
Benefi Query Optimizer
Supporting Multiple Access Methods

cien
onto

10 King’s College Rd., M5S
3G4, Toronto, ON, Canada

P. Conse

inee
of Toro

5 King’s College Rd., M5S
3G8

co

rto O. Mendelzon

omputer Science
ersity of Toronto

10 King’s College Rd., M5S
to, ON, Canada
cs.toronto.edu

strat
evalu
se of

nd re

mon
ement

pported. In additio
he speedups obtained using

summaries with those reported for index-b
w
z

ef

 Lan
fo
 o

anipulat
XML documents. XQuery and its widely adopted Path

r a

d
im

/SQRL [13], ToX
.g. Galax [20]) and work that addresses

certain aspects of XQuery processing such as XPath, twig
queries and index structures for XML query evaluation.

in the area addresses
uation, for the rest of
nd XML query terms

ery processing is the
 XML system, XML

pecial purpose data
 execution. The most
lies on an element
on used in region

tructure with element
ng this type of data
essions requires joins

tural joins [3]. Also

ding are the stack algorithms that
y using stacks for

ext, PathStack is proven
g single path queries [7].

hms the region algebra encoded
or the remain on this
ents encoded in these

ded streams, for elements and
attributes, and value streams for CDATA.

ontains several XPath
ven in Figure 1.

l")//supplier,

ts of Path Summaries in an XML

Attila Barta

Dept. of Computer S ce Information Eng
University of Tor

Mariano ns Albe

ring, MIE Dep. of C
University nto Univ

atibarta@cs.toronto.edu

Abstract

, Toronto, ON, Canada
nsens@cs.toronto.edu

3G4, Toron
mendel@

1. Introduction
Over the past few years the Extendible Markup
(XML) has become the dominant data
information exchange. With the proliferation
this format comes the motivation to query and m

egies
ation
 path
ly on

strate
s for
n, we
path
ased
-cost
ation
its as

Moreover, because extensive work
only some aspects of XQuery eval
the paper we will use the XQuery a
interchangeable.

An important aspect of XML qu
encoding used. That is, in a native
documents can be pre-parsed into s
structures in order to speedup query
employed such data structure re
encoding derived from the notati
algebras [9]: an inverted-file-like s
name, start, end and level. Utilizi
structures for evaluating path expr
between lists of encoded elements, referred to as
containment queries [33] or struc
based on region enco

We compare several optimization
implemented in an XML query
system. The strategies incorporate the u
summaries into the query optimizer, a
heuristics that exploit data statistics.
We present experimental results that de
a wide range of performance improv
the different strategies su
compare t

methods. The comparison shows that lo
path summaries combined with optimi
strategies achieve essentially the same ben
more expensive index structures.

improve on structural joins b
intermediate results. In this cont

guage itrmat for Because, in stack algor
to be optimal for processin

f data in elements are treated as streams, f
paper we will refer to XML docume structures as element encoX

subset constitute the predominant proposal fo
XML query language standard.

The XQuery related work is extremely
ranges from native XML databases (e.g. T
Niagara [15], Natix [12], BEA
XQuery systems (e

native

iverse. It
ber [16],
 [4]), to

An XQuery expression frequently c
sub-expressions, such as the example gi
for $x in document("file:/supplier.xm

$y in document("file: /catalog.xml")//item
where $x/supplier_no = $y/supplier_no and
 $x/city = "Newark" and $x/state = "New Jersey"
return <result> { $y/name } { $y/description } </result>

Figure 1: Sample XQuery expression

The example query joins a supplier document and a

catalog document based on supplier_no, returning the
name and description of items in the catalog for those
suppliers located in Newark, New Jersey. The XPath
expressions that occur in the query above and apply to the
supplier document are: ‘//supplier’, ‘//supplier/city’,

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

‘//supplier/supplier_no’ and ‘//supplier/state’. A
ure 2

ou
 a
ap
e
ss

m

l
ery. Twig

r improved by using index structures (
stream an

 of irrelevant nodes. T
].

 fragment

proposed, such as ViST [31] and PRIX [28]. N
construction requires extensive pre-processing
return, these indexes can yield significant spee
compared with access methods such as TwigS
uses a prefix tree and virtual tries stored on disk
to achieve this improved performance. Simil
also employs tries stored on disk while using a
based on Prufer sequences.

