is a document graph,
augmented with temporal labels and versioned nodes,
that satisfies the following conditions: (a) the union
of the temporal labels of the containment edges
outgoing from a node is contained in the lifespan of
the node (node consistency); (b) the temporal labels
of the containment edges incoming to a node are
consecutive; (c) for any containment edge e(ni, nj),
if nj is an attribute node of type ID, the time label
of e is the same as the lifespan of ni; if nj is an
attribute node of type REF, such that there exists a
reference edge er(nj , nk), the time label for e is the
value of the temporal label of the reference edge er;
(d) for any time instant t, the sub-graph composed
by all containment edges e such that t ∈ Te is a
tree with root r. We call this subgraph a snapshot
of the document at time t, denoted D(t); (e) given
a reference edge er(ni, nj), with time label Ter ,
Ter ⊆ lnj holds.

3.1 Temporal Updates

We briefly describe the updates allowed over the ab-
stract representation of a temporal XML document.
We admit the following kinds of changes over the doc-
ument: insertion, deletion, edge updates and updates
over nodes. We will represent a labeled edge as a tu-
ple e(ni, nf , [ti, tf]), where ni and nf are the initial
and final nodes, and [ti, tf] represents the interval of
validity of the edge. Alternatively, we will use Te for
denoting this interval.
Insertion. To insert a node, we specify a time in-
stant t, the new node n′ to be inserted, and a current

node n. The insertion’s instant t can be less than the
current time tc, allowing a retroactive node insertion,
for valid time support. The effect of the insertion is
adding node n′ and a new containment edge from n
to n′ labelled [t,Now]. If the node to be inserted is a
REF attribute, we also need to specify a current node
that the attribute refers to.
Deletion. We can delete (in the temporal database
sense) the following kinds of objects from a temporal
document: attribute (except attributes of type ID)
and element nodes, and reference edges. Only a cur-
rent object can be deleted. Informally, when deleting
a node n at time td, the upper time bound of the cur-
rent containment edge incoming to n, i.e. Tec .TO, is
set to td. The same occurs with all the containment
edges in the current subtree with root n. Reference
edges are deleted by setting Ter .TO = td in the tem-
poral label of the edge.
Edge updates. Let n and ni be two current nodes
in a temporal XML document D such that there ex-
ists a current containment edge from ni to n. Let us
consider another current node nj , not in a current
subtree of n; intuitively, a temporal update at instant
tu, t < tu ≤ tc, where tc is the current time, says that
from tu on, the parent of node n will be nj .
Updates over nodes. Only attribute nodes (of type
other than ID and REF), and element nodes having at
most one value node (and no other nodes) as a child,
can be updated. When a node n is updated at time tu,
the upper bound of the time label of its current con-
tainment edge is set to tu−1, and a new node n′ is in-
serted, along with an incoming edge e(ni, n

′, Te), with
Te = [tu, Now], and ni defined as above. Additionally,
we define an update operator such that once the node
is updated, it becomes an element of a versioned node.
If the node was already part of a versioned node, sub-
sequent updates leave the node within the sequence
in the versioned node.

4 Model Implementation

The abstract temporal model introduced in Section
3 can be encoded into a concrete XML document in
many ways. In this section we discuss four possible
alternatives, and in Section 6 we report experiments
comparing them in terms of space, cost of computing
snapshots, and cost of querying.

4

4.1 Top-down non-replicated representa-
tion

The root of the graph maps to the root element of
the document. For each element node, there will be
an element in the document, tagged with the label of
the node. If the element node has a containment edge
to a value node, the corresponding value is included
in the element. For each attribute node there will
be an attribute in the document, and its value will
be the unique value node associated to the attribute
node. If the attribute is of type REF, the value of the
attribute will be the ID of the node being referenced.
The elements or attributes representing nodes that
are components of a versioned node will be included
in the special tag SEQUENCE.

Let e(ni, nj , Te) be one of the containment edges in-
coming to a node nj . The element elemni representing
ni in the XML document will physically include the
element elemnj , tagged with the interval Te. Thus,
there will be only one element representing nj in the
document. For the remaining edges e(nk, nj , Tek

) in-
coming to nj , for each node nk a distinguished refer-
ence attribute denoted IN, with the value of the ID in
elemnj and label Tek

will be placed in element elemnk
.

