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1. Introduction 
Over the past few years the Extendible Markup
(XML) has become the dominant data 
information exchange. With the proliferation
this format comes the motivation to query and m

egies 
ation 
 path 
ly on 

strate 
s for 
n, we 
path 
ased 
-cost 
ation 
its as 

Moreover, because extensive work 
only some aspects of XQuery eval
the paper we will use the XQuery a
interchangeable. 

An important aspect of XML qu
encoding used. That is, in a native
documents can be pre-parsed into s
structures in order to speedup query
employed such data structure re
encoding derived from the notati
algebras [9]: an inverted-file-like s
name, start, end and level. Utilizi
structures for evaluating path expr
between lists of encoded elements, referred to as
containment queries [33] or struc
based on region enco

We compare several optimization 
implemented in an XML query 
system. The strategies incorporate the u
summaries into the query optimizer, a
heuristics that exploit data statistics. 
We present experimental results that de
a wide range of performance improv
the different strategies su
compare t

methods. The comparison shows that lo
path summaries combined with optimi
strategies achieve essentially the same ben
more expensive index structures.  

improve on structural joins b
intermediate results. In this cont

guage itrmat for Because, in stack algor
to be optimal for processin

f data in elements are treated as streams, f
paper we will refer to XML docume structures as element encoX

subset constitute the predominant proposal fo
XML query language standard.  

The XQuery related work is extremely 
ranges from native XML databases (e.g. T
Niagara [15], Natix [12], BEA
XQuery systems (e

native 

iverse. It 
ber [16], 
 [4]), to 

An XQuery expression frequently c
sub-expressions, such as the example gi
for $x in document("file:/supplier.xm

$y in document("file: /catalog.xml")//item 
where $x/supplier_no = $y/supplier_no and   
           $x/city   = "Newark" and  $x/state = "New Jersey" 
return  <result> { $y/name } { $y/description }  </result> 

Figure 1: Sample XQuery expression 
 
The example query joins a supplier document and a 

catalog document based on supplier_no, returning the 
name and description of items in the catalog for those 
suppliers located in Newark, New Jersey. The XPath 
expressions that occur in the query above and apply to the 
supplier document are: ‘//supplier’, ‘//supplier/city’, 
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proposed, such as ViST [31] and PRIX [28]. N
construction requires extensive pre-processing
return, these indexes can yield significant spee
compared with access methods such as TwigS
uses a prefix tree and virtual tries stored on disk
to achieve this improved performance. Simil
also employs tries stored on disk while using a
based on Prufer sequences.  

Path summaries are another important wo
query processing. A path summary, also k
structural summary or as a path index, re

summaries only su
of a sample supplier document is shown in Fig

Although each of the XPath expressions in a
query, such as the example above, can be
separately, a much better approach is to gr
queries into a so called twig query, known also
tree. The group of XPath expressions that 
certain document (such as suppliers in th
above) can be computed in a single acce
invocation through the document. Most of th
processors as well as structural join algorith
this approach [e.g. 7, 18]. The most cited app
twig query processing is TwigStack [7] a genera
PathStack from one path to a twig qu

. 
n XQuery 
computed 
p XPath 
s pattern 
ply to a 
example 

 method 
e XPath 

s support 
roach for 
ization of 
Stack can 
XB trees) 
d hence 

evaluation that is, no twig query sup
The most work in XML query 

context of the native XML databa
optimizer chooses the best order f
[2]. The Niagara optimizer incorpo
evaluating path expressions [15]. Sy
and BEA/SQRL [13] use built in ru
However, to the best of our knowled
optimizer up-to-date is the Lo
considered different evaluation stra
in an XML tree, as well as an ag
strategy in order to reduce the searc
are query optimization techniques in
For instance, query re-writing [11]
[22] were also proposed for optimizin

be furthe
to index the encoded element 

he index-

/state> 

 </state> 

t 

s is not a 
ually one 

path summaries. A somehow 
projecting the XML document a
expressions [21]. Also relevant 
techniques based on summaries and 

In this paper we focus on strat
optimization. These strategies are pr
of two-level optimization that we p
two-level optimization strategy, th
of the traditional join order selecti
cost-based selection of access meth
consists in a cost based selection o
XPath expressions, i.e. twig queries.
the access method selection from th
was also proposed in the relationa
level” or “multi-faceted” optimiz
context 

supporting the skipping
rithm is known as TwigStackXB [7based algo

<suppliers>  
<supplier> <supplier o_n > 1 </supplier_no> 
    <name> Gore </name>  
    <city> Newark </city> <state> Delaware <

    </supplier>  
    <supplier> <supplier_no> 2 </supplier_no> 

    <name> Dupont </name>  
    <city> Newark </city> <state> New Jers

    </supplier>   
</suppliers> 

Figure 2: Sample supplier.xml docume
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summarization of the paths that actually occur in a 
document. That is, for each distinct path in an XML 
document there is a distinct path in the path summary 
[e.g. 14, 24, 30] or an approximation of it [e.g. 19, 27]. 
Path summaries are used as back-ends that is, the XML 
query is evaluated by traversing the path summary alone. 
Each path summary implementation uses a particular 
strategy to evaluate the query. The common denominator 
of these strategies is that they use path pruning in order to 
limit the search space. Moreover, the majority of path 

pport individual path expressions 
port. 
optimization is in the 
ses. Thus, the Timber 
or the structural joins 
rates a cost-model for 
stems like Natix [12] 
les for optimization. 

