
Losseless Join Decompositions - 3NF

July 18, 2003

1 Introduction

The purpose of this tutorial is to understand why we sometimes need to decom-
pose schemas and how to do it appropriately.

Having redundant information not only is a waste of space but causes anoma-
lies. The anomalies caused by redundancy are: update anomalies (potential
inconsistencies), insertion anomalies and deletion anomalies.

To avoid these anomalies, we need to reduce redundancy by decomposing bad
schemas. If the database designer is not careful when he decomposes a schema,
he may lose information. A decomposition that doesn’t lose information is called
a Lossless-Join Decomposition. To be able to perform such a decomposition,
the database designer needs to have more information about the schema. In
practice he is given constraints like each supplier has a unique address, each
person has a unique social insurance number, for each supplier and item there
is a unique price etc... These constraints are called functional dependencies
since the value of some attributes depend funcionally on the values of certain
other attributes.

There are other kinds of constraints like a telephone number has 10 digits,
the age of a person is less than 150 etc... These constraints are important for
guarting against errors in the data, but they do not affect the design of the
schema, we will not consider them here. They are important when dealing with
data integrity.

2 Decomposing Schemas

• We define a relation scheme to be a set of attributes, R = {A1, A2, ..., Ak}.
A decomposition is a set of (smaller) schemas ρ = {R1, R2, ..., Rn} where
R = R1 ∪R2 ∪ ... ∪Rn. The Ri need not be disjoint.

• Relation = Schema + Data

• If r has schema R and {R1, R2, ..., Rn} is a decomposition or R, then
{∏R1 r, ...,

∏
Rn r} is the corresponding decomposition of r.

1



• Decomposing a relation may result in information loss because we may
not be able to reconstruct the original relation.

• Let {R1, ..., Rk} be a decomposition of R and let F be a set of functional
dependencies over R. The decomposition has a lossless join with resect to
F iff for every relation r of R satisfying F , r =

∏
R1
r on ... on

∏
Rn

r

• Decomposing a relation may also not preserve the set of functional depen-
dencies. It is important to keep these functional dependencies when we
decompose so that the DBMS can enforce them in each of the relations
that we will create. A decomposition ρ = {R1, R2, ..., Rn} preserves the
fd’s of F if we can find every fd of F+ from the union of all fd’s projected
from F : {∏R1 F , ...,

∏
Rn F}

• Functional dependencies can guarantee that a decomposition does not
lose information, but they do not guarantee that all decompositions are
lossless.

• A lossless-join decomposition does not necessarily preserve functional de-
pendencies.

• A losslses-join decomposition does not necessarily produce 3NF relations.

3 3NF Decomposition

3.1 Definition and Theorem

• A schema R is in 3NF iff ∀X → A ∈ F ⇐⇒
{

X→ A is trivial
X is a superkey

A is contained in a key

• Every 1NF relation has a decomposition in 3NF relations which are lossless-
join and preserve the functional dependencies.

3.2 Algorithm for 3NF Decomposition:

We assume that F is a minimal closure.

1. For each X → A ∈ F create a relation of schema (XA).

2. If no key is contained in one of the schemas created in the first step, create
a relation of schema Y where Y is a key.

3. If after the first step there exists a relation R1 with a schema X1A1 con-
tained in the schema X2A2 of a relation R2, delete R1.

2



4 Exercices

1. Are these schemas in 3NF?

2. Decompose the relations, as necessary, into collections of relations that
are in 3NF.

(a) R = {city, street, zip}
F = {city, street→ zip, zip→ city}

(b) R = ABC
F = {A→ B, B → C}

(c) R = ABCD
F = {AB → C, C → D, D → A}

(d) R = ABCD
F = {B → C, B → D}

(e) R = ABCD
F = {AB → C, BC → D, CD → A, AD → B}

3