The containment edges to be physically encoded in
the XML document can be selected in many different
ways. In general, we can chose a time instant t and
for each containment edge e(ni, nj , Te) such that t ∈
Te, physically include nj in ni (this is equivalent to
taking a snapshot of the graph at time t and generate
the XML document representing this snapshot); other
containment edges incoming to nj (if they exist) will
be referenced as explained above. All nodes nj such
that t is not included in Te, must be added afterward.
As another alternative, we could take a different time
instant tj for each node nj and physically include nj in
ni if there is a containment edge e(ni, nj , Te) and tj ∈
Te. In the work presented here we physically encoded
the “oldest” containment edges.

Example 2 For the sake of clarity, in the follow-
ing examples we will use a simplified syntax for
the XML documents resulting from the various map-
pings. For example, we use the notation <franchise
ID=‘1’[0,Now]> to mean that the time interval as-
sociated with this element is [0,Now]. (Note we use
integers to represent time points, instead of actual
date/time values, also for simplicity). In an actual

implementation, we define a namespace, and create
three new attributes: ‘FROM’(the starting point of
the interval), ‘TO’(the ending point of the interval),
and ‘IN’ (the reference to a contained element), and
a ‘SEQUENCE’ element encapsulating a sequence of
tags. Consider the following portion of the document
resulting from mapping the graph in Figure 1:
<franchise ID=‘1’[0,Now]>

<name [0,Now]>Raptors</name>

<city[0,Now]>Toronto</city>

<team [0,Now]>

<player[6,Now] IN = ‘60’/>

...

<player[0,3] ID=‘3’

dayOfBirth[0,Now]=‘5-24-79’>

<name[0,Now]>Tracy McGrady</name>

<stats [0,Now]>

<goals[0,Now]>32.1</goals>

<rebs[0,Now]>6.5</rebs>

<SEQUENCE>

<assists[0,14]>6.5</assists>

<assists[15,Now]>4.3</assists>

</SEQUENCE>

<minutes[17,Now]>33.2</minutes>

</stats>

</player>

In the second player element there is an ID attribute
with value ‘3’, associated with an attribute node in
the graph. It has no temporal tag because of its ID
type. We can also see that this player element has
the temporal interval [0,3] associated, and that it in-
cludes a name element, with interval [0,Now]. The
“oldest” containment edge has been chosen, resulting
in the inclusion of this player in the <team> element
corresponding to the Toronto Raptors. The construct
<player[6,Now] IN=‘60’/> represents a current
containment edge to the node corresponding to the
player with ID=‘60’, with time label [6,Now].

4.2 Bottom-up non-replicated representa-
tion

In the previous representation, we picked the oldest
containment edge to be represented by physical in-
clusion and the others were represented by references
from parent to child. We could instead have the ref-
erences going from child to parent. For example, in-
stead of placing a reference from the Orlando Magic

5

to player McGrady between instants ‘4’ and ‘Now’, we
place a reference from the player to his current team,
as follows:
<player[0,3] ID=‘3’

dayOfBirth[0,Now]=‘5-24-79’>

<franchise [4,Now] IN = ‘4’ />

<name[0,Now]>Tracy McGrady</name>

...

<franchise [0,Now] ID=‘4’ InterestedIn[2,3]=‘3’>

<name[0,Now]>Magic</name>

4.3 Node-replicating representation

A third alternative avoids using the ‘IN’ reference.
This requires transforming the original graph into a
tree of containment edges. The algorithm performing
this transformation takes a node n with k (k > 1) in-
coming containment edges, and creates k copies of n.
Let us denote these copies n1, n2, . . . nk. For each copy
ni, a containment edge ei(mi, ni, Tei) is created, where
mi represents the origin node of each containment
edge with time label Tei incoming to n in the original
document. Then, each containment edge er(n, r, Ter)
in the original document is replaced by a set of con-
tainment edges eri(ni, r, (Tei∩Ter). If Tei∩Ter = φ, no
edge is created. The former is performed recursively
until all the nodes (except the original root node) have
exactly one incoming containment edge. Because of
Definition 1, no cycles can occur at an instant t, mean-
ing that if the graph has cycles, the intersection of the
time labels of the edges in these cycles is empty. Thus,
the algorithm always terminates when all nodes had
been checked to have at most one incoming contain-
ment edge. Note that we have assumed, for simplicity,
that the document includes no references. If this were
the case, all the references to n would have been split
analogously.

