Question 3 – A4

Let us consider the relations R(A,B,C); S(C, D,E); T(E,F,G); the number of tuples of each relation is: TR = 100,000; TS = 20,000; TT = 200,000. Assume each attribute is 10 bytes long. Each system page may hold 4 Kbytes of information. Suppose the following query:

 SELECT R.A, S.D
 FROM R,S,T
 WHERE R.C = S.C AND S.E = T.E AND T.F = 12 AND R.B = 100 AND S.C = 20

a - Define one clustered index and one non-clustered index for each relation.
b- Give an execution plan, and compute the cost of the query You should give reasonable values to the images(# of different values) of each attribute in the relations.
c - Compare the cost of the query, with the cost of the nested loops strategy (without indexes).

- Solution

Part b)

We will give one of the many possible strategies. We will only define the indices necessary for the chosen strategy.

Assume a clustered index on R.B and a non-clustered index on S.C.

In the query tree, we push selections down. In a pipeline strategy, in general, we don’t need to do this. Pushing selections down in the tree is needed mainly when temporary tables are involved.

There is a selection over a key on S (S.C=20). This will return just ONE tuple. Thus, we want to scan B with the least possible cost. Because of R.B = 100, the best thing to do is filter tuples using the clustered index on R.B, leaving only the ones that verify B=100 in R.

BR = (TR * length of an R-tuple)/4 K = 100000 * 30 / 4000 = 750 Pages

Cost of the selection R.B = 100 (BR / I R.B ; assume an image of 100 for R.B,

Let us call this cost C1.

C1= 750 / 100 = 8 accesses (all tuples with B = 100 are packed in 8 pages)

Each tuple t in this selection, such that t.C = 20 is matched with the only tuple s in S s.t. s.C = 20, using the non-clustered index over S. The cost of this operation is just 1 page.

We then access pages in the file S because we need to output S.D and join S.E with T.E.

Assume IR.C = 50.

At this stage we have TR / (IR.B * IR.C) tuples satisfying the join condition. Note that this expression follows from replacing the join condition R.C = S.C by R.C=20.

The # of tuples that satisfy R.C = S.C AND R.B = 100 AND S.C = 20 is (call it N2):

N2 = 100,000 / (100 * 50) = 20.

Thus, only 20 tuples are pipelined for further joining with T.

In summary, at this time we have proceeded as follows: (a) use a clustered index on R.B for accessing tuples in R where R.B = 100. Cost = 8 accesses (b) the tuples that join with a tuple in S will have R.C = 20, because of R.C = S.C AND S.C = 20. This selection is performed in main memory, Cost = 0 (c) Access the satisfying tuple in S, at cost 1 (d) pipeline each tuple satisfying the join, for further joining with T. This tuple must have the fields in R plus S.D and S.E, the first one for output, the second one for joining with T.E.

Assume a clustered index on T.F and a non-clustered index on T.E.

Again, E is a key for T. But we don’t need to output any attribute of T. Thus, we only filter the pipelined tuples using the condition T.E = S.E AND T.F = 12.

It makes no sense to use the index on F to check T.F = 12, because we only need to do the following:

for each pipelined tuple

find the index entry in the non-clustered index s.t. T.E = S.E, and load the corresponding page in main memory (cost = 1) ;

 check if T.F =12 at no extra cost. If so, output R.A, S.D.

Part c).

This is straightforward using pipelined strategy. We leave to the reader the analysis of a stategy that uses temporary tables.

BR = 750 pages

BS = 20000 * 30 / 4000 = 150 pages

BT = 200000 * 30 /4000 = 1500 pages

Assume M= 13 pages. We will use 11 pages for the first join, and we reserve 2 pages for the pipeline.

Performing nested loop join between R and S has a cost (note that S is the smallest relation):

C1 = BS + BR * BS /(M-1) = 750 + 1500*750/10

C1 = 150 + 11250 = 11400 pages

Note that prior to the output, the join and selection conditions are checked in main memory (R.C = S.C AND R.B = 100 AND S.C = 20).

The pipelined tuples are joined using nested loops with T, in an analogous way. We know that only 20 tuples are going to be pipelined, thus they fit in one page, and in the other page we load one by one the pages of T, resulting in the total cost:

C = C1 + BT = 11400 + 1500 = 12900 pages.

The total cost of the strategy is 28 page accesses.

TOTAL COST = 12900 pages

