Benefits of Path Summaries in an XML Query Optimizer
Supporting Multiple Access Methods

Attila Barta

Dept. of Computer Science
University of Toronto
10 King’s College Rd., M5S
3G4, Toronto, ON, Canada
atibarta@cs.toronto.edu

Abstract

We compare several optimization strategies
implemented in an XML query evaluation
system. The strategies incorporate the use of path
summaries into the query optimizer, and rely on
heuristics that exploit data statistics.

We present experimental results that demonstrate
a wide range of performance improvements for
the different strategies supported. In addition, we
compare the speedups obtained using path
summaries with those reported for index-based
methods. The comparison shows that low-cost
path summaries combined with optimization
strategies achieve essentially the same benefits as
more expensive index structures.

1. Introduction

Over the past few years the Extendible Markup Language
(XML) has become the dominant data format for
information exchange. With the proliferation of data in
this format comes the motivation to query and manipulate
XML documents. XQuery and its widely adopted XPath
subset constitute the predominant proposal for a native
XML query language standard.

The XQuery related work is extremely diverse. It
ranges from native XML databases (e.g. Timber [16],
Niagara [15], Natix [12], BEA/SQRL [13], ToX [4]), to
XQuery systems (e.g. Galax [20]) and work that addresses
certain aspects of XQuery processing such as XPath, twig
queries and index structures for XML query evaluation.

Mariano P. Consens

Information Engineering, MIE
University of Toronto
5 King’s College Rd., M5S
3G8, Toronto, ON, Canada
consens@cs.toronto.edu

Alberto O. Mendelzon

Dep. of Computer Science
University of Toronto
10 King’s College Rd., M5S
3G4, Toronto, ON, Canada
mendel@cs.toronto.edu

Moreover, because extensive work in the area addresses
only some aspects of XQuery evaluation, for the rest of
the paper we will use the XQuery and XML query terms
interchangeable.

An important aspect of XML query processing is the
encoding used. That is, in a native XML system, XML
documents can be pre-parsed into special purpose data
structures in order to speedup query execution. The most
employed such data structure relies on an element
encoding derived from the notation used in region
algebras [9]: an inverted-file-like structure with element
name, start, end and level. Utilizing this type of data
structures for evaluating path expressions requires joins
between lists of encoded elements, referred to as
containment queries [33] or structural joins [3]. Also
based on region encoding are the stack algorithms that
improve on structural joins by using stacks for
intermediate results. In this context, PathStack is proven
to be optimal for processing single path queries [7].
Because, in stack algorithms the region algebra encoded
elements are treated as streams, for the remain on this
paper we will refer to XML documents encoded in these
structures as element encoded streams, for elements and
attributes, and value streams for CDATA.

An XQuery expression frequently contains several XPath
sub-expressions, such as the example given in Figure 1.

for $x in document("file:/supplier.xml")//supplier,
$y in document("file: /catalog.xml")//item
where $x/supplier_no = $y/supplier no and
$x/city = "Newark" and $x/state = "New Jersey"
return <result> { $y/name } { $y/description } </result>

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment

Proceedings of the 31* VLDB Conference,

Trondheim, Norway, 2005

Figure 1: Sample XQuery expression

The example query joins a supplier document and a
catalog document based on supplier no, returning the
name and description of items in the catalog for those
suppliers located in Newark, New Jersey. The XPath
expressions that occur in the query above and apply to the
supplier document are: Y/supplier’, ‘//supplier/city’,

V/supplier/supplier no’ and “/supplier/state’. A fragment
of a sample supplier document is shown in Figure 2.

Although each of the XPath expressions in an XQuery
query, such as the example above, can be computed
separately, a much better approach is to group XPath
queries into a so called twig query, known also as pattern
tree. The group of XPath expressions that apply to a
certain document (such as suppliers in the example
above) can be computed in a single access method
invocation through the document. Most of the XPath
processors as well as structural join algorithms support
this approach [e.g. 7, 18]. The most cited approach for
twig query processing is TwigStack [7] a generalization of
PathStack from one path to a twig query. TwigStack can
be further improved by using index structures (XB trees)
to index the encoded element stream and hence
supporting the skipping of irrelevant nodes. The index-
based algorithm is known as TwigStackXB [7].

<suppliers>
<supplier> <supplier no> 1 </supplier no>
<name> Gore </name>
<city> Newark </city> <state> Delaware </state>
</supplier>
<supplier> <supplier no> 2 </supplier no>
<name> Dupont </name>
<city> Newark </city> <state> New Jersey </state>
</supplier>
</suppliers>

Figure 2: Sample supplier.xml document

Building the encoded element data structures is not a
computationally expensive process - requiring usually one
and at most two passes over the document. Recently,
novel node index structures designed to evaluate twig-
queries and not only single path queries have been
proposed, such as ViST [31] and PRIX [28]. Node index
construction requires extensive pre-processing, but in
return, these indexes can yield significant speedups when
compared with access methods such as TwigStack. ViST
uses a prefix tree and virtual tries stored on disk as B-trees
to achieve this improved performance. Similarly, PRIX
also employs tries stored on disk while using an encoding
based on Prufer sequences.

Path summaries are another important work in XML
query processing. A path summary, also known as a
structural summary or as a path index, represents a
summarization of the paths that actually occur in a
document. That is, for each distinct path in an XML
document there is a distinct path in the path summary
[e.g. 14, 24, 30] or an approximation of it [e.g. 19, 27].
Path summaries are used as back-ends that is, the XML
query is evaluated by traversing the path summary alone.
Each path summary implementation uses a particular
strategy to evaluate the query. The common denominator
of these strategies is that they use path pruning in order to
limit the search space. Moreover, the majority of path

summaries only support individual path expressions
evaluation that is, no twig query support.

The most work in XML query optimization is in the
context of the native XML databases. Thus, the Timber
optimizer chooses the best order for the structural joins
[2]. The Niagara optimizer incorporates a cost-model for
evaluating path expressions [15]. Systems like Natix [12]
and BEA/SQRL [13] use built in rules for optimization.
However, to the best of our knowledge, the most complex
optimizer up-to-date is the Lore optimizer which
considered different evaluation strategies for each branch
in an XML tree, as well as an aggressive plan pruning
strategy in order to reduce the search space [23]. There
are query optimization techniques in path summaries too.
For instance, query re-writing [11] and path expansion
[22] were also proposed for optimizing the evaluation of
path summaries. A somehow similar approach is
projecting the XML document according to the path
expressions [21]. Also relevant are query evaluation
techniques based on summaries and compression [34, 35].