Figure 2 shows the graph for the NBA database
with node replication, where the node for player with
ID=‘3’ has been duplicated, denoting ‘3”the new ID.
As a convention, for each node with node number (or
value for the attribute of type ID) n that is duplicated,
we denote its new versions n′, except for value nodes,
where the value of the node remains unchanged.

4.4 Node-Edge representation

A fourth way of implementing a temporal XML
document is storing the edges and nodes of the

franchise

name city

Toronto

team

Raptors

0

1

5 6 7

ID

NBAdb

12

ID

<21,32>

2

franchise

ID

player

McGrady

stats

goals

32.1

17 18

19

player

McGrady

stats

goals

32.1

name minutes
<17,Now>

33.2

5−24−79

day−of−birth

4.33.7

assists

<4,Now>

21

3.7

<0,3>

20 assists

<0,3>

<0,3>

<0,3>
<0,3>

<0,3>

<4,14>

19’

12’

18’

24

17’

<4,Now>

<4,Now>

<4,Now>

<4,Now>

assists

20’

<15,Now>

<2,3>

<0,3>

22

25

35

3’

3

name

1

21’

6.5

rebs

6.5

rebs

REF

InterestedIn

Figure 2: NBA database with duplicated nodes

graph in a way similar to the edge XML-to-relational
mapping [9]. Thus, we just list the nodes and the
edges in the graph, and use attributes for their
validity intervals and other features like references or
attributes. The following elements are defined: EDGE,
NODE and SEQUENCE. Two attributes Origin and End
represent node numbers at the endpoints of each
edge. A Type attribute defines the type of the node
being represented. A fragment of this representation
for the graph in Figure 1 is shown below.
<NODE ID=‘2’ Type=‘Element’>franchise</NODE>

<NODE ID=‘12’ Type=‘Element’>player</NODE>

<NODE ID=‘45’ value=‘3’>ID</NODE>

<NODE ID=‘35’ type=REF>interestedIn</NODE>

...

<EDGE Origin=‘2’ End=‘35’[2,3]></EDGE>

<EDGE Origin=‘35’End=‘12’ [2,3]></EDGE>

<SEQUENCE>

<NODE ID=‘21’ value=‘3.7’>assists</NODE>

<NODE ID=‘22’ value=‘4.3’>assists</NODE>

</SEQUENCE>

5 TXPath Overview

In this section we present the TXPath temporal query
language, that extends XPath 2.0 [20] with tempo-
ral operators, and is supported by the temporal data
model introduced above. As we only intend to show
the main ideas of this extension, we will not discuss

6

details or standard temporal database issues like tem-
poral comparisons and granularity, that are treated in
the usual way.

In XPath 2.0, the meaning of a path expression is
the sequence of nodes at the end of each path that
matches the expression. In TXPath, the meaning will
be a sequence of (node, interval) pairs such that the
node has been continuously at the end of a matching
path during that interval. To make this precise, we
first define the notion of maximal continuous path.

Definition 2 (Maximal Continuous Path) We
say there is a continuous path with interval T from
node n1 to node nk in a temporal document graph if
there is a sequence of containment edges of the form
e1(n1, n2, T1), e2(n2, n3, T2), . . . , ek(nk−1, nk, Tk),
such that T =

⋂
i=1,k Ti. We say there is maximal

continuous path (mcp) with interval T from node n1

to node nk if T is the union of a maximal set of con-
secutive intervals Ti such that there is a continuous
path from n1 to nk with interval Ti.

Example 3 In Figure 4 there is one mcp from node
team(t1) to goals(g3), with interval [99, 02], and two
mcp’s from node team(t1) to player(p1), with inter-
vals [01, Now] and [95, 97]. There are three contin-
uous paths from the root to player(p1), with inter-
vals [95, 97], [98, 00], and [01, Now]; since these are
consecutive, they produce a single mcp with interval
[95, Now].

An interesting property of mcp’s is that they can
be computed visiting each node only once. Let us
consider two nodes n1, nk. Let N be the set of nodes
ni,i6=1,i6=k such that there is a continuous path from
n1 to ni, with interval Tni , and there is a containment
edge from ni to nk, with label Tei . Each continuous
path from n1 to nk will have interval Ti = Tni ∩ Tei .
The union of the intervals of these continuous paths
will be the interval of the mcp between n1 and nk,
if the intervals are consecutive. This means that all
mcp’s in a graph can be computed visiting each node
only once, starting from the root. For example, in
Figure 4, knowing the interval of the mcp between f1

and p1 we can compute the mcp from f1 to g1, without
visiting the ancestors of p1.