ge, the most complex 
re optimizer which 
tegies for each branch 
gressive plan pruning 

h space [23]. There 
 path summaries too. 
 and path expansion 

g the evaluation of 
similar approach is 
ccording to the path 
are query evaluation 
compression [34, 35]. 
egies for XML query 
esented in the context 

roposed in [6].  In the 
e higher level consists 

on together with the 
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f evaluation plans for 
 Although, separating 
e join order selection, 
l mode, e.g. “multi-
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there is a major difference. That is, in the 
 has a fixed cost and 

 the XML model, due 
 embedded into the 
s do not have fixed 

the XPath evaluation 
an additional layer of 
evel, hence the two-

ation model. 
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er are incorporated in 
art of ToX, a native 
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 presented in [6] and 
ery optimization that 

incorporates several novel characteristics. The main 
contributions of this paper are:  
• We propose the usage of path summaries into the 

optimizer in order to exploit schema information. In 
this respect we split the path summaries into a 
schema part and a node instance part. The schema 
part is used for optimization while the node instance 
part is used as back-end. 

• We propose two novel optimization strategies: 
holistic path summary pruning and access-order 

cently, 
ate twig-
ave been 
ode index 

relational model each access method
the optimizer is aware of it, while in
to the XPath expressions that are
access methods, the access method

but in 
ups when 
ck. ViST 

B

costs, rather the cost varies with 
strategy. This observation suggests 
optimization at the access method l
level optimizas -trees 

PRIX 
oding 

XML 

The two-level optimization a
strategies that we present in this pap
ToXop, a query optimizer that is p
XML database under development
Toronto [4]. as a 

nts a In this paper we extend the work
we describe an approach to XML qu
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, 
based evaluation algorithms for twig queries were not 
considered at the time when the optimization techniques 
for Lore were proposed. Hence one of our contributions is 
a novel combination of all of these proposed techniques 

In the following section we introduce the usage of path 
summaries in the query optimizer. Section 3 describes 
briefly the ToXop optimizer. Section 4 and 5 introduce 
the holistic path summary pruning and access-order 
selection strategies. Section 6 contains experimental 
results. We conclude by mentioning future research in 
Section 7. 

query optimizer 
e literature can be 

[e.g. 14, 24, 30] or 
9, 27]. The exact path 
path in the XML 
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sually paths up to a 
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valuating regular path 

s are used as back-
ontext the exact path 
as back-ends but as 
XML document or 

ents. By existing schema we 
e of the document, 
ma. The concept of 
l is similar with the 
odel.  

is essential to query 
exact path summaries are 

incorporation of the 
mizer. In this respect 
mmary as the existing 
izer. Both ToXin and 

database [4]. 
he structure of the 

ype or attribute type 
 represent it. The case 
an one ToXin node is 
part of two distinct 
t nodes, which are 
he elements. For each 
ble, which records the 
ribute, as well as its 
es and attribute nodes 
cords the content of 
 node ID obtained in 

are tied to a particular 
y. In the ToXin case 
orks as follows: first, 

 is checked if it matches any 
d, the corresponding 
selected. Next, the 

tom-up manner. 
Thus, first the predicates are evaluated against the Value 
Table. Then, for the selected records in the Value Table 
the corresponding records from the Instance Table are 
selected and so on until the root is reached. The advantage 
of using this strategy occurs in the case of selective 
predicates on one of the leaf nodes, thus only a few 
number of parent nodes have to be evaluated. 

Most path summaries, like ToXin, are designed to 
evaluate individual path expressions. However, in the 
presence of several path expressions to be evaluated in 
one pass (i.e. twig queries), a particular evaluation might 

ment that 
fers from 
eparating 
n per se. 
 be used 

 element 
tegy uses 
uristic in 

blish the 
g of path 

s for the 
speedup 

 is 

2.   Path summaries into the 
The path summaries proposed in th
classified as exact path summaries 
approximate path summaries [e.g. 1
summaries record each distinct 
document while approximate path su
an approximation of the paths, u
certain depth. The common d
categories is that they are built for e
expressions. That is, path summarie
ends. However, in the XML query c
summaries can be used not only 
existing schemas for a given 
collections of docum

encoded stream. The latter optimization str
data statistics and (simple) cost-based h
order to compute an efficient plan. 

 We present experimental results that esta
benefits of the optimizer-driven early prun
summaries as well as substantial benef
heuristic based optimization. The
attributable to these optimization strategies
same order of magn

of the 
tained by 
y positive 
orage and 
ries are 

understand the underlying structur
rather than its DTD or XML Sche
existing schema in the XML mode
concept of schema in the relational m

Because schema information 
optimization and because 

querying node indexes. This is a surprising
result, considering how much cheaper (in 
index construction costs) path summ
compared to node indexes. 