In this paper we focus on strategies for XML query
optimization. These strategies are presented in the context
of two-level optimization that we proposed in [6]. In the
two-level optimization strategy, the higher level consists
of the traditional join order selection together with the
cost-based selection of access methods. The lower level
consists in a cost based selection of evaluation plans for
XPath expressions, i.e. twig queries. Although, separating
the access method selection from the join order selection,
was also proposed in the relational mode, e.g. “multi-
level” or “multi-faceted” optimization, in the XML
context there is a major difference. That is, in the
relational model each access method has a fixed cost and
the optimizer is aware of it, while in the XML model, due
to the XPath expressions that are embedded into the
access methods, the access methods do not have fixed
costs, rather the cost varies with the XPath evaluation
strategy. This observation suggests an additional layer of
optimization at the access method level, hence the two-
level optimization model.

The two-level optimization and the optimization
strategies that we present in this paper are incorporated in
ToXop, a query optimizer that is part of ToX, a native
XML database under development at University of
Toronto [4].

In this paper we extend the work presented in [6] and
we describe an approach to XML query optimization that
incorporates several novel characteristics. The main
contributions of this paper are:

e We propose the usage of path summaries into the
optimizer in order to exploit schema information. In
this respect we split the path summaries into a
schema part and a node instance part. The schema
part is used for optimization while the node instance
part is used as back-end.

e We propose two novel optimization strategies:
holistic path summary pruning and access-order

selection. The former reduces the plan search space
by identifying early the portions of the document that
will be part of the answer. This approach differs from
the traditional path summary pruning by separating
the path pruning from the query evaluation per se.
Consequently, the holistic path pruning can be used
outside a path summary, e.g. with an element
encoded stream. The latter optimization strategy uses
data statistics and (simple) cost-based heuristic in
order to compute an efficient plan.

e We present experimental results that establish the
benefits of the optimizer-driven early pruning of path
summaries as well as substantial benefits for the
heuristic based optimization. The speedup
attributable to these optimization strategies is of the
same order of magnitude as the speedup obtained by
querying node indexes. This is a surprisingly positive
result, considering how much cheaper (in storage and
index construction costs) path summaries are
compared to node indexes.

The paper’s contributions can be summarized as
follows: using path summaries, simple statistics and
simple cost-based heuristics we can achieve speedups in
the same order of magnitude as more “heavy” index based
systems. In summary: with little (effort to preprocess
XML data) you can achieve a lot (of performance
improvement in query processing)!

We note some connections between the work that we
present in the XML context with earlier work in query
optimization for Object Oriented Databases (OODB) [8,
10]. For instance, Access Support Relations (ASRs)
provide an indexing mechanism for paths in the same
manner as XML path summaries. Despite the similarities,
in the OODB context the schema information is known,
while this is frequently not the case in the XML context.
Moreover, ASRs may cover only some paths from the
database instance, while in the XML context the structural
summaries cover all paths from the document instance.

Using path summaries in the query evaluation is not
entirely new: the approach was also proposed in the
context of the Lore system [23]. The path summaries used
by ToXop and DataGuides [14] (the path summaries used
in Lore) are essentially the same structure (when
considering XML trees). However, the Lore system
evaluated queries using DataGuides in combination with
other additional index structures. Furthermore, the stack-
based evaluation algorithms for twig queries were not
considered at the time when the optimization techniques
for Lore were proposed. Hence one of our contributions is
a novel combination of all of these proposed techniques

In the following section we introduce the usage of path
summaries in the query optimizer. Section 3 describes
briefly the ToXop optimizer. Section 4 and 5 introduce
the holistic path summary pruning and access-order
selection strategies. Section 6 contains experimental
results. We conclude by mentioning future research in
Section 7.

2. Path summaries into the query optimizer

The path summaries proposed in the literature can be
classified as exact path summaries [e.g. 14, 24, 30] or
approximate path summaries [e.g. 19, 27]. The exact path
summaries record each distinct path in the XML
document while approximate path summaries record only
an approximation of the paths, usually paths up to a
certain depth. The common denominator of both
categories is that they are built for evaluating regular path
expressions. That is, path summaries are used as back-
ends. However, in the XML query context the exact path
summaries can be used not only as back-ends but as
existing schemas for a given XML document or
collections of documents. By existing schema we
understand the underlying structure of the document,
rather than its DTD or XML Schema. The concept of
existing schema in the XML model is similar with the
concept of schema in the relational model.

Because schema information is essential to query
optimization and because exact path summaries are
exiting schemata, we propose the incorporation of the
exact path summaries into the optimizer. In this respect
we use ToXin [30], an exact path summary as the existing
schema in ToXop, our query optimizer. Both ToXin and
ToXop are part of ToX a native XML database [4].

The ToXin path summary mirrors the structure of the
document thus, for each element type or attribute type
there is at least one ToXin node to represent it. The case
when an element generates more than one ToXin node is
encountered when the element is part of two distinct
paths. In addition there are text nodes, which are
generated from the text content of the elements. For each
ToXin node there is an Instance Table, which records the
occurrences of the element or attribute, as well as its
parent instance. Moreover, text nodes and attribute nodes
also have a Value Table, which records the content of
each node. Each ToXin node has a node ID obtained in
depth first (pre-order) traversal.

The majority of path summaries are tied to a particular
path expressions evaluation strategy. In the ToXin case
this evaluation is bottom-up and works as follows: first,
the given path expression is checked if it matches any
path from the ToXin tree. Second, the corresponding
Instance and Value Tables are selected. Next, the
evaluation process is performed in a bottom-up manner.
Thus, first the predicates are evaluated against the Value
Table. Then, for the selected records in the Value Table
the corresponding records from the Instance Table are
selected and so on until the root is reached. The advantage
of using this strategy occurs in the case of selective
predicates on one of the leaf nodes, thus only a few
number of parent nodes have to be evaluated.

Most path summaries, like ToXin, are designed to
evaluate individual path expressions. However, in the
presence of several path expressions to be evaluated in
one pass (i.e. twig queries), a particular evaluation might

not be the most efficient, thus defying the role of a query
optimizer. With this observation in mind, we added an
additional structure to ToXin, namely navigational tables,
NAYV for short, in order to support top/down navigation.
As a result of this enhancement, top-down evaluation
strategy can now be taken into consideration by a query
optimizer. This approach was also considered by the Lore
optimizer, where each individual path in a XML tree
could have been evaluated using either a top-down or a
bottom-up strategy. However, considering all possible
combinations is extremely costly, and even employing an
aggressive plan pruning technique, as proposed in the
Lore optimizer, the number is still significant. In this
respect in section 4 and 5 we present simple heuristics
that reduce the search space considerably and (proved by
the experimental data) still produce efficient query plans.

To this point, ToXin provides schema information and
multiple evaluation strategies; however it misses one
important component for query optimization, namely
statistics. There is extensive work in collecting the
appropriate statistics for XML documents [e.g. 1, 26, 32],
however the statistics that we use are rather simplistic
nevertheless expressive enough to sustain the
optimization strategies that we employ. The statistics that
we collect for each element are: number of instances for
the element (NCARD), number of distinct values for the
element (ICARD) and fan-out (Fout) — average number of
sub-element instances for each sub-element.