TXPath syntax and semantics We stay as close
as possible to the XPath syntax, extending it with

S
S[[/p]]x = S[[p]]root(x) ;
S[[//p]]x = {x2 | x1 ∈ subnodes(root(x)), x2 ∈ S[[p]]x1 };
S[[p1/p2]]x = {(v2, I1 ∩ I2)|(v1, I1) ∈ S[[p1]]x, (v2, I2) ∈ S[[p2]](v1, I1) };
S[[p1//p2]]x = {x2 | x1 ∈ subnodes(x), x2 ∈ S[[p]]x1 };
S[[p[q]]]x = {(v, I)|(v, I) ∈ S[[p]]x,Q[[q]](v, I) };
S[[n]]x = {(v, I) | isElement(v), child(x) = (v, I), name(v) = n };
S[[@n]]x = {(v, I) | isAttribute(v), child(x) = (v, I), name(v) = n };
S[[@from]]x = {f | (v, I) ∈ S[[p]]x, I = [f, t] };
S[[@to]]x = {t | (v, I) ∈ S[[p]]x, I = [f, t] };
S[[p[qT]]]x = {(v, I) | (v, I) ∈ S[[p]]x,QT [[p]](v, I) };
Q
Q[[p = s]]x = {(v, I) | (v, I) ∈ S[[p]]x, value(v) = s} 6= φ;
Q[[p]]x = {x1 | x1 ∈ S[[p]]x} 6= φ;

QT
QT [[d IN (@from,@to)]]x = {x | x = (v, [@from, @to]),

d ≥ @from, d ≤ @to} 6= φ;
QT [[(s, e) CONTAINS (from, @to)]]x = {x | x = (v, [@from, @to]),

s ≤ @from, e ≥ @to} 6= φ;
QT [[(s, e) MEETS (from, @to)]]x = {x | x = (v, [from, @to]),

[from, @to] ∩ [s, e] 6= φ} 6= φ;
QT [[@from op d]]x = {x | r ∈ S[[@from]]x, r op d} 6= φ;
QT [[@to op d]]x = {x | r ∈ S[[@to]]x, r op d} 6= φ;

Where
subnodes(y) = {(v, I) | there exists an mcp from y to v with interval I};
root(x) is the (root, interval) pair of the tree in which x is a
(node, interval) pair; child(x) = {(v, I) | there exists an mcp of length 1 from
x to v with interval I}.

Figure 3: Formal semantics of TXPath

temporal operators. We specify the TXPath seman-
tics adapting the formal XPath semantics introduced
by Wadler [19]. The meaning of an XPath expres-
sion is specified with respect to a context node; we
extend this to a context pair of a node and a time
interval. We define three semantic functions: S,Q
and QT such that S[[p]]x denotes the sequence of
pairs (node, interval) (or values, as we will see be-
low) selected by pattern p when x is the context pair.
The boolean expression Q[[q]]x denotes whether or
not the qualifier q is satisfied when the context pair
(node, interval) is x. Finally, another boolean expres-
sion QT [[qT]]x denotes whether or not a temporal con-
dition qT is satisfied. For the sake of brevity, in Figure
3 we only show the most common TXPath constructs.

Example 4 The expression //player applied over
the document represented by the graph of Figure 4, will
return the sequence (p1, [95, Now]), (p2, [99, Now]),
(p3, [98, Now])).

The query “players who have played for the Toronto
Raptors continuously since the year 2000” reads in
TXPath:
//franchise[name=‘Raptors’]//player[@from ≤
2000 and @to=‘Now’].

In temporal queries it is often useful to co-
alesce sets of overlapping intervals. We define
the coalesce operation over a sequence of pairs
(value(node), interval), where value(node) stands

7

(p1)
(p2)

(p3)