Path summaries are another important wo
query processing. A path summary, also k
structural summary or as a path index, re

summaries only su
of a sample supplier document is shown in Fig

Although each of the XPath expressions in a
query, such as the example above, can be
separately, a much better approach is to gr
queries into a so called twig query, known also
tree. The group of XPath expressions that
certain document (such as suppliers in th
above) can be computed in a single acce
invocation through the document. Most of th
processors as well as structural join algorith
this approach [e.g. 7, 18]. The most cited app
twig query processing is TwigStack [7] a genera
PathStack from one path to a twig qu

.
n XQuery
computed
p XPath
s pattern
ply to a
example

 method
e XPath

s support
roach for
ization of
Stack can
XB trees)
d hence

evaluation that is, no twig query sup
The most work in XML query

context of the native XML databa
optimizer chooses the best order f
[2]. The Niagara optimizer incorpo
evaluating path expressions [15]. Sy
and BEA/SQRL [13] use built in ru
However, to the best of our knowled
optimizer up-to-date is the Lo
considered different evaluation stra
in an XML tree, as well as an ag
strategy in order to reduce the searc
are query optimization techniques in
For instance, query re-writing [11]
[22] were also proposed for optimizin

be furthe
to index the encoded element

he index-

/state>

 </state>

t

s is not a
ually one

path summaries. A somehow
projecting the XML document a
expressions [21]. Also relevant
techniques based on summaries and

In this paper we focus on strat
optimization. These strategies are pr
of two-level optimization that we p
two-level optimization strategy, th
of the traditional join order selecti
cost-based selection of access meth
consists in a cost based selection o
XPath expressions, i.e. twig queries.
the access method selection from th
was also proposed in the relationa
level” or “multi-faceted” optimiz
context

supporting the skipping
rithm is known as TwigStackXB [7based algo

<suppliers>
<supplier> <supplier o_n > 1 </supplier_no>
 <name> Gore </name>
 <city> Newark </city> <state> Delaware <

 </supplier>
 <supplier> <supplier_no> 2 </supplier_no>

 <name> Dupont </name>
 <city> Newark </city> <state> New Jers

 </supplier>
</suppliers>

Figure 2: Sample supplier.xml docume

Building the encoded element data structu

computationally expensive process - requiring
and at most two passes over the document
novel node index structures designed to eva
queries and not on

ey

n

re
us
. Re
lu

ly single path queries h

,
d
ta

arly,
n enc

rk in
nown
prese

summarization of the paths that actually occur in a
document. That is, for each distinct path in an XML
document there is a distinct path in the path summary
[e.g. 14, 24, 30] or an approximation of it [e.g. 19, 27].
Path summaries are used as back-ends that is, the XML
query is evaluated by traversing the path summary alone.
Each path summary implementation uses a particular
strategy to evaluate the query. The common denominator
of these strategies is that they use path pruning in order to
limit the search space. Moreover, the majority of path

pport individual path expressions
port.
optimization is in the
ses. Thus, the Timber
or the structural joins
rates a cost-model for
stems like Natix [12]
les for optimization.

ge, the most complex
re optimizer which
tegies for each branch
gressive plan pruning

h space [23]. There
 path summaries too.
 and path expansion

g the evaluation of
similar approach is
ccording to the path
are query evaluation
compression [34, 35].
egies for XML query
esented in the context

roposed in [6]. In the
e higher level consists

on together with the
ods. The lower level
f evaluation plans for
 Although, separating
e join order selection,
l mode, e.g. “multi-
ation, in the XML

there is a major difference. That is, in the
 has a fixed cost and

 the XML model, due
 embedded into the
s do not have fixed

the XPath evaluation
an additional layer of
evel, hence the two-

ation model.
nd the optimization
er are incorporated in
art of ToX, a native

 at University of

 presented in [6] and
ery optimization that

incorporates several novel characteristics. The main
contributions of this paper are:
• We propose the usage of path summaries into the

optimizer in order to exploit schema information. In
this respect we split the path summaries into a
schema part and a node instance part. The schema
part is used for optimization while the node instance
part is used as back-end.