1
---1- ¥ Enc.Element Stream

- -| --#| Enc.Element Stream
-4 -+ Enc.Element Straam

|

|

|
~-ofesen] |
i e FTPE TSI gy
|

|

|

|

supplers

~~~~~ |+ [ Value Sirearn]

supplier_na

test pode—p b+~ - == === — ===~~~ —{ -} Value Stream
L
Tr m

Figure 3: A ToXin for the supplier.xml document

ToXin, similar to other path summaries, was designed
to be used as a back-end. Nevertheless, because ToXin
reflects the structure of the document we propose the
usage of ToXin as the existing schema for the document.
However, keeping all data from node instances might be a
burden. This is the reason why we divide the ToXin
structure into two components: the ToXin summary tree
(TT) and the node instance data structures (collectively,
TI). According to this split, the TT is the existing schema
of the document and given that it is augmented with
statistics we can use the TT as system catalog, in a similar

manner with the usage of system catalogs in relational
query optimization.

Up to this point, the TI structures contain the Instance,
NAYV and Value tables, which are the original ToXin data
structures. However, these data structures can be
generalized. That is, instead of storing the node instances
in a certain encoding we can use any encoding. For
instance, the node instances can be stored in a region
algebra encoding. Consequently, as presented in Figure 3,
we use the more generic term of Encoded Element Stream
and Value Stream for the encodings that we use for
element/attributes and values.

To conclude the description of the ToXin trees that we
use: ToXin trees employed in ToXop are augmented with
statistical information about the XML document that they
summarize and have their structure split into two
components, the tree part itself, called TT, and the XML
node instance information, called TI, which can be
encoded according to the processing algorithms used.

3. The ToXop query optimizer

ToXop is the query optimizer in ToX [4]. ToXop was
designed with relational query optimization in mind in
order to exploit the benefits of decades of research in this
area. ToXop has two sets of operators, logical operators
and physical operators, and an open optimization
technique, which permits different optimization strategies
to be plugged-in. The logical operators are the Tree
Algebra for XML (TAX) algebra operators, while the
physical operators are back-end specific (i.e. for data
access) or implementation specific (i.e. a join operator can
be implemented as a merge-join or as a double pipelined-
join.) In this paper we concentrate only on the ToXop
physical operators, moreover on the ToXop access
methods and the optimization strategies that they employ.

The logical algebra used in ToXop is essentially the
TAX algebra [17]. TAX is also the logical algebra
employed by Timber [16]. However, as we will describe
below, ToXop relies on different access methods than
Timber and employs a novel optimization approach that
exploits structural summaries instead of using structural
joins. In the TAX algebra, each logical operator L takes as
input a collection of trees or a document D and a pattern
tree PT and outputs a collection of n witness trees:

LD, PT)=[ WT', WT% ..., WT"]
The witness trees are those sub-trees that satisfy the
pattern tree. Because each collection of trees can be
transformed into one document (by adding a virtual root),
in this paper we treat a document D and a collection of
trees as the same.

As an example, consider the TAX algebra expression
below, which is a translation of the query in Figure 1:

Pr Oj ection //item/name, //item/description

(J oin /fitem/supplier_no = //supplier/supplier_no (
Selection(‘supplier.xml’, PTI),
Selection(‘catalog.xml’, PT2) ) )



Where P71 and PT2 are pattern trees, a concatenation of
XPath expressions augmented with value predicates. In
Figure 4 we present the pattern tree PT/ associated with
variable $x from the query in Figure 1. PT/ is obtained
from concatenating the four XPath expressions: /supplier,
//supplier/supplier no, //supplier/city, and
//supplier/state.

root

supplier

T = (Mew Jersey')

supplier_no city siate
& = Mewark')

Figure 4: The pattern tree P71

The query optimization strategy in ToXop is likewise
open. That is, any query optimization paradigm can be
plugged-in. In the current implementation we employ the
two-level optimization strategy (see section 1), in which
the lower level uses the optimization strategies that we
present in this paper, while the upper level (the join order
selection) uses a System R like optimization strategy.

Finally, a note with regard to TAX and the
optimization strategies that we present in this paper.
Although, we present these strategies in the context of
TAX, these strategies can be applied in the context of any
XML query algebra that recognizes twig queries, i.e.
pattern trees in the TAX parlance.

4. Holistic path summary pruning

In this paper we propose two query optimization
strategies, namely holistic path summary pruning and
access-order selection. Path summary pruning is by no
means novel; any path summary performs certain path
pruning as part of the path expression evaluation. The
difference between the holistic pruning and the traditional
one is that the traditional path summary pruning is
intrinsic to a particular path summary evaluation method,
while the holistic path summary pruning is generic, thus
any path summary evaluation method can be used
afterwards.  For instance, both TwigStackScan and
ToXinScan (two of the ToXop access methods that we
describe later) use holistic path summary pruning as their
first evaluation step while performing a distinct second
evaluation step according to the encoding that each
employs.

Because holistic path pruning is generic, it can be used
in conjunction with any path evaluation algorithm in order
to reduce the search space. For instance, consider the

stack algorithms (i.e. PathStack, TwigStack). The stack
algorithms work on region algebra encoded element
streams. For each element that appears in the query, the
algorithms will load the encoded element stream
corresponding to the element. If an element referred in the
query occurs in a document within different distinct paths,
any stack algorithm will load and probe the streams from
all distinct paths where the element occurs, despite the
fact that only one of these streams contributes to the
answer. To exemplify this behavior we use a more
complex example than the ones in the sections above. In
Figure 5a we present a fragment from the DBLP data set
[25] with the author’s text value removed for simplicity.

The twig query from Figure 5b is induced by the
following query “/inproceedings[/author="Jim Gray"]
[/year="1990"]’. That 1is, we retrieve the entire
inproceedings element where the author is ‘Jim Gray’
and the year is ‘1990°. In Figure 5c we present a fragment
from a path summary for the DBLP data set. We use the
neutral notation R al, R a2, etc. to represent any
encoding that might be used to store author information in
the path summary. For instance, information for the
author a/ might be encoded in the TI structures described
in section 2, or it might be represented by a region algebra
encoding similar to the one used by the stack algorithms.
In Figure 5d we present two fragments of encoded
element streams associated with the author (Tume) and
vear (Tye,) elements, as used by the stack algorithms.