<0,Now>

<95,97><01,Now>

<0,Now>

<98,01>
<95,99>

<00,Now>
<99,02>

<98,00>

<99,Now>

<98,Now>

player

franchise(f1)

team(t2)

player

goals(g4)goals(g3)

goals(g2)goals(g1)

team(t1)

player

Figure 4: Continuous Paths

for the value associated to a value node, to generate
a new sequence where all maximal sets of overlapping
intervals are coalesced into single intervals when
the values are the same. For example, given a
sequence S=((2,[1,5]),(2,[3,8]),(4,[12,16]),(4,[14,18])),
coalesce(S) returns the sequence
((2,[1,8]),(4,[12,18])). Given an arbitrary sequence
of pairs, we extend the XPath distinct-values
operator to group all pairs that have the same node
component and coalesce the resulting sub-sequence.
For example, the query “goals scored by Carter
whenever a change in his scoring occurred” reads

distinct-values(//player[name=‘Carter’])//goals

This query only returns one pair (goal, interval) for
each sequence of k consecutive or overlapping seasons
where Carter scored the same number of goals, instead
of the k pairs that would be returned without using
the distinct-values statement.

In addition to the XPath aggregate operators, TX-
Path introduces a family of new aggregate operators
that apply to sequences of (node, interval) pairs. The
aggregate-seq(S,Agg) operator, where S is a se-
quence of pairs (v, T), and Agg is one of the aggre-
gate functions sum, min, sum, avg or count, returns
a sequence Sagg obtained by grouping the maximal
sub-sequences of S that have contiguous intervals and
aggregating over their node components. Consider
for example the following expression over our running
database:
//player[name=‘McGrady’]/stats/assists

The above expression returns the sequence
((3.7, [0, 14]), (4.3, [15, Now])) because there are three
mcp’s between the root and the node assists that

Figure 5: Comparing Implementations

pass through ‘McGrady’, and two of them, (3.7,[0,3])
and (3.7,[4,14]), collapse into (3.7,[0,14]). This means
that McGrady recorded 3.7 assists per game between
instants 0 and 14, and 4.3 assists between 15 and
Now. The following expression computes the average
of these two values, returning ((4.0, [0, Now])) :
aggregate-seq(//player[name=‘McGrady’]/
stats/assists,Avg())

6 Implementation and Experi-
ments

In this section we first describe the implementation of
the mappings explained in Section 4. After this, we
present a TXPath implementation and the results of
our tests (involving snapshots and temporal queries).

6.1 Model Implementations

To get an initial feel for the differences among the four
representations introduced in Section 4, we imple-
mented the mappings described there. We loaded into
a relational database (Microsoft SQL Server 2000) the
data from the NBA’s web site (www.nba.com), that
contains information about teams, players, and the
complete set of statistics for each player for each sea-
son. We created five databases, involving information
on 25, 30, 50, 75 and 100 percent of the players, and
from each one we created the documents in the four
representations.

We measured the size of the documents generated
by the four representations. The results in Figure
5 show that in terms of space, the node-edge imple-
mentation was the most demanding one, while, as ex-

8

Figure 6: An unfavorable configuration for node-
replicating implementations (depth h=3)

pected, the non-replicating implementations generate
the smallest documents. Note that, although for the
NBA database the documents generated by the node-
replicated representation are about 20% larger than
the non-replicating representations, for some docu-
ment configurations the ratio between document sizes
in both representations can grow exponentially. Fig-
ure 6 shows an example. For the database size we
measured the net space occupied by the database
tables, i.e we did not include the metadata over-
head. The DB-size/document-size ratio remains ap-
proximately the same for all database sizes.

6.2 TXPath

We implemented and tested a TXPath interpreter.
It receives as input a top-down non-replicated imple-
mentation of a temporal XML document. This docu-
ment is mapped to a node-replicating representation
(i.e. a tree), loaded into main memory, and evaluated
using DOM. No other data structure was used in this
implementation. We defined an API for the query
processor whose method signatures are very close to
those in XDoc, a set of classes implementing the ToX
engine developed at the University of Toronto for non-
temporal XML documents [18]. Thus, our implemen-
tation can be easily integrated with ToX. Moreover,
taking advantage of the fact that TXPath does not
need to be translated into a non-temporal query lan-
guage before execution, in future work we will ad-
dress the problem of indexing temporal XML docu-
ments, for TXPath query optimization. The imple-
mentation (written in Java) provides a Graphic User

Figure 7: Graphic interface - queries

Interface (GUI) for loading, writing, and running TX-
Path queries, taking snapshots, and moving backward
or forward in time (at the moment, we only support
granularity “day”). Figure 7 depicts the interface. As
an example, a query asking for all the players in the
NBA will display all the player nodes, and clicking
on one of them will show all its immediate descen-
dants via an mcp. Each of these descendants can in
turn be expanded, as the figure shows.