• We propose two novel optimization strategies:
holistic path summary pruning and access-order

cently,
ate twig-
ave been
ode index

relational model each access method
the optimizer is aware of it, while in
to the XPath expressions that are
access methods, the access method

but in
ups when
ck. ViST

B

costs, rather the cost varies with
strategy. This observation suggests
optimization at the access method l
level optimizas -trees

PRIX
oding

XML

The two-level optimization a
strategies that we present in this pap
ToXop, a query optimizer that is p
XML database under development
Toronto [4]. as a

nts a In this paper we extend the work
we describe an approach to XML qu

selection. The former reduces the plan s
by identifying early the portions of the do
will be part of the answer. This approach d
the traditional path summary pruning by
the path pruning from the query evaluati
Consequently, the holistic path pruning c
outside a path summary, e.g. with a

earch space
cu
if
 s
o
an
n
a
e

•
in
it

itude as the speedup ob
l

st
a

ariz
ti
p
n
p

er

or
k
O
ns
 the

sim
 i
L

he
s
ti
se

m
a

ur
r
a

,
based evaluation algorithms for twig queries were not
considered at the time when the optimization techniques
for Lore were proposed. Hence one of our contributions is
a novel combination of all of these proposed techniques

In the following section we introduce the usage of path
summaries in the query optimizer. Section 3 describes
briefly the ToXop optimizer. Section 4 and 5 introduce
the holistic path summary pruning and access-order
selection strategies. Section 6 contains experimental
results. We conclude by mentioning future research in
Section 7.

query optimizer
e literature can be

[e.g. 14, 24, 30] or
9, 27]. The exact path
path in the XML
mmaries record only

sually paths up to a
enominator of both
valuating regular path

s are used as back-
ontext the exact path
as back-ends but as
XML document or

ents. By existing schema we
e of the document,
ma. The concept of
l is similar with the
odel.

is essential to query
exact path summaries are

incorporation of the
mizer. In this respect
mmary as the existing
izer. Both ToXin and

database [4].
he structure of the

ype or attribute type
 represent it. The case
an one ToXin node is
part of two distinct
t nodes, which are
he elements. For each
ble, which records the
ribute, as well as its
es and attribute nodes
cords the content of
 node ID obtained in

are tied to a particular
y. In the ToXin case
orks as follows: first,

 is checked if it matches any
d, the corresponding
selected. Next, the

tom-up manner.
Thus, first the predicates are evaluated against the Value
Table. Then, for the selected records in the Value Table
the corresponding records from the Instance Table are
selected and so on until the root is reached. The advantage
of using this strategy occurs in the case of selective
predicates on one of the leaf nodes, thus only a few
number of parent nodes have to be evaluated.

Most path summaries, like ToXin, are designed to
evaluate individual path expressions. However, in the
presence of several path expressions to be evaluated in
one pass (i.e. twig queries), a particular evaluation might

ment that
fers from
eparating
n per se.
 be used

 element
tegy uses
uristic in

blish the
g of path

s for the
speedup

 is

2. Path summaries into the
The path summaries proposed in th
classified as exact path summaries
approximate path summaries [e.g. 1
summaries record each distinct
document while approximate path su
an approximation of the paths, u
certain depth. The common d
categories is that they are built for e
expressions. That is, path summarie
ends. However, in the XML query c
summaries can be used not only
existing schemas for a given
collections of docum

encoded stream. The latter optimization str
data statistics and (simple) cost-based h
order to compute an efficient plan.

 We present experimental results that esta
benefits of the optimizer-driven early prun
summaries as well as substantial benef
heuristic based optimization. The
attributable to these optimization strategies
same order of magn

of the
tained by
y positive
orage and
ries are

understand the underlying structur
rather than its DTD or XML Sche
existing schema in the XML mode
concept of schema in the relational m

Because schema information
optimization and because

querying node indexes. This is a surprising
result, considering how much cheaper (in
index construction costs) path summ
compared to node indexes.

The paper’s contributions can be summ ed as
stics and
eedups in
dex based
reprocess
formance

k that we
 in query
ODB) [8,
 (ASRs)

exiting schemata, we propose the
exact path summaries into the opti
we use ToXin [30], an exact path su
schema in ToXop, our query optim
ToXop are part of ToX a native XML

The ToXin path summary mirrors t
document thus, for each element t
there is at least one ToXin node to
when an element generates more th
encountered when the element is

follows: using path summaries, simple sta
simple cost-based heuristics we can achieve s
the same order of magnitude as more “heavy” i
systems. In summary: with little (effort to
XML data) you can achieve a lot (of p
improvement in query processing)!