Note that author and year appear in two structurally
different sub-trees, i.e. they appear in article sub-trees as
well as inproceedings sub-trees. The advantage of having
a path summary is that we can distinguish between these
different occurrences of author and year. In Figure 5¢c we
highlight this information by drawing in a thick line to the
parts of the path summary where the target elements lie.
In contrast, a stack algorithm will load all the year and
author encoded-element streams for all possible parents,
not only for inproceedings. This is illustrated in Figure 5d
by the authors a3 and a4 and the year y3, which are
descendents of article but not inproceedings, but are in
the streams nonetheless.

From the example above it results that an access
method that incorporates a stack algorithm could exhibit
significant improvement by using holistic schema
pruning. In section 6 we present experimental data that
suggests that, when applicable, holistic path summary
improves TwigStack by an order of magnitude.

The ToXop access methods that employ the holistic
path summary pruning are the SumScan access methods.
SumScan is a generic access method that operates on
ToXin path summary structures. In ToXop we have two
implementation of SumScan, namely TwigStackScan and
ToXinScan. SumScan is a ToXop access method, thus it
takes as input a document D (where TTp and TIp are
available) and a pattern tree PT, and outputs a sequence of
witness trees that satisfy the pattern tree PT. The signature
of the SumScan operator is:



<dhlp=

sinproceedings=
=authar= a1 =fauthar=

root

inproceedings

Tauthor

=authar= a2 =fauthar=
=year=  yl =iears
=linproceedings=

. authar vear
=aticle= T = {limGray) G =(1990)
=guthar= a3 <iauthor=
=author= a4 =fauthor=
=years 2 <hear=
=faticlex

=inproceedings=
=guthar= a4 <fauthar=
=authors a6 <authors
=years  y3 <hyears
sfinproceedings=

<idblp>

T_a2

T_a3)

T_ad)

T_a5

article b Tyaar

Figure 5: a) A fragment from a DBLP document; b) a twig query; c) the ToXin tree for the document fragment;
d) element encoded streams for the document

SumScan( (TTp, Tlp), PT ) =
= Scan( PruneToXinTree( (TTp, TIp), PT ) )
=[WT, WT% ..., WT"]

SumScan is the result of composing two operators:
PruneToXinTree and Scan. As the name suggest,
PruneToXinTree is the operator that prunes the path
summary while Scan is an implementation specific
operator that evaluates the query on the pruned path
summary or element encoded stream or any other
encoding used. Consequently, the implementation of Scan
determines the flavor of the SumScan implementation, for
instance TwigStack is the Scan implementation for
TwigStackScan access method.

In order to present how PruneToXinTree works we
have to introduce the notion of matched ToXin tree. For a
given pattern tree PT and a ToXin tree Tx, we call
matched ToXin Trees (MTT) those sub-trees of Tx that
satisfy the pattern tree PT. Moreover, the nodes of the
MTT are adorned with the corresponding node selection
predicates from the pattern tree P7.

Therefore, PruneToXinTree takes a pattern tree PT
and a ToXin tree, noted (TTp, TIp), and outputs the k
matched ToXin trees, noted as MTX'p pr, that satisfy the
pattern tree PT:

PruneToXinTree ( (TTp, Tlp), PT ) =

= [ MTXID,PT, MTXZD,PT, ey MTXkD’PT]

In Figure 6 we present the result of pruning the ToXin
tree generated from the document from Figure 2
according to the pattern from Figure 4.

An MTT node is a data structure that contains: a
pointer to an encoded element stream (Instance and NAV
Tables for ToXinScan, region-algebra encoded streams
for TwigStackScan); a pointer to a value stream (Value
Tables for ToXinScan, region-algebra encoded streams
for TwigStackScan); statistical information and selection
predicates. True to the ToXin inheritance, the MTT

structure is also split into a tree structure TT and a data
structure T1. The advantage of having the structure split is
that the pruning operation is executed only on the TT tree,
thus on a very small data structure. After the pruning is
completed, only the corresponding TI data structures are
retained.

supplier

T = Mew Jersey')

supplier_no city state
G = Mewark')

Figure 6: A matched ToXin tree (MTT)

5. Access-order selection

The access-order selection optimization strategy works in
conjunction with the holistic path summary pruning and it
is based on the observation that paths in XML documents
can be computed using either bottom-up evaluation or
top-down evaluation. The idea behind the access-order
selection strategy is to use heuristics based on data
statistics to determine which is the proper evaluation to
employ. We have to note here that this approach is not
novel. The Lore query optimizer also addressed this same
problem [23]. However, the Lore optimizer used a
“heavy” approach. That is, the Lore optimizer inserted a
Glue operator at each branch of the XML document in
order to determine the order of the evaluation, which
resulted in a large query plan search space. For instance,
as reported in [23] for a document with level 7, the total
number of possible plans is in the range of 8 billion, while
using the Lore pruning strategy this number was reduced
to 948, which is still a large number. Using our heuristic



we have a plan right away and, as we present in section 6,
using this plan we obtain a performance comparable with
the state of the art.

Another difference from the Lore optimizer is that we
have already reduced the search space by using the
holistic path summary pruning. Consequently, we have to
compute plans only for the MTTs and not for the entire
ToXin tree. Computing the plan comprises by: computing
the right order selection and the right direction selection.
We present both of these concepts by means of example.
For instance, for the MTT from Figure 6, in order to
retrieve all nodes that satisfy the selection predicates we
can proceed as follows. First we evaluate the path
‘Isupplier/state’ then Isupplier/city’ then
/supplier/supplier no’. Finally, we intersect all instances
of the ‘supplier’ node obtained from the evaluation of the
paths and the predicates. Evidently, this is an inefficient
method of evaluating the tree. The reason is that we have
two predicates on nodes state and city. Consequently,
there is a possibility that one of these predicates has
higher selectivity. In this case, we would like to evaluate
the higher selectivity path first and then evaluate the next
path only for those instances of the supplier node that
satisfy the first path. We call this process the right order
selection and it is the first part of the access order
selection.

The second part of access order selection constitutes
the right direction selection. Assume that we evaluate first
the path “supplier/state’; this means that we have a set of
supplier nodes for which there are child state nodes that
satisfy the predicate on state. The next step is to evaluate
the path “/supplier/city’. There are two options. The first
one is to use a bottom-up evaluation and intersect the
supplier nodes selected by the ‘/supplier/city’ path with
those supplier nodes selected by the “supplier/state’ path.
The second approach is to perform a top-down evaluation.
A top-down evaluation works as follows: for those nodes
supplier that satisfy the Ysupplier/state’ path, we select
their corresponding city children nodes and then for these
city nodes only we evaluate the predicate on city.