We first tested our implementation running differ-
ent kinds of queries over the NBA database. We re-
port the results of running the following five queries
on a Pentium 4 PC at 2 Ghz, with 512 RAM memory
and a 60Gb hard drive:

Q1 - //Player;
Q2 - //Player//Name/text();
Q3 - //Player[Name=‘‘Jason Kidd’’];
Q4 - //Team[Name=‘‘Nets’’]//Player
[Name=‘‘Jason Kidd’’]//Three P
[@Time:FROM >=‘‘2001/10/14’’
and @Time:TO<= ‘‘2002/10/15’’];
Q5 - //SEQUENCE[Three P =

‘‘0.355’’]/ancestor::Player//SEQUENCE
[Games >= "4"]/ancestor::Player;

Queries Q1 and Q2 allow analyzing the impact of
the number of nodes in the answer over the execution
time. Queries Q3 to Q5 put the emphasis on the cost
of traversing the graph, evaluating conditions, and

9

computing mcp’s (note that in Q5 the graph is tra-
versed twice down to the leaves, and up to the Player
node). We measured the elapsed time from the mo-
ment the query is invoked to the moment when all the
results are displayed to the user in the GUI. We used
the original NBA database, and then created five more
databases by concatenating it to itself. Thus, the size
of the largest database we worked with was close to 16
megabytes. We also used the partial NBA databases
described above.

Figure 8 shows the results of testing the five queries
above. The more demanding queries are the ones re-
quiring more memory, i.e. Q1 (which requires storing
almost all the document in main memory for display-
ing them in the GUI) and Q2. Queries Q3 to Q5 take
advantage of the properties of the mcp’s stated at the
beginning of this section. Thus, storing all the infor-
mation in a single document seems to be a better al-
ternative than storing versions of the same document,
or using edit scripts, because the overhead of com-
puting the mcp’s is low. Figure 8 shows that we can
evaluate temporal documents up to 16 megabytes in
less than two minutes, using standard hardware (note
that the average non-temporal XML documents oc-
cupy less than 0.5 megabytes [15]). These results sug-
gest that using specialized indexing techniques, com-
plicated queries over larger documents could be eval-
uated very efficiently.

We also performed tests over graphs with the pat-
tern depicted in Figure 6. We generated documents
following this pattern, with a depth (denoted h) of
3, 4, and 8. As in our implementation the document
is mapped to a node-replicating representation, doc-
uments larger than 4 megabytes could not be pro-
cessed with the available hardware (a document im-
plementing a graph with h=8, having a size of 2.8
megabytes in the non-replicated representation, re-
quires 16.7 megabytes in the node-replicating repre-
sentation). Thus, for these kinds of document config-
urations, a different approach is needed if we want to
manage larger documents with this hardware. Figure
9 shows the results for these tests. The queries are:

Q1 - //node1;
Q2 - //node1[Name = ‘‘1’’]//nodeX;

Q3 - //nodeX[@Time:TO = ‘‘Now’’];

In Q2 and Q3, nodeX represents the nodes in the
leaves (i.e. node3, node4 and node8, for the graphs
with h=3,4, and 8, respectively). Again, we can see

Figure 8: Queries over the NBA database

Figure 9: Queries over synthetic data of different
depth

that the computation of the mcp’s is performed ef-
ficiently, a fact reflected by the lines depicting the
performance of the queries over the graph with h=8.
We observe that in spite of the exponential growth in
the size of the node-replicating representation, the ex-
ecution time increases quasi-linearly with respect to
the original document size.

Figure 10 shows the time required for taking snap-
shots over the NBA database, using our GUI, i.e.,
including the time required to display the results in
the tree. We can observe that the node-replicating
representation easily outperforms the non-replicating
representation (because the latter requires navigat-
ing the references back and forth). Note that our
system allows querying an XML temporal document
implemented using the non-replicated representation,
and taking snapshots of non-replicated and/or node-
replicating representations.

10

Figure 10: Snapshots over the NBA database

7 Conclusion and Future Work

We studied the problem of modeling and implement-
ing temporal features in XML documents. We pro-
posed and discussed four different alternatives for
implementing temporal XML documents, and tested
them over a real database, showing that the non-
replicating representations have much lower space re-
quirements than the others, without a large increase
in snapshot generation time. We proposed a temporal
XML query language denoted TXPath. By extend-
ing the semantics of XPath 2.0 to return sequences
of (node, interval) pairs instead of just sequences of
nodes, the language can be smoothly extended to cap-
ture a large class of temporal queries. We imple-
mented the language, and ran test queries that per-
formed quite well on a standard hardware.