The paper’s contributions can be summ ed as 
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k that we 
 in query 
ODB) [8, 
 (ASRs) 

exiting schemata, we propose the 
exact path summaries into the opti
we use ToXin [30], an exact path su
schema in ToXop, our query optim
ToXop are part of ToX a native XML 

The ToXin path summary mirrors t
document thus, for each element t
there is at least one ToXin node to
when an element generates more th
encountered when the element is 

follows: using path summaries, simple sta
simple cost-based heuristics we can achieve s
the same order of magnitude as more “heavy” i
systems. In summary: with little (effort to 
XML data) you can achieve a lot (of p
improvement in query processing)! 

We note some connections between the w
present in the XML context with earlier wor
optimization for Object Oriented Databases (
10]. For instance, Access Support Relatio
provide an indexing mechanism for paths in
manner as XML path summaries. Despite the 
in the OODB context the schema information
while this is frequently not the case in the XM
Moreover, ASRs may cover only some paths
database instance, while in the XML context t
summaries cover all paths from the document in

Using path summaries in the query evalua
entirely new: the approach was also propo

 same 
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s known, 
 context. 
from the 
structural 
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d in the 

aries used 
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e (when 

paths. In addition there are tex
generated from the text content of t
ToXin node there is an Instance Ta
occurrences of the element or att
parent instance. Moreover, text nod
also have a Value Table, which re
each node. Each ToXin node has a
depth first (pre-order) traversal.  

The majority of path summaries 
path expressions evaluation strateg
this evaluation is bottom-up and w
the given path expression

context of the Lore system [23]. The path sum
by ToXop and DataGuides [14] (the path summ
in Lore) are essentially the same struct
considering XML trees). However, the Lo
evaluated queries using DataGuides in combin
other additional index structures. Furthermore

e system 
tion with 

the stack-

path from the ToXin tree. Secon
Instance and Value Tables are 
evaluation process is performed in a bot

 



not be the most efficient, thus defying the role
optimizer. With this observation in mind, w
additional structure to ToXin, namely navigatio
NAV for short, in order to support top/down na
As a result of this enhancement, top-down
strategy can now be taken into consideration 
optimizer. This approach was also considered 
optimizer, where each individual path in a 
could have been evaluated using either a top-
bottom-up strategy. However, considering a
combinations is extremely costly, and even em
aggressive plan pruning technique, as propose

 o
e ad

n

 e
b
by
X
d
ll p
pl

n
 
p

plans. 
m

n
le
. 1
r 

nevertheless expressive enough to sust
optimization strategies that we employ. The stat
we collect for each element are: number of inst
the element (NCARD), number of distinct valu
element (ICARD) and fan-out (Fout) – average n
sub-element instances for each sub-element. 

f a query 

Figure 3: A ToXin for the supplier.xml d
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own or a 

query optimization. 
Up to this point, the TI structures

NAV and Value tables, which are th
structures. However, these data 
generalized. That is, instead of stori
in a certain encoding we can us
instance, the node instances can b
algebra enco

ossible 
oying an 
d in the 

t. In this 
heuristics 
roved by 

we use the more generic term of En
and Value Stream for the encodi
element/attributes and values.  

To conclude the description of th
use: ToXin trees employed in ToXo
statistical information about the 

Lore optimizer, the number is still significa
respect in section 4 and 5 we present simple
that reduce the search space considerably and (
the experimental data) still produce efficient query 

To this point, ToXin provides schema infor
multiple evaluation strategies; however it mi
important component for query optimizatio
statistics. There is extensive work in col
appropriate statistics for XML documents [e.g
however the statistics that we use are rathe

ation and components, the tree
sses one 
, namely 
cting the 
, 26, 32], 
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istics that 
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node instance information, called TI,
encoded according to the processing

3.   The ToXop query optimiz
ToXop is the query optimizer in T
designed with relational query optim
order to exploit the benefits of deca
area. ToXop has two sets of opera
and physical operators, and an
technique, which permits different o
to be plugged-in. The logical op

 input a collectio
ocum

ToXin, similar to other path summaries, was de
to be used as a back-end. Nevertheless, because ToXin 
reflects the structure of the document we propose the 
usage of  ToXin as the existing schema for the document. 
However, keeping all data from node instances might be a 
burden. This is the reason why we divide the ToXin 
structure into two components: the ToXin summary tree 
(TT) and the node instance data structures (collectively, 
TI). According to this split, the TT is the existing schema 
of the document and given that it is augmented with 
statistics we can use the TT as system catalog, in a similar 

with the usage of system catalogs in relational 

 contain the Instance, 
e original ToXin data 

structures can be 
ng the node instances 
e any encoding. For 
e stored in a region 

ding. Consequently, as presented in Figure 3, 
coded Element Stream 
ngs that we use for 

e ToXin trees that we 
p are augmented with 

XML document that they 
summarize and have their structure split into two 

 part itself, called TT, and the XML 
 which can be 

 algorithms used. 
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oX [4]. ToXop was 

ization in mind in 
des of research in this 
tors, logical operators 
 open optimization 
ptimization strategies 
erators are the Tree 
 operators, while the 

ecific (i.e. for data 
.e. a join operator can 

as a double pipelined-
 only on the ToXop 

 the ToXop access 
es that they employ.  

 in ToXop is essentially the 
 the logical algebra 
r, as we will describe 
access methods than 
ization approach that 

ad of using structural 
logical operator L takes as 

n of trees or a document D and a pattern 
 collection of n witness trees: 

1 2, … , WTn ] 
The witness trees are those sub-trees that satisfy the 
pattern tree. Because each collection of trees can be 
transformed into one document (by adding a virtual root), 
in this paper we treat a document D and a collection of 
trees as the same. 

