Lossless Join Decomposition - 3NF Solutions

July 23, 2003

- 1. Are these schemas in 3NF?
- 2. Decompose the relations, as necessary, into collections of relations that are in 3NF.
 - (a) $R = \{city, street, zip\}$ $\mathcal{F} = \{city, street \rightarrow zip, zip \rightarrow city\}$

 $\{city, street\}$ and $\{zip, street\}$ are the only keys. The left hand side of $city, street \rightarrow zip$ is a key, so it's ok. The right hand side of $zip \rightarrow city$ is part of a key, so it's ok. Therefore the schema is in 3NF.

(b) R = ABC $\mathcal{F} = \{A \to B, B \to C\}$

The only key is A. The lhs of $B \to C$ is not a superkey, the rhs is not part of a key. Therefore the schema is not in 3NF.

We decompose R into $R_1 = AB$ and $R_2 = BC$.

(c) R = ABCD

 $\mathcal{F} = \{AB \to C, \, C \to D, \, D \to A\}$

The keys are AB, BC and BD. The lhs of $AB \rightarrow C$ is a key, the rhs of $C \rightarrow D$ is part of a key, the rhs of $D \rightarrow A$ is part of a key. Therefore the schema is in 3NF.

(d) R = ABCD $\mathcal{F} = \{B \to C, B \to D\}$

The only key is AB. The lhs of $B \to C$ is not a superkey, the rhs is not part of a key. Therefore the schema is not in 3NF.

We decompose R into $R_1 = BC$ and $R_2 = BD$. The key AB isn't contained in any schema so we add $R_3 = AB$. We can replace R_1 and R_2 by $R_4 = BCD$. The decomposition is then $\rho = \{BCD, AB\}$.

(e) R = ABCD $\mathcal{F} = \{AB \to C, BC \to D, CD \to A, AD \to B\}$

The only keys are $\{AB, BC, CD, AD\}$. All the functional dependencies have their lhs as keys. Therefore the schema is in 3NF.