Many research issues remain open. Indexed tem-
poral XML will be supported in the next version of
the TXPath language implementation, taking advan-
tage of the structure of the temporal document which
allows indexing mcp’s instead of nodes. A complete
system should also include a language for temporal
updates, possibly along the lines of the work of Tatari-
nov et al [17] for non-temporal documents. Alterna-
tives for storage of large documents must be studied,
maybe using temporal databases based on the rela-
tional model.

References

[1] T. Amagasa, M. Yoshikawa, and S. Uemura. A temporal data
model for XML documents. In Proceedings of DEXA Confer-
ence, pages 334–344, 2000.

[2] S. Chawathe, S. Abiteboul, and J. Widom. Managing historical
semistructured data. In Theory and Practice of Object Systems,
Vol 5(3), pages 143–162, 1999.

[3] S. Chawathe, H. G.Molina, K. Ireland, Y. Papakonstantinou,
J. Ullman, and J. Widom. The TSIMMIS project: Integration
of heterogeneous information sources. In Proceedings of IPSJ
Conference, pages 7–18, Tokio, Japan, 1994.

[4] S. Chien, V. Tsotras, and C. Zaniolo. Version management of
XML documents. In Proceedings of WebDB Workshop, pages
75–80, Dallas, TX, 2000.

[5] S. Chien, V. Tsotras, and C. Zaniolo. Efficient management of
multiversion documents by object referencing. In Proceedings of
VLDB Conference, pages 291–300, Rome, Italy, 2001.

[6] S. De Capitani. An authorization model for temporal XML doc-
uments. In Proceedings of SAC’02, pages 1088–1093, Madrid,
Spain, 2002.

[7] C.E. Dyreson, M.H. Bolen, and C.S. Jensen. Capturing and
querying multiple aspects of semistructured data. In Proceedings
of the 25th VLDB Conference, pages 290–301, 1999.

[8] C.E. Dyreson. Observing transaction-time semantics with TTX-
Path. In Proceedings of WISE 2001, pages 193–202, 2001.

[9] D. Florescu and D. Kossmann. Storing and querying XML data
using an RDBMS. IEEE Data Engineering Bulletin, 22(3),
pages 27–34, 1999.

[10] C. Gao and R. Snodgrass. Syntax, semantics and query eval-
uation in the τXQuery temporal XML query language. Time
Center Technical Report TR-72, 2003.

[11] C. Gao and R. Snodgrass. Temporal slicing in the evaluation of
XML queries. In Proceedings of 29th International Conference
on Very Large Data Bases, Berlin, Germany, 2003.

[12] F Grandi and F. Mandreoli. The valid web: an XML/XSL in-
frastructure for temporal management of web documents. In
Proceedings of the International Conference on Advances in In-
formation Systems, pages 294–303, 2000.

[13] M.G. Manukyan and L.A. Kalinichenko. Temporal XML. In
Proceedings of ADBIS, pages 581–590, Vilnius, Lithuania, 2001.

[14] A. Marian, S. Abiteboul, G. Cobena, and L. Mignet. Cahnge-
centric management of versions in an XML warehouse. In Pro-
ceedings of the 27th VLDB Conference, pages 581–590, Rome,
Italy, 2001.

[15] L. Mignet, D. Barboza, and P. Veltri. The XML web: a first
study. In Proceedings of Webdb 2003, Budapest, Hungary, 2003.

[16] A. Tansel, J. Clifford, and S. Gadia (eds.). Temporal Databases:
Theory, Design and Implementation. Benjamin/Cummings,
1993.

[17] I. Tatarinov, G. Ives, A. Halevy, and D. Weld. Updating XML.
In Proceedings of ACM-SIGMOD Conference, pages 413–424,
Santa Barbara, California, 2001.

[18] The Toronto XML Engine. http://www.toronto.edu/Tox.

[19] P. Wadler. A formal semantics of patterns in XSLT. In Markup
Technologies, pages 183–202, Philadelphia, 1999.

[20] World Wide Web Consortium. XML Path Language XPath 2.0,
2003. http://www.w3.org/TR/2003/WD-xpath20-20030502.

11