As an example, consider the TAX algebra expression 
below, which is a translation of the query in Figure 1: 

Projection //item/name, //item/description  
  (Join //item/supplier_no = //supplier/supplier_no ( 
    Selection(‘supplier.xml’, PT1),  
   Selection(‘catalog.xml’, PT2)       )  ) 

Algebra for XML (TAX) algebra
physical operators are back-end sp
access) or implementation specific (i
be implemented as a merge-join or 
join.) In this paper we concentrate
physical operators, moreover on
methods and the optimization strategi

ebra usedThe logical alg
TAX algebra [17]. TAX is also
employed by Timber [16]. Howeve
below, ToXop relies on different 
Timber and employs a novel optim
exploits structural summaries inste
joins. In the TAX algebra, each 

ent tree PT and outputs a

signed 
L(D, PT) = [ WT , WT

 



Where PT1 and PT2 are pattern trees, a conca
XPath expressions augmented with value pre
Figure 4 we present the pattern tree PT1 asso
variable $x from the query in Figure 1. PT1 i
from concat

te
d
ci
s

enating the four XPath expressions: /
//supplier/supplier_no, //supplier/city, 
//supplier/state.  

nation of 
icates. In 
ated with 
 obtained 
/supplier, 

and  

one is that the traditional path summary 
intrinsic to a particular path summary evaluati

stack algorithms (i.e. PathStack, Tw
algorithms work on region algeb
streams. For each element that appe
algorithms will load the enco
corresponding to the element. If an 
query occurs in a document within di
any stack algorithm will load and pr
all distinct paths where the elemen
fact that only one of these stream
answer. To exemplify this beha
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m can be 

complex example than the ones in the sections above. In
Figure 5a we present a fragment from
[25] with the author’s text value removed fo

The twig query from Figure 5
following query ‘//inproceedings[
[/year="1990"]’. That is, we 
inproceedings element where the aut
and the year is ‘1990’. In Figure 5c 
from a path summary for the DBLP
neutral notation R_a1, R_a2, et
encoding that might be used to store 
the path summary. For instance, 

Figure 4: The pattern tree PT1 
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Finally, a note with regard to TAX 

resent in th
c
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u

t
unin

g 
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nce between the holistic pruning and the t
p
on

while the holistic path summary pruning is gen
any path summary evaluation method can be used 
afterwards.  For instance, both TwigStackScan and 
ToXinScan (two of the ToXop access methods that we 
describe later) use holistic path summary pruning as their 
first evaluation step while performing a distinct second 
evaluation step according to the encoding that each 
employs. 

Because holistic path pruning is generic, it can be used 
in conjunction with any path evaluation algorithm in order 
to reduce the search space. For instance, consider the 

igStack). The stack 
ra encoded element 
ars in the query, the 

ded element stream 
element referred in the 

fferent distinct paths, 
obe the streams from 
t occurs, despite the 
s contributes to the 

vior we use a more 
 

 the DBLP data set 
r simplicity.  

b is induced by the 
/author="Jim Gray"] 
retrieve the entire 

hor is ‘Jim Gray’ 
we present a fragment 
 data set. We use the 
c. to represent any 
author information in 
information for the 
I structures described 

ed by a region algebra 
 the stack algorithms. 
agments of encoded 
e author (Tauthor) and 
 stack algorithms. 
ar in two structurally 
n article sub-trees as 

dvantage of having 
nguish between these 

 occurrences of author and year. In Figure 5c we 
g in a thick line to the 
e target elements lie. 
oad all the year and 

r all possible parents, 
. This is illustrated in Figure 5d 

 year y3, which are 
oceedings, but are in 

esults that an access 
gorithm could exhibit 
ng holistic schema 
xperimental data that 
olistic path summary 

improves TwigStack by an order of magnitude. 
The ToXop access methods that employ the holistic 

path summary pruning are the SumScan access methods. 
SumScan is a generic access method that operates on 
ToXin path summary structures. In ToXop we have two 
implementation of SumScan, namely TwigStackScan and 
ToXinScan. SumScan is a ToXop access method, thus it 
takes as input a document D (where TTD and TID are 
available) and a pattern tree PT, and outputs a sequence of 
witness trees that satisfy the pattern tree PT. The signature 
of the SumScan operator is: 

open. That is, any query optimization paradig
plugged-in. In the current implementation we e
two-level optimization strategy (see section 1
the lower level uses the optimization strateg
present in this paper, while the upper level (the

oy the 
 in which 
s that we 
join order 
egy. 
and the 
is paper. 
ontext of 
xt of any 

eries, i.e. 

author a1 might be encoded in the T
in section 2, or it might be represent
encoding similar to the one used by
In Figure 5d we present two fr
element streams associated with th
year (Tyear) elements, as used by the

Note that author and year appe
different sub-trees, i.e. they appear i
well as inproceedings sub-trees. The a
a path summary is that we can disti
different

se

optimization strategies that we p
Although, we present these strategies in the 
TAX, these strategies can be applied in the con
XML query algebra that recognizes twig q
pattern trees in the TAX parlance. 