The right order selection and right direction selection
are part of the access-order selection optimization
strategy. In order to compute them, one approach is to
exhaustively enumerate all possible combinations of order
and direction among the MTT edges. Nevertheless, this
approach is time consuming. Consequently, in the
tradition of relational query optimization, heuristics can
be used. In order to present these heuristics, first we have
to introduce a number of terms.

Definition 1: in the context of a MTT, given a node n
and a set of predicates S attached to the node n, we call
node selectivity factor for node n, noted F,, the expected
fraction of instances of the node » that satisfy the
predicate set S.

Node selectivity factor is a similar concept with the
selectivity factor in System R. For instance, in the case
when the predicate set S is constituted by a single equality

predicate and assuming a uniform distribution of the
values of the node n (similar to System R) then: F, =
1/ICARD,, , where ICARD, is the number of distinct
values in the Value Table associated to the node ».

The choice of a model to the node selectivity factor is
orthogonal to this work. However, the selectivity model
that we employ in ToXop can be found in [5].

Using the selectivity factor, the number of instances of
node n that satisfy the predicate set S, noted N, s, can be
computed as follows: N,s = F, * NCARD, , where
NCARD,, is the total number (cardinality) of the =n
elements.

Definition 2: in the context of a MTT, assume a node p
and a node n, such that node 7 is a child node of p. We
call parent selectivity of the (child) node n, noted (Sp)n,
the fraction of the node p’s instances, that are selected
after evaluating the path expression that stems from the
parent p and the (child) node n is part of it.

The parent selectivity for a (child) node »n and a parent
node p is computed as follows:

(Sp)n = Nys * ( 1/Fouty,, ) = F, * NCARD, * ( 1/Fout,, )

Where Fout,, is the fan-out of parent node p for the
child node n and it represents the average number of
children nodes n for an instance of a parent node p.
Considering a uniform distribution of children nodes, the
fan-out of parent node p for children nodes » is computed
as follows: Fout,, = NCARD, / NCARD,. Replacing the
fan-out in the parent selectivity formula we obtain:

(Sp)n = Fy * NCARD,

In the access-order selection optimization strategy the
parent selectivity is important because we would like to
evaluate first child nodes with higher parent selectivity.

Definition 3: we call joint cost of two path expressions
that stem from the same root, the cost of evaluating first a
path using a bottom-up evaluation plus the cost of
evaluating the second path using a top-down evaluation.

The notation for the joint cost is Ceist child-parent-
second child- 1he meaning of the notation is that the path
‘/parent/first_child” will be evaluated first, using a
bottom-up evaluation while the path
‘/parent/second_child” will be evaluated second using a
top-down evaluation.

Based on the definitions above we can present the
heuristics that we employ. These heuristics are based on a
uniform distribution assumption for node instances. By
uniform distribution we understand that child nodes with
a common parent have approximately the same number of
instances. That is, we make the assumption that the fan-
out (number of children instances) for all instances of a
certain parent node are approximately the same. We refer
to these heuristics as wuniform distribution heuristics.
These heuristics employ the following two properties (that
follow from the assumption).



Property I: in the case of a uniform distribution, for a
MTT rooted in node a with nodes b and ¢ as children, if
node b has a higher selectivity than node c¢, then: the
parent selectivity of node b is higher than the parent
selectivity of node ¢ and Cp,e < Cegp.

Property 2: in the case of a uniform distribution, for a
MTT rooted in node a with nodes b and ¢ as children, if
node b has a higher parent selectivity than node ¢, then
the cost of evaluating ¢ top-down is less than the cost of
evaluating ¢ bottom-up.

Using the uniform distribution heuristic we can restrict
the search space for the access order selection.
Subsequently, the search algorithm works as follows:
first, we sort the children according to parent selectivity;
second, we evaluate the path with the lowest selectivity
using a bottom-up evaluation; next, we evaluate all other
paths, in the selectivity order, using a top-down
evaluation.

The ToXop operator that employs both holistic path
summary pruning and access-order selection is
ToXinScan. The signature of the operator is as follows:

ToXinScan( (TTp, Tlp), PT) = Traverse(
ComputePlan( PruneToXinTree( (TTp, Tlp), PT)

Where the PruneToXinTree operator performs the holistic
path summary pruning, the ComputePlan operator
computes the access order plan (i.e. the query plan) and
the Traverse operator evaluates the MTTs according to
the access order plan. An MTT augmented with the access
order plan, i.e. a plan augment tree, is presented in Figure
7. Presenting in detail each of these operators is beyond
the scope of this paper; more details on each of these
operators and the algorithms that they employ can be
found in [5].

= MewJersey')
state

supplier_no ity
O = 'Mewark')

Figure 7: A plan augmented MTT tree

6 Experimental results

6.1 Experimental setup

We ran our experiments on 1.6 GHz Pentium M processor
with 1GB of RAM running Windows XP Professional
version 2002 Service Pack 1. The implementation of all
algorithms (including TwigStack) was done in Java using
Sun’s j2rel.4.1 02. For all experiments the following
JVM settings were used: “-Xmx896m -Xms896m”.

6.2 Data sets

The data sets that we used are presented in Table 1. We
obtained the DBLP and the SWISSPROT data from the
University of Washington XML repository [25]. Both
data sets are large, with millions of nodes, and they are
shallow. However, these data sets differ in their structure;
while DBLP is very regular in its structure, with five
different kinds of structures that repeat many times,
SWISSPROT is rather irregular, with many one-of-a-kind
structures.

The third data set that we used is XMARK. We used
xmlgen with factors ranging from 0.1 to 1.9 and then we
removed the content of all Text tags except the first word
from each. When the factor is not specified (e.g. Table 2)
we refer to XMARK documents generated with a factor of
1.9.

6.3 Queries

The queries that we used are presented in Table 2. Queries

1 through 7 are inspired from the PRIX papers [28, 29]

while the rest are queries on the XMARK data set. The

queries from Table 2 can be classified into the following
categories:

o Punctual queries (Q3, Q4, Q5, Q8) that is, queries that
query only a small portion of the document and have a
high selectivity, thus they return a small answer.

o Low selectivity queries (Q9, Q14) that is, they return a
large answer.

o Grouped twig queries (Q11, Q12, Q13) that is, queries
for which the nodes that might be part of the answer are
grouped into a compact region in the document.

o Scattered twig queries (Q1, Q2, Q6, Q7, Q10) that is,
queries for which the nodes that might be part of the
answer are scattered through the entire document.

6.3 TwigStackScan vs. TwigStack

In order to establish the benefits of holistic path summary
pruning we implemented a variant of TwigStack, that we