We note some connections between the w
present in the XML context with earlier wor
optimization for Object Oriented Databases (
10]. For instance, Access Support Relatio
provide an indexing mechanism for paths in
manner as XML path summaries. Despite the
in the OODB context the schema information
while this is frequently not the case in the XM
Moreover, ASRs may cover only some paths
database instance, while in the XML context t
summaries cover all paths from the document in

Using path summaries in the query evalua
entirely new: the approach was also propo

 same
ilarities,

s known,
 context.
from the
structural
tance.
on is not
d in the

aries used
ries used
e (when

paths. In addition there are tex
generated from the text content of t
ToXin node there is an Instance Ta
occurrences of the element or att
parent instance. Moreover, text nod
also have a Value Table, which re
each node. Each ToXin node has a
depth first (pre-order) traversal.

The majority of path summaries
path expressions evaluation strateg
this evaluation is bottom-up and w
the given path expression

context of the Lore system [23]. The path sum
by ToXop and DataGuides [14] (the path summ
in Lore) are essentially the same struct
considering XML trees). However, the Lo
evaluated queries using DataGuides in combin
other additional index structures. Furthermore

e system
tion with

the stack-

path from the ToXin tree. Secon
Instance and Value Tables are
evaluation process is performed in a bot

not be the most efficient, thus defying the role
optimizer. With this observation in mind, w
additional structure to ToXin, namely navigatio
NAV for short, in order to support top/down na
As a result of this enhancement, top-down
strategy can now be taken into consideration
optimizer. This approach was also considered
optimizer, where each individual path in a
could have been evaluated using either a top-
bottom-up strategy. However, considering a
combinations is extremely costly, and even em
aggressive plan pruning technique, as propose

 o
e ad

n

 e
b
by
X
d
ll p
pl

n

p

plans.
m

n
le
. 1
r

nevertheless expressive enough to sust
optimization strategies that we employ. The stat
we collect for each element are: number of inst
the element (NCARD), number of distinct valu
element (ICARD) and fan-out (Fout) – average n
sub-element instances for each sub-element.

f a query

Figure 3: A ToXin for the supplier.xml d

manner
ded an

al tables,
vigation.
valuation
y a query
 the Lore
ML tree
own or a

query optimization.
Up to this point, the TI structures

NAV and Value tables, which are th
structures. However, these data
generalized. That is, instead of stori
in a certain encoding we can us
instance, the node instances can b
algebra enco

ossible
oying an
d in the

t. In this
heuristics
roved by

we use the more generic term of En
and Value Stream for the encodi
element/attributes and values.

To conclude the description of th
use: ToXin trees employed in ToXo
statistical information about the

Lore optimizer, the number is still significa
respect in section 4 and 5 we present simple
that reduce the search space considerably and (
the experimental data) still produce efficient query

To this point, ToXin provides schema infor
multiple evaluation strategies; however it mi
important component for query optimizatio
statistics. There is extensive work in col
appropriate statistics for XML documents [e.g
however the statistics that we use are rathe

ation and components, the tree
sses one
, namely
cting the
, 26, 32],
simplistic
ain the
istics that
ances for
es for the
umber of

node instance information, called TI,
encoded according to the processing

3. The ToXop query optimiz
ToXop is the query optimizer in T
designed with relational query optim
order to exploit the benefits of deca
area. ToXop has two sets of opera
and physical operators, and an
technique, which permits different o
to be plugged-in. The logical op

 input a collectio
ocum

ToXin, similar to other path summaries, was de
to be used as a back-end. Nevertheless, because ToXin
reflects the structure of the document we propose the
usage of ToXin as the existing schema for the document.
However, keeping all data from node instances might be a
burden. This is the reason why we divide the ToXin
structure into two components: the ToXin summary tree
(TT) and the node instance data structures (collectively,
TI). According to this split, the TT is the existing schema
of the document and given that it is augmented with
statistics we can use the TT as system catalog, in a similar

with the usage of system catalogs in relational

 contain the Instance,
e original ToXin data

structures can be
ng the node instances
e any encoding. For
e stored in a region

ding. Consequently, as presented in Figure 3,
coded Element Stream
ngs that we use for

e ToXin trees that we
p are augmented with

XML document that they
summarize and have their structure split into two

 part itself, called TT, and the XML
 which can be

 algorithms used.