 

4.   Holistic path summary pruning 
In this paper we propose two query op
strategies, namely holistic path summary pr
access-order selection. Path summary prunin
means novel; any path summary performs c
pruning as part of the path expression evalu
differe
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In contrast, a stack algorithm will l
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 method, 
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significant improvement by usi
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In Figure 6 we present the result of pruning the ToXin 
tree generated from the document from Figure 2 
according to the pattern from Figure 4.  

An MTT node is a data structure that contains: a 
pointer to an encoded element stream (Instance and NAV 
Tables for ToXinScan, region-algebra encoded streams 
for TwigStackScan); a pointer to a value stream (Value 
Tables for ToXinScan, region-algebra encoded streams 
for TwigStackScan); statistical information and selection 
predicates. True to the ToXin inheritance, the MTT 

structure is also split into a tree structure TT and a data 
structure TI. The advantage of having the structure split is 
that the pruning operation is executed only on the TT tree, 
thus on a very small data structure. After the pruning is 
completed, only the corresponding TI data structures are 
retained. 

Figure 5: a) A fragment from a DBLP do ent; b) a twig query; c) the ToXin tree for the do
 encoded streams for the document 

Therefore, PruneToXinTree takes a patter
and a ToXin tree, noted (TTD, TID), and out
matched ToXin trees, noted as MTXi

D,PT, that
pattern tree PT:  

PruneToXinTree ( (TTD, TID), PT ) =  
                 = [ MTX1

D,PT, MTX2
D,PT, … , MT

 
SumScan( (TTD, TID), PT ) =  

                     = Scan( PruneToXinTree( (TTD, T
                = [ WT1, WT2, … , WTn ] 

 
SumScan is the result of composing two
PruneToXinTree and Scan. As the nam
PruneToXinTree is the operator that prunes
summary while Scan is an implementatio
operator that evaluates the query on the p
summary or element encoded stream or 
encoding used. Consequently, the implementat
determines the flavor of the SumScan impleme
instance TwigStack is the Scan impleme

er 

tation, for 

TwigStackScan access method.  
In order to present how PruneToXinTree

have to introduce the notion of matched ToXin t
orks we 

ree. For a 
 we call 
f Tx that 
es of the 
 selection 

 tree PT 
uts the k 
atisfy the 

k
D,PT ] 

Figure 6: A matched ToXin

5.   Access-order selection 
The access-order selection optimizat
conjunction with the holistic path su
is based on the observation that path
can be computed using either bot
top-down evaluation. The idea be
selection strategy is to use heur
statistics to determine which is the prop

 
 tree (MTT) 

ion strategy works in 
mmary pruning and it 
s in XML documents 

tom-up evaluation or 
hind the access-order 
istics based on data 

er evaluation to 
employ. We have to note here that this approach is not 
novel. The Lore query optimizer also addressed this same 
problem [23]. However, the Lore optimizer used a 
“heavy” approach. That is, the Lore optimizer inserted a 
Glue operator at each branch of the XML document in 
order to determine the order of the evaluation, which 
resulted in a large query plan search space. For instance, 
as reported in [23] for a document with level 7, the total 
number of possible plans is in the range of 8 billion, while 
using the Lore pruning strategy this number was reduced 
to 948, which is still a large number. Using our heuristic 

given pattern tree PT and a 
TTmatched ToXin Trees (M ) those su re

MTT are adorned with the corresponding nod
predicates from the pattern tree PT.  

 



we have a plan right away and, as we present i
using this pla

n 
n we obtain a performance compar

r 
 
we h
r 
 c
n  
f ex

 
’ 
l in
t

 i  
at we have 
nseq
i

 selectivity. In this case, we would like to
t

r 
ri
c s order 

con
a

av
 nod
to

options.
nters

st
e

, we
n

te the predicate on city.
n
pt
o

y enumerate all possible combination
he
y

tradition of relational query optimization, heuristics can 
be used. In order to present these heuristics, first we have 
to introduce a number of terms.  

Definition 1: in the context of a MTT, given a node n 
and a set of predicates S attached to the node n, we call 
node selectivity factor for node n, noted Fn, the expected 
fraction of instances of the node n that satisfy the 
predicate set S.  

Node selectivity factor is a similar concept with the 
selectivity factor in System R. For instance, in the case 
when the predicate set S is constituted by a single equality 

 distribution of the 
ystem R) then: Fn = 
e number of distinct 
 to the node n.   

l to the node selectivity factor is 
 the selectivity model 
nd in [5]. 
umber of instances of 

node n that satisfy the predicate set S, noted Nn,S, can be 
 * NCARDn , where 
ardinality) of the  n 

TT, assume a node p 
 node n is a child node of p. We 

) node n, noted (Sp)n, 
of the node p’s instances, that are selected 
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Based on the definitions above we can present the 
heuristics that we employ. These heuristics are based on a 
uniform distribution assumption for node instances. By 
uniform distribution we understand that child nodes with 
a common parent have approximately the same number of 
instances. That is, we make the assumption that the fan-
out (number of children instances) for all instances of a 
certain parent node are approximately the same. We refer 
to these heuristics as uniform distribution heuristics. 
These heuristics employ the following two properties (that 
follow from the assumption). 