call TwigStackScan, which uses holistic path summary
pruning as well as the traditional TwigStack technique to
compute twig queries. In order to incorporate the path
summary information we extended the region algebra
encoding by adding path summary information. We call
this encoding as extended region algebra encoding and it
has the following representation for elements and string
values, respectively:

e [DocID, Term, Start, End, Level, SchemalD],

e [DoclID, Term, TextValue, Start, Level, SchemalD]

Where DoclID is the document ID; Term is the tag name;
Start/End are the offsets in the document where the tag
starts/ends measured as word count; TextValue is the
CDATA or the attribute value; Level is the document
level, SchemalD can be any numbering scheme; in
TwigStackScan we use the TT node ID as SchemalD.



Dataset Name Size (KB) | # of Elements # of # of Text Total # Max-depth
Attributes of Nodes
DBLP 130,726 3,332,130 404,276 3,005,848 | 6,742,254 6
SWISSPROT 112,130 2,977,031 2,189,859 2,013,844 | 7,180,734 5
XMARK 112,486 2,769,710 726,783 1,478,252 | 4,974,745 10
Table 1: Datasets
Query Dataset #of Twig
Matches
Ql //inproceedings[./author="Jim Gray"] [./year="1990"]/@key DBLP 6
Q2 /Iwww[./editor]/url DBLP 5
Q3 //book/author[text() ="C.J. Date"] DBLP 13
Q4 //inproceedings|./title/text() = "Semantic Analysis Patterns."]/author DBLP 1
Q5 //Entry/Keyword[text() = "Rhizomelic chondrodysplasia punctata"] SWISSPROT 3
Q6 //Entry/PFAM[@prim_id="PF00304"] [.//DISULFID/Descr] SWISSPROT 6
Q7 //Entry[./Org="Piroplasmida"]//Author SWISSPROT 13
Q8 //site/people/person[@id = "person0"] XMARK 1
Q9 //site/people/person/name XMARK 38,760
Q10 | //regions/samerica/item[./location = "United States" AND XMARK 8
J@id AND ./name AND ./quantity AND ./payment]
Q11 | //person[@id = T"person217" AND .address [./city/text() = | XMARK 1
"Lubbock" AND ./country/text() = "United States] ]/name
Q12 | //person[@id = "person20125" AND ./address [./city/text() = | XMARK 1
"Lubbock" AND ./country/text() = "United States] ]/name
Q13 | //person[@id = "persond48027" AND ./address [./city/text() = | XMARK 1
"Lubbock" AND ./country/text() = "United States] ]/name
Q14 | //person[@id AND ./address [./city/text() = "Lubbock" AND | XMARK 80
J/country/text() = "United States] ]/name

Table 2: Twig queries in an XPath representation

Query QS8 is a “punctual” query, it retrieves person
elements that are descendants of site elements with the id
attribute equal to ‘person(’. Disregarding the document
size and generation factor, for all XMark documents there
is only one person element that satisfies this criterion.
Since TwigStack filters early the element streams with
regard to the selection predicate (@id = "person0" in this
case) we would expect that the running time of TwigStack
to be the same, independent of document size. From
Figure 8a we conclude that this is not the case. While the
running time of TwigStackScan remained relatively
constant, independent of document size, the running time
of TwigStack increased significantly with the size of the
document. The explanation is that TwigStackScan
retrieves and filters only the id attributes under the person
tag, while TwigStack retrieves all id attributes, not only
from the person tag but also from category, item and
open_auction elements (for the path summaries, thus the
exiting schemata, for the XMARK, DBLP and
SWISSPROT documents used in this experiments please
refer to [5]). The total number of id attribute instances
evidently increases with document size, explaining the
degradation in performance of the TwigStack algorithm.

We have to note as well a modest increase in
TwigStackScan’s execution time. This increase is due to
the additional work that the algorithm has to perform

because the size of the people and person streams
increases with document size.

From Figure 8a we can deduct a first advantage of the
holistic path summary pruning strategy, namely when the
strategy is applicable, holistic path summary pruning
assures a constant running time for a punctual query
disregarding the document size.

In Table 3 we present the running times for TwigStack
and TwigStackScan. For brevity, we omitted some of the
queries from Table 2 because they yield similar results
and while these queries are relevant for the performance
of ToXinScan they are not for TwigStackScan. In Table 3
we also present the speedup of TwigStackScan versus
TwigStack. The speedups can be categorized as:
inexistent (e.g. query Q7); marginal that is, less than 2.0
(e.g. queries QI, Q5, Q9 and Q14); significant that is,
close to one order of magnitude (e.g. queries Q3, Q6, Q8,
Q10 and Q11) and up to 75 (e.g. query Q2).

Based on the motivation for the holistic path summary
pruning in the context of stack algorithms, we would
expect to obtain significant speedups for the case when
XPath nodes have multiple matches in a document and
some nodes are part of the answer and some nodes are
not. One such example is query Q1, where the elements
author and year are not only part of inproceedings but
also article, book, mastersthesis and phdthesis. However,



the speedup for query Q1 is not significant, only 1.49. The
explanation lies in the fact that the main content of the
DBLP data set is inproceedings thus adding the extra
nodes does not produce a significant difference.
Nevertheless, it is quite the opposite for query Q2 and Q3.
In query Q3 the book content is relatively small, thus not
adding the unnecessary nodes induces a significant
speedup of 8.96. The speedup increases further for Q2
where the content referring to database software, encoded
as www in the DBLP data set, is very small, reflected by
the 75.38 speedup for TwigStackScan.

Query | TwigStack | TwigStackScan TwigStack/
(ms) (ms) TwigStackScan
Ql 7,108 4,779 1.49
Q2 3,015 40 75.38
Q3 430 48 8.96
Q5 188 183 1.03
Q6 6,430 752 8.55
Q7 6,687 6,891 0.97
Q8 699 119 5.87
Q9 5,442 3,804 1.43
Q10 8,326 470 17.71
Q11 1,167 124 9.41
Q14 4,493 2,520 1.78

Table 3: The running times and the speedups for
TwigStackScan vs. TwigStack

Pruning the path summary is not always beneficial.
For instance, the speedup for query Q7 is 0.97, thus
TwigStack performs better than TwigStackScan. The
explanation relies in the fact that the Org and Author
elements can be found only under the Entry element, thus
the pruning does not help, moreover it ads an additional
computational time that is reflected in the performance
degradation. A similar situation is reflected by the
speedup of 1.03 for query QS5, because the Keyword
element is found only under the Entry element. The
situation is the opposite for query Q6, where the prim_id
attribute and the Descr element appear under many
elements and not only under the Entry element, resulting
in an 8.55 speedup.

A surprising result is exposed by queries Q9 and Q14.
In both cases the elements from the query appear in many
distinct paths, thus the pruning should be beneficial.
However, the speedup is only marginal 1.43 and 1.78
respectively. Moreover, the queries are the low selectivity
versions of queries Q8 and Q11, which perform to the
expectation with speedups of 5.87 and 9.41. The
explanation lies in the extensive computation performed
by both queries due to the queries’ low selectivity, for
instance Q9 returns 38,760 twig matches. Thus, the
advantage that the pruning is inducing by loading fewer
nodes to be probed is overshadowed by the computational