er
oX [4]. ToXop was

ization in mind in
des of research in this
tors, logical operators
 open optimization
ptimization strategies
erators are the Tree
 operators, while the

ecific (i.e. for data
.e. a join operator can

as a double pipelined-
 only on the ToXop

 the ToXop access
es that they employ.

 in ToXop is essentially the
 the logical algebra
r, as we will describe
access methods than
ization approach that

ad of using structural
logical operator L takes as

n of trees or a document D and a pattern
 collection of n witness trees:

1 2, … , WTn]
The witness trees are those sub-trees that satisfy the
pattern tree. Because each collection of trees can be
transformed into one document (by adding a virtual root),
in this paper we treat a document D and a collection of
trees as the same.

As an example, consider the TAX algebra expression
below, which is a translation of the query in Figure 1:

Projection //item/name, //item/description
 (Join //item/supplier_no = //supplier/supplier_no (
 Selection(‘supplier.xml’, PT1),
 Selection(‘catalog.xml’, PT2)))

Algebra for XML (TAX) algebra
physical operators are back-end sp
access) or implementation specific (i
be implemented as a merge-join or
join.) In this paper we concentrate
physical operators, moreover on
methods and the optimization strategi

ebra usedThe logical alg
TAX algebra [17]. TAX is also
employed by Timber [16]. Howeve
below, ToXop relies on different
Timber and employs a novel optim
exploits structural summaries inste
joins. In the TAX algebra, each

ent tree PT and outputs a

signed
L(D, PT) = [WT , WT

Where PT1 and PT2 are pattern trees, a conca
XPath expressions augmented with value pre
Figure 4 we present the pattern tree PT1 asso
variable $x from the query in Figure 1. PT1 i
from concat

te
d
ci
s

enating the four XPath expressions: /
//supplier/supplier_no, //supplier/city,
//supplier/state.

nation of
icates. In
ated with
 obtained
/supplier,

and

one is that the traditional path summary
intrinsic to a particular path summary evaluati

stack algorithms (i.e. PathStack, Tw
algorithms work on region algeb
streams. For each element that appe
algorithms will load the enco
corresponding to the element. If an
query occurs in a document within di
any stack algorithm will load and pr
all distinct paths where the elemen
fact that only one of these stream
answer. To exemplify this beha

 likewise
m can be

complex example than the ones in the sections above. In
Figure 5a we present a fragment from
[25] with the author’s text value removed fo

The twig query from Figure 5
following query ‘//inproceedings[
[/year="1990"]’. That is, we
inproceedings element where the aut
and the year is ‘1990’. In Figure 5c
from a path summary for the DBLP
neutral notation R_a1, R_a2, et
encoding that might be used to store
the path summary. For instance,

Figure 4: The pattern tree PT1

The query optimization strategy in ToXop is

mpl
),
ie

lection) uses a System R like optimization strat
Finally, a note with regard to TAX

resent in th
c
te
u

t
unin

g
er
a

nce between the holistic pruning and the t
p
on

while the holistic path summary pruning is gen
any path summary evaluation method can be used
afterwards. For instance, both TwigStackScan and
ToXinScan (two of the ToXop access methods that we
describe later) use holistic path summary pruning as their
first evaluation step while performing a distinct second
evaluation step according to the encoding that each
employs.

Because holistic path pruning is generic, it can be used
in conjunction with any path evaluation algorithm in order
to reduce the search space. For instance, consider the

igStack). The stack
ra encoded element
ars in the query, the

ded element stream
element referred in the

fferent distinct paths,
obe the streams from
t occurs, despite the
s contributes to the

vior we use a more

 the DBLP data set
r simplicity.

b is induced by the
/author="Jim Gray"]
retrieve the entire

hor is ‘Jim Gray’
we present a fragment
 data set. We use the
c. to represent any
author information in
information for the
I structures described

ed by a region algebra
 the stack algorithms.
agments of encoded
e author (Tauthor) and
 stack algorithms.
ar in two structurally
n article sub-trees as

dvantage of having
nguish between these

 occurrences of author and year. In Figure 5c we
g in a thick line to the
e target elements lie.
oad all the year and

r all possible parents,
. This is illustrated in Figure 5d

 year y3, which are
oceedings, but are in

esults that an access
gorithm could exhibit
ng holistic schema
xperimental data that
olistic path summary