section 6, 
able with 

and direction among the MTT edges. Nevert
approach is time consuming. Consequentl

predicate and assuming a uniform
values of the node n (similar to S

the state of the art. 
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ToXin tree. Computing the plan comprises by:
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For instance, for the MTT from Figure 6, in 
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  (Sp)n = Nn,S * ( 1/Foutp,n ) = Fn * NC

   
Where Foutp,n is the fan-ou

the higher selectivity path first and then evalua
path only for those instances of the supplie
satisfy the first path. We call this process the 
selection and it is the first part of the ac
selection. 
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the right direction selection. Assume that we ev
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the access order plan. An MTT augmented with t
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6.2   Data sets 

The data sets that we used are pres
obtained the DBLP and the SWISSPR
University of Washington XML 
data sets are large, with millions o
shallow. However, these data sets di
while DBLP is very regular in it

parent selectivity of node b is higher than 
selectivity of node c and Cbac  < Ccab. 

Property 2: in the case of a uniform distrib
MTT rooted in node a with  nodes b and c as 
node b has a higher parent selectivity than n
the cost of evaluating c top-down is less than t
evaluating c bottom-up. 

Using the uniform distribution heuristic we
the search space for the access order 
Subsequently, the search algorithm works a
first, we

cost of 

an restrict 
selection. 
 foll

different kinds of structures that
SWISSPROT is rather irregular, wi
structures.  

The third data set that we used is XMAR
xmlgen with factors ranging from 0

electivity; 
second, we evaluate the path with the lowest
using a bottom-up evaluation; next, we evaluate

aths, in the selectivity order, using 
 all other 
top-down 

istic path 

we refer to XMARK documents gene
1.9. 

6.3   Queries 
p
evaluation.  

The ToXop operator that employs both 
ction is 

ows: 
The queries that we used are presented in T
1 through 7 are inspired from the 

su
ToXinScan. The signature of the operator is as

 
      ToXinScan( (TTD, TID), PT) =  Traverse(  

       ComputePlan( PruneToXinTree( (TTD,
 

Where the PruneToXinTree operator performs 
path summary pruning, the ComputePlan
compute

ID), PT ) 

holistic 

categories: 
• Punctual queries (Q3, Q4, Q5, Q

query only a small portion
operator 
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high selectivity, thus they return a
• Low selectivity queries (Q9, Q14)

he access • Grouped twig q
 in Figure 
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for which the nodes that might be
grouped into a compact region in t

• Scattered twig queries (Q1, Q2, 
queries for which the nodes that
answer are scattered through the e

6.3   TwigStackScan vs. TwigStack

In or

 
 

pruning as well as the traditional T
compute twig queries. In order to
summary information we extended
encoding by adding path summary 
this encoding as extended region alge
has the following representation

Figure 7: A plan augmented MTT tree 

6   Experimental results 

6.1   Experimental setup 

We ran our experiments on 1.6 GHz Pentium M processor 
with 1GB of RAM running Windows XP Professional 
version 2002 Service Pack 1. The implementation of all 
algorithms (including TwigStack) was done in Java using 
Sun’s j2re1.4.1_02. For all experiments the following 
JVM settings were used: “-Xmx896m -Xms896m”. 

ented in Table 1. We 
OT data from the 

repository [25]. Both 
f nodes, and they are 
ffer in their structure; 

s structure, with five 
 repeat many times, 
th many one-of-a-kind 

K. We used 
.1 to 1.9 and then we 

removed the content of all Text tags except the first word 
from each. When the factor is not specified (e.g. Table 2) 

rated with a factor of 

able 2. Queries 
PRIX papers [28, 29] 
MARK data set. The 
ied into the following 

8) that is, queries that 
 of the document and have a 

 small answer.  
 that is,  they return a 

large answer.  
ueries (Q11, Q12, Q13) that is, queries 

 part of the answer are 
he document. 
Q6, Q7, Q10) that is, 
 might be part of the 
ntire document.  

 

der to establish the benefits of holistic path summary 
ariant of TwigStack, that we 

holistic path summary 
wigStack technique to 
 incorporate the path 
 the region algebra 
information. We call 

bra encoding and it 
 for elements and string 

values, respectively:  
• [DocID, Term, Start, End, Level, SchemaID],  
• [DocID, Term, TextValue, Start, Level, SchemaID]   

 
Where DocID is the document ID; Term is the tag name; 
Start/End are the offsets in the document where the tag 
starts/ends measured as word count; TextValue is the 
CDATA or the attribute value; Level is the document 
level; SchemaID can be any numbering scheme; in 
TwigStackScan we use the TT node ID as SchemaID.  

while the rest are queries on the X
queries from Table 2 can be classif

pruning we implemented a v
call TwigStackScan, which uses 

 



Dataset Name Size (KB) # of E # of 
A

ext Total # 
odes 

Max-depth lements 
ttributes 

# of T
of N

DBLP 130, 3,3 6 848 2,254 6 726 32,130 404,27 3,005, 6,74
SWISSPROT 112,130 2,189,859 2,013,844 7,180,734 5 2,977,031 
XMARK 112,486 2, 9,710 726,783 1,478,252 4,974,745 10 76