time per se.

6.4 ToXinScan vs. TwigStack

In Figure 8a we also plotted the performance of
ToXinScan vs. TwigStack and as expected, on a punctual
query the performance of ToXinScan remains constant
while the performance of TwigStack degrades
significantly.

In Figure 8b we plotted the speedup with document
size of ToXinScan versus TwigStack for queries QS, Q9
and Q10. As shown, there is a wide difference in speedup
between these queries. At the bottom of the heap is QS,
the punctual query, with the lowest speedup. The
explanation lies in the highly selective predicate on the id
attribute. That is, TwigStack consumes time only by
filtering an additional number of id attributes (three more
id streams, to be exact) but in the end retains only one
instance of the id attribute, the one that satisfies the
predicate. Overall ToXinScan’s improvement ranges
between 3 and 9 times.

The second query, Q9, is similar to Q8 but missing the
predicate on the id attribute, thus it is a low selectivity
query. Because there is no longer a predicate, TwigStack
does not perform any filtering and loads and probes all
streams for any occurrences of the id attribute. This
behavior resulted in a significant performance advantage
for ToXinScan reflected in the graph, in the range of 20 to
60 times.

The best improvement is exhibited by query Q10, a
heavy twig query, from 33 to 122 times. The reason is that
each of the element tags in the query appears in many
sections of the document in different paths, thus
TwigStack does an extensive computation that does not
yield any useful matches.

Queries Q11, Q12 and Q13 have a similar twig
structures with different values for the selection predicates
on the id attribute. The first value “217” is at the
beginning of the area that has to be queried, namely the
sub-tree under the person element; the “21,125” value is
in the middle of this area while the value “48,027” is at
the end. Because the queries have the same twig structure
one might expect that the performances of these queries to
be similar. Nevertheless, it is not the case, and as it can be
inferred from Figure 8c; while the performance of
ToXinScan remains constant disregarding the value of the
selection predicate, the performance of TwigStack
degrades significantly. The explanation lies in the fact that
ToXinScan performs an optimization, thus rightly
identifies the position of the answer nodes.

In Table 4 we present the speedups of ToXinScan
versus TwigStack for all queries from the query set. As
can be inferred from the table, ToXinScan outperforms
TwigStack marginally for punctual queries, with speedups
from 2 to 9. The explanation relies in the reduced
computation that has to be perform in order to process the
answer, thus ToXinScan’s optimization strategy does not
produce a significant difference.



a8

53 M8 236 414 649 829 1125 236 414
XML file size (MB)

XML file size (MB)

3,000

2,500

2,000

£ 1.500

@ ToxnScan|
 TwigStack

1,000
500
0

an

a2

Q13

Figure 8a: Q8 execution time (ms) for
TwigStack, TwigStackScan,
ToXinScan with document size

The computation required for grouped twig queries is
slightly higher than punctual queries, thus the
optimization starts to pay-off inducing speedups ranging
from 12 to 28. For low selectivity queries and scattered
twig queries the optimization strategy proves extremely
beneficial inducing speedups ranging from 51 to 122.

of

Figure 8b: Speedup
TwigStack/ToXinScan
for Q8, Q9, Q10 with document size

magnitude

Figure 8c: Execution times (ms) for
queries Q11, Q12 and Q13 for
ToXinScan and TwigStack

over the

respective

TwigStack

implementation. The relative size of the PRIX wvs.
ToXinScan speedups depends on the query.

Query | TwigStack | ToXinScan | TwigStack/

(ms) (ms) ToXinScan
Q1 7,108 130 54.68
Q2 3,015 39 77.31
Q3 386 90 4.29
Q4 430 46 9.35
Q5 188 87 2.16
Q6 6,430 80 80.37
Q7 6,687 131 51.05
Q8 699 75 9.32
Q9 5,442 95 57.28
Q10 8,326 68 122.44
Q11 1,167 90 12.97
Q12 1,816 92 19.74
Q13 2,746 95 28.80
Q14 4,493 93 48.31

Table 4: ToXinScan vs. TwigStack

6.5 ToXinScan vs. PRIX

It is no surprise that the speedup of PRIX over TwigStack,
due to the use of a full index, is considerable. What comes
as a surprise is that employing a path summary, with no
index data structures, and simple heuristics we achieve a
speedup of the same order of magnitude, while
performing less work, since building the PRIX data
structures is quite computationally intensive. In Table 5
we present the speedups of ToXinScan and PRIX versus
TwigStack. The speedups of PRIX versus TwigStack are
taken from the PRIX papers [28, 29]. The comparison
between ToXinScan and TwigStack was performed with
our implementation of both methods

As can be inferred from Table 5, both ToXinScan and
PRIX achieve a speedup in the range of one to two orders

Query TwigStack/ TwigStack/PRIX
ToXinScan (from [28, 29])
Q1 54.68 14.01
Q2 77.31 145.00
Q5 80.37 43.15
Table 5: Speedup of TwigStack / ToXinScan vs.
TwigStack / PRIX

6. Conclusions

We present experimental results that characterize the
performance of an XML query optimizer that takes
advantage of path summaries in conjunction with two
optimization strategies: holistic path summary pruning
and access-order selection.

The use of path summaries augmented with data
statistics in the ToXop optimizer provides similar
advantages to the use of system catalog information in
relational query optimizers.

Path summaries enable our first optimization strategy,
holistic path summary pruning, which reduces
considerable the query plan search space by identifying
the regions from the document that contain the query
answer. We provide experimental data that suggest that,
when applicable, this strategy can easily yield
improvements of an order of magnitude.

Access-order selection, the second optimization
strategy that we propose, works in conjunction with
holistic path pruning, and further reduces the plan search
space by using cost-based heuristics. Employing access-
order selection can easily yield improvements of two
orders of magnitude with respect to algorithms that work
on encoded-element streams. Moreover, the
improvements are in the same order of magnitude as those
achieved by state-of-the-art indexing techniques for XML
documents. The advantage of our proposed approach lies
in the reduced cost of creating a path summary (which can
be done with essentially one pass over the document),
compared with indexing techniques that require a



substantially larger amount of computation to generate the
indexes. In summary: with little (effort to preprocess
XML data) you can achieve a lot (of performance
improvement in query processing)!

Future work includes incorporating and experimenting
with a wider variety of native XML indexing access
methods within the uniform framework described here.
We are also interested in extending the use of XML-
specific statistics to support better cost models and cost
estimates.

Bibliography

[1] A. Aboulnaga, A. Alameldeen, J. F. Naughton,
“Estimating the Selectivity of XML Path Expressions
for Internet Scale Applications”, Proc. VLDB, 2001.

[2] S. Al-Khalifa, H.V. Jagadish, “Combining Operators
in XML Query Processing”, Proc. VLDB, 2002.

[3] S. Al-Khalifa, H.V. Jagadish, N. Koudas, J.M. Patel,
Divesh Srivastava, Y. Wu, “Structural Joins: A
Primitive for Efficient XML Query Pattern
Matching”, Proc. ICDE, 2002.

[34] A. Arion, A. Bonifati, G. Costa, S. D'Aguanno, I.