Table 1: Datasets 
 

ataset #of Twig 
Matches 

 Query D

1 //inproceedings[./author="Jim Gray"] [./year="1990 @key 
2 //www[./editor]/url 
3 //book/author[text() ="C.J. Date"] L
4 //inproceedings[./title/text()
5 //Entry/Keyword SWIS

Q6 //Entry/PFAM[@prim_id="PF00304"] [.//DISULFID/ SWISSPROT 6 Descr] 
7 //Entry[./Org="Piroplasmida"]//Author 

Q8 //site/people/person[@id = "person0"] XMARK 1 
Q9 //site/people/person/name 

10 //regions/samerica/item[./location = "United
./@id  AND ./name AND ./quantity AND ./payment] 

11 //person[@id = "person217" AND .
"Lubbock" AND ./country/text() = "United States] ]/name 

Q "]/ DBLP 6 
Q DBLP 5 
Q DB P 13 
Q  = "Semantic Analysis Patterns."]/author DBLP 1 
Q [text() = "Rhizomelic chondrodysplasia punctata"] SPROT 3 

Q SWISSPROT 13 

XMARK 38,760 
Q  States" AND  XMARK 8 

Q /address [./city/text() =  XMARK 1 

Q12 //person[@i [./city/text() = 
"Lubbock" AND ./country/text() = "United States] ]/name 

XMARK 1 d = "person20125" AND ./address 

Q13 //person[@id = "person4802
"Lubbock" AND ./country/text(

Q14 //person[@id AND ./addres
./country/text() = "United State

Table 2: T
 

Query Q8 is a “punctual” query, it retrie
elements that are descendants of site elements
attribute equal to ‘person0’. Disregarding the 
size and generation factor, for all XMark docu
is only one person element that satisfies this
Since TwigStack filters early the element stre
regard to the selection predicate (@id = "perso
case) we would expect that the running time of
to be the same, independent of document 
Figure 8a we conclude that this is not the case. 
running time of TwigStackScan remained
constant, independent of document size, the ru
of TwigStack increased significantly with th

7
)

1 " AND ./address [./city/text() = 
 = "

XMARK 

document. The explanation is that Twig
retrieves and filters only the id attributes under

United States] ]/name 
[./city/text() = "Lubbock" AND 

 ]/name 
XMARK 

ig queries in an XPath representation 
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 t
tag, while TwigStack retrieves all id attributes, not only 
from the person tag but also from category, item and 
open_auction elements  (for the path summaries, thus the 
exiting schemata, for the XMARK, DBLP and 
SWISSPROT documents used in this experiments please 
refer to [5]). The total number of id attribute instances 
evidently increases with document size, explaining the 
degradation in performance of the TwigStack algorithm. 

We have to note as well a modest increase in 
TwigStackScan’s execution time. This increase is due to 
the additional work that the algorithm has to perform 

person streams 

 first advantage of the 
egy, namely when the 

 summary pruning 
r a punctual query 

g times for TwigStack 
r brevity, we omitted some of the 

 yield similar results 
t for the performance 
StackScan. In Table 3 
wigStackScan versus 
be categorized as: 

l that is, less than 2.0 
(e.g. queries Q1, Q5, Q9 and Q14); significant that is, 
close to one order of magnitude (e.g. queries Q3, Q6, Q8, 
Q10 and Q11) and up to 75 (e.g. query Q2). 

Based on the motivation for the holistic path summary 
pruning in the context of stack algorithms, we would 
expect to obtain significant speedups for the case when 
XPath nodes have multiple matches in a document and 
some nodes are part of the answer and some nodes are 
not. One such example is query Q1, where the elements 
author and year are not only part of inproceedings but 
also article, book, mastersthesis and phdthesis. However, 

es person 
ith the id 

document 
ents there 
criterion. 
ams with 
0" in this 
wigStack 
ze. From 

because the size of the people and 
increases with document size. 

From Figure 8a we can deduct a
holistic path summary pruning strat
strategy is applicable, holistic path
assures a constant running time fo
disregarding the document size. 

In Table 3 we present the runnin
and TwigStackScan. Fo

While the 
relatively 
ning time 
ize of the 
tackScan 

he person 

queries from Table 2 because they
and while these queries are relevan
of ToXinScan they are not for Twig
we also present the speedup of T
TwigStack. The speedups can 
inexistent (e.g. query Q7); margina

 



the speedup for query Q1 is not significant, onl
explanation lies in the fact that the main con
DBLP data set is inproceedings thus adding 
nodes does not produce a significant 
Nevertheless, it is quite the opposite for query Q
In query Q3 the book content is relatively sma
adding the unnecessary nodes induces a 
speedup of 8.96. The speedup increases furt

y 
te
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s

he
r da ware

as www e DBL  set,  ref
e 75.38 up for Tw n.  
uery TwigStack 
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TwigStackScan 
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2 an

6.4   ToXinScan vs. TwigStack 

In Figure 8a we also plotted 
ToXinScan vs. TwigStack and as exp

d Q3. 
, thus not 
ignificant 
r for Q2 
, encoded 
lected by 

Stack/ 
ackScan 

1.49 

while the performance of T
significantly. 