Manolescu, A. Pugliese, “Efficient Query Evaluation
over Compressed XML Data”, Proc. EDBT 2004.

[4] D. Barbosa, A. Barta, A.O. Mendelzon, G.A. Mihaila,
F. Rizzolo, P. Rodriguez-Gianolli, “ToX - The
Toronto XML Engine”, Proc. Int. Workshop on Inf.
Integration on the Web, 2001.

[5] A. Barta, “Access Methods for XML Query
Optimization”, Ph.D. Thesis, U. of Toronto, 2005.

[6] A. Barta, M.P. Consens, A.O. Mendelzon, “XML
Query Optimization Using Path Indexes”, Proc.
XIME-P 2004.

[7] N. Bruno, D. Srivastava, N. Koudas, “Holistic Twig
Joins: Optimal XML Pattern Matching”, Proc.
SIGMOD, 2002.

[35] P. Buneman, B. Choi, W. Fan, R. Hutchison, R.
Mann, S. Viglas, “Vectorizing and Querying Large
XML Repositories ”, Proc. ICDE 2005.

[8] V. Christophides, S. Cluet, G. Moerkotte, “Evaluating
Queries with Generalized Path Expressions”, Proc.
SIGMOD, 1996.

[9] M. P. Consens, T. Milo, “Algebras for Querying Text
Regions”, Proc. PODS, 1995.

[10] A. Deutsch, L. Popa, V. Tannen, “Physical Data
Independence, Constraints, and Optimization with
Universal Plans”, Proc. VLDB, 1999.

[11] MLF. Fernandez, D. Suciu, “Optimizing Regular Path
Expressions Using Graph Schemas”, Proc. ICDE,
1998.

[12] T. Fiebig, S. Helmer, C. Kanne, G. Moerkotte, J.
Neumann, R. Schiele, T. Westmann, “Natix: A
Technology Overview”, Proc. Web, Web-Services,
and Database Systems, 2002.

[13] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F.
Riccardi, T. Westmann, M. J. Carey, A. Sundararajan,

G. Agrawal, “The BEA/XQRL Streaming XQuery
Processor”, Proc. VLDB, 2003.

[14] R. Goldman, J. Widom, “DataGuides, “Enabling
Query  Formulation  and  Optimization in
Semistructured Databases”, Proc. VLDB, 1997.

[15] A. Halverson, J. Burger, L. Galanis, A. Kini, R.
Krishnamurthy, A.N. Rao, F. Tian, S. Viglas, Y.
Wang, J.F. Naughton, D. J. DeWitt, “Mixed Mode
XML Query Processing”, Proc. VLDB, 2003.

[16] H.V. Jagadish, S. Al-Khalifa, A. Chapman, L.V.S.
Lakshmanan, A. Nierman, S. Paparizos, J. Patel, D.
Srivastava, N. Wiwatwattana, Y. Wu, C. Yu,
“TIMBER: A Native XML Database”, VLDBJ, 2003.

[17] H.V. Jagadish, Laks V.S. Lakshmanan, Divesh
Srivastava, K. Thompson, “TAX: A Tree Algebra for
XML”, Proc. DBPL, 2001.

[18] H. Jiang, W. Wang, H. Lu, J.X. Yu, “Holistic Twig
Joins on Indexed XML Documents”, Proc. VLDB,
2003.

[19] R. Kaushik, P. Shenoy, P. Bohannon, E. Gudes,
“Exploiting Local Similarity for Indexing Paths in
Graph-Structured Data”, Proc. ICDE, 2002.

[20] Lucent's Galax, http://db.bell-labs.com/galax/

[21] A. Marian, J. Siméon, ‘“Projecting XML
Documents”, Proc. VLDB, 2003.

[22] J. McHugh, J. Widom, “Compile-Time Path
Expansion in Lore”, Proc. Workshop on Q. Proc. for
Semistr. Data and Non-Standard Data Formats, 1999.

[23] J. McHugh, J. Widom, “Query Optimization for
XML” Proc. VLDB, 1999.

[24] T. Milo, D. Suciu, “Index Structures for Path
Expressions”, Proc. ICDT, 1999.

[25] G. Miklau, “UW. XML Repository”,
http://www.cs.washington.edu/research/xmldatasets.

[26] N. Polyzotis, M.N. Garofalakis, Y.E. loannidis,
“Selectivity Estimation for XML Twigs”, Proc.
ICDE, 2004.

[27] C. Qun, A. Lim, K. W. Ong, “D(k)-Index: An
Adaptive Structural Summary for Graph-Structured
Data”, Proc. VLDB, 2003.

[28] P.R. Rao, B. Moon, “PRIX: Indexing and Querying
XML Using Prufer Sequences”, Proc. ICDE, 2004.

[29] P.R. Rao, B. Moon, “PRIX: Indexing and Querying
XML Using Prufer Sequences”, Technical Report
TR-03-06, U. of Arizona, Tucson, 2003.

[30] F. Rizzolo, A.O. Mendelzon, “Indexing XML Data
with ToXin”, Proc. WebDB, 2001.

[31] H. Wang, S. Park, W. Fan, P.S. Yu, “VIST: A
Dynamic Index Method for Querying XML Data by
Tree Structures”, Proc. SIGMOD, 2003.

[32]1 Y. Wu, J. Patel, H.V. Jagadish, “Using Histograms to
Estimate Answer Size for XML Queries”, Journal of
Information Science 2002.

[33] C. Zhang, J.F. Naughton, D.J. DeWitt, Q. Luo, G.M.
Lohman, “On Supporting Containment Queries in
Relational Database Management Systems”, Proc.
VLDB, 2001.


http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/b/Bonifati:Angela.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/c/Costa:Gianni.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/d/D=Aguanno:Sandra.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/m/Manolescu:Ioana.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/m/Manolescu:Ioana.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/p/Pugliese:Andrea.html
http://www.informatik.uni-trier.de/%7Eley/db/conf/edbt/edbt2004.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/b/Buneman:Peter.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/c/Choi:Byron.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/h/Hutchison:Robert.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/m/Mann:Robert.html
http://www.informatik.uni-trier.de/%7Eley/db/conf/icde/icde2005.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/c/Christophides:Vassilis.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/m/Moerkotte:Guido.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/d/Deutsch:Alin.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/f/Fern=aacute=ndez:Mary_F=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/r/Riccardi:Fabio.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/w/Westmann:Till.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/c/Carey:Michael_J=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Sundararajan:Arvind.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/g/Goldman:Roy.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/b/Burger:Josef.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/g/Galanis:Leonidas.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/k/Kini:Ameet.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/k/Krishnamurthy:Rajasekar.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/r/Rao:Ajith_Nagaraja.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/t/Tian:Feng.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/v/Viglas:Stratis.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/w/Wang:Yuan.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/n/Naughton:Jeffrey_F=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/d/DeWitt:David_J=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/w/Wang:Wei.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/l/Lu:Hongjun.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/y/Yu:Jeffrey_Xu.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/k/Kaushik:Raghav.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Shenoy:Pradeep.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/g/Gudes:Ehud.html
http://db.bell-labs.com/galax/
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Sim=eacute=on:J=eacute=r=ocirc=me.html
http://www-db.stanford.edu/pub/papers/re.ps
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/m/McHugh:Jason.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/m/Milo:Tova.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/g/Garofalakis:Minos_N=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/i/Ioannidis:Yannis_E=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/q/Qun:Chen.html
http://www.cs.arizona.edu/people/bkmoon/papers/icde04prix.pdf
http://www.cs.arizona.edu/people/bkmoon/papers/icde04prix.pdf
http://www.cs.arizona.edu/people/bkmoon/papers/icde04prix.pdf
http://www.sigmod.org/sigmod/dblp/db/indices/a-tree/p/Park:Sanghyun.html
http://www.sigmod.org/sigmod/dblp/db/indices/a-tree/f/Fan:Wei.html