In Figure 8b we plotted the sp
size of ToXinScan versus TwigStac
and Q10. As shown, there is a wide
between these queries. At the botto
the punctual query, with the l
explanation lies in the highly selecti
attribute. That is, TwigStack cons
filterin

whe e the conte
 in th

nt referring to 
P data

tabase soft
 is very small,

th  speed igStackSca
Q

(m (m
Tw

Twi
Q1 7,
Q2 3,
Q3 43
Q5 18
Q6 ,430 752 6
Q7 ,687 6,891 6
Q

108 4,779 
75.38 
8.96 
1.03 
8.55 
0.97 

id streams, to be exact) but in the
instance of the id attribute, the o
predicate. Overall ToXinScan’s 
between 3 and 9 times. 

The second query, Q9, is similar
predicate on the id attribute, thus it is a 

015 40 
0 48 
8 183 

5.87 
1.43 

17.71 
9.41 

query. Because there is no longer a
does not perform any filtering and
streams for any occurrences of t
behavior resulted in a significant pe
for ToXinScan reflected in the graph, in t

8 699 119 
Q9 804 5,442 3,
Q10 8,326 470 
Q11 1,167 124 
Q14 4,493 2,520 

Table 3: The running times and the spee
TwigStackScan vs. TwigStack 

 
Pruning the path summary is not always 

For instance, the speedup for query Q7 is 
TwigStack performs better than TwigStack
explanation relies in the fact that the Org a
elements can be found only under the Entry el

1.78 
ps for 

eneficial. 
.97, thus 
can. The 
d Author 
ent, thus 

additional 
formance 
 by the 
Keyword 

60 times. 
The best improvement is exhibi

heavy twig query, from 33 to 122 tim
each of the element tags in the qu
sections of the document in di
TwigStack does an extensive computation that 
yield any useful matches. 

Queries Q11, Q12 and Q13 
structures with different values for th
on the id attribute. The first va
beginning of the area that has to be
sub-tree under the person element; t
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b
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9
ear in many 

distinct paths, thus the pruning should be beneficial. 
However, the speedup is only marginal 1.43 and 1.78 
respectively. Moreover, the queries are the low selectivity 
versions of queries Q8 and Q11, which perform to the 
expectation with speedups of 5.87 and 9.41. The 
explanation lies in the extensive computation performed 
by both queries due to the queries’ low selectivity, for 
instance Q9 returns 38,760 twig matches. Thus, the 
advantage that the pruning is inducing by loading fewer 
nodes to be probed is overshadowed by the computational 
time per se.  

the performance of 
ected, on a punctual 

query the performance of ToXinScan remains constant 
wigStack degrades 

eedup with document 
k for queries Q8, Q9 

 difference in speedup 
m of the heap is Q8, 

owest speedup. The 
ve predicate on the id 
umes time only by 

g an additional number of id attributes (three more 
 end retains only one 
ne that satisfies the 
improvement ranges 

 to Q8 but missing the 
low selectivity 

 predicate, TwigStack 
 loads and probes all 
he id attribute. This 
rformance advantage 

he range of 20 to 

ted by query Q10, a 
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fferent paths, thus 
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lue “217” is at the 
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rea while the value “48,027” is at 
e same twig structure 
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d as it can be 
the performance of 

arding the value of the 
ance of TwigStack 

tly. The explanation lies in the fact that 
ToXinScan performs an optimization, thus rightly 
identifies the position of the answer nodes. 

In Table 4 we present the speedups of ToXinScan 
versus TwigStack for all queries from the query set. As 
can be inferred from the table, ToXinScan outperforms 
TwigStack marginally for punctual queries, with speedups 
from 2 to 9. The explanation relies in the reduced 
computation that has to be perform in order to process the 
answer, thus ToXinScan’s optimization strategy does not 
produce a significant difference. 

 

the pruning does not help, moreover it ads an
computational time that is reflected in the p
degradation. A similar situation is reflecte
speedup of 1.03 for query Q5, because the 
element is found only under the Entry ele
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in an 8.55 speedup. 
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 resulting 

 and Q14. 

the end. Because the queries have th
one might expect that the performan
be similar. Nevertheless, it is not the case, an
inferred from Figure 8c; while 
ToXinScan remains constant disreg
selection predicate, the perform
degrades significan
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Twig
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ToX Tw
To

Q1 7,108 130 
Q2 3,015 39 
Q3 38
Q4 430 46 9 
Q5 188 87 
Q6 6,430 80 
Q7 6,687 131 
Q8 699 75 

. ToXinScan 
Q1 

tack/ 
Scan 
54.68 
77.31 
4.29 

Q5 80.37 43.15 
Table 5: Speedup of TwigStack

TwigStack / PRI
6 90 

.35 
2.16 

80.37 

6.   Conclusions 
We present experimental results 
performan
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9.32 

57.28 
122.44 
12.97 

advantage of path summaries in 
optimization strategies: holistic path
and access-order selection. 

The use of path summaries a
statistics in the ToXop optimize
advantages to the u

Q9 5 5,442 9
Q10 8,326 68 
Q11 1,167 90 
Q12 1,816 92 
Q13 2,746 95 
Q14 4,493 93 

Table 4: ToXinScan vs. TwigStack

6.5   ToXinScan vs. PRIX 
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wigStack, 
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