improves TwigStack by an order of magnitude.
The ToXop access methods that employ the holistic

path summary pruning are the SumScan access methods.
SumScan is a generic access method that operates on
ToXin path summary structures. In ToXop we have two
implementation of SumScan, namely TwigStackScan and
ToXinScan. SumScan is a ToXop access method, thus it
takes as input a document D (where TTD and TID are
available) and a pattern tree PT, and outputs a sequence of
witness trees that satisfy the pattern tree PT. The signature
of the SumScan operator is:

open. That is, any query optimization paradig
plugged-in. In the current implementation we e
two-level optimization strategy (see section 1
the lower level uses the optimization strateg
present in this paper, while the upper level (the

oy the
 in which
s that we
join order
egy.
and the
is paper.
ontext of
xt of any

eries, i.e.

author a1 might be encoded in the T
in section 2, or it might be represent
encoding similar to the one used by
In Figure 5d we present two fr
element streams associated with th
year (Tyear) elements, as used by the

Note that author and year appe
different sub-trees, i.e. they appear i
well as inproceedings sub-trees. The a
a path summary is that we can disti
different

se

optimization strategies that we p
Although, we present these strategies in the
TAX, these strategies can be applied in the con
XML query algebra that recognizes twig q
pattern trees in the TAX parlance.

4. Holistic path summary pruning
In this paper we propose two query op
strategies, namely holistic path summary pr
access-order selection. Path summary prunin
means novel; any path summary performs c
pruning as part of the path expression evalu
differe

imization

highlight this information by drawin
parts of the path summary where th
In contrast, a stack algorithm will l
author encoded-element streams fo
not only for inproceedings

g and
is by no
tain path
tion. The
raditional
runing is
 method,
eric, thus

by the authors a3 and a4 and the
descendents of article but not inpr
the streams nonetheless.

From the example above it r
method that incorporates a stack al
significant improvement by usi
pruning. In section 6 we present e
suggests that, when applicable, h

cum cument fragment;

d) element

ID), PT))

 operators:
e suggest,
 the path
n specific
runed path
any oth

ion of Scan
n
ntation for

 w

ToXin tree Tx,
b-t es o

satisfy the pattern tree PT. Moreover, the nod
e

n
p
 s

X

In Figure 6 we present the result of pruning the ToXin
tree generated from the document from Figure 2
according to the pattern from Figure 4.

An MTT node is a data structure that contains: a
pointer to an encoded element stream (Instance and NAV
Tables for ToXinScan, region-algebra encoded streams
for TwigStackScan); a pointer to a value stream (Value
Tables for ToXinScan, region-algebra encoded streams
for TwigStackScan); statistical information and selection
predicates. True to the ToXin inheritance, the MTT

structure is also split into a tree structure TT and a data
structure TI. The advantage of having the structure split is
that the pruning operation is executed only on the TT tree,
thus on a very small data structure. After the pruning is
completed, only the corresponding TI data structures are
retained.

Figure 5: a) A fragment from a DBLP do ent; b) a twig query; c) the ToXin tree for the do
 encoded streams for the document

Therefore, PruneToXinTree takes a patter
and a ToXin tree, noted (TTD, TID), and out
matched ToXin trees, noted as MTXi

D,PT, that
pattern tree PT:

PruneToXinTree ((TTD, TID), PT) =
 = [MTX1

D,PT, MTX2
D,PT, … , MT

SumScan((TTD, TID), PT) =

 = Scan(PruneToXinTree((TTD, T
 = [WT1, WT2, … , WTn]

SumScan is the result of composing two
PruneToXinTree and Scan. As the nam
PruneToXinTree is the operator that prunes
summary while Scan is an implementatio
operator that evaluates the query on the p
summary or element encoded stream or
encoding used. Consequently, the implementat
determines the flavor of the SumScan impleme
instance TwigStack is the Scan impleme

er

tation, for

TwigStackScan access method.
In order to present how PruneToXinTree

have to introduce the notion of matched ToXin t
orks we

ree. For a
 we call
f Tx that
es of the
 selection

 tree PT
uts the k
atisfy the

k
D,PT]

Figure 6: A matched ToXin

5. Access-order selection
The access-order selection optimizat
conjunction with the holistic path su
is based on the observation that path
can be computed using either bot
top-down evaluation. The idea be
selection strategy is to use heur
statistics to determine which is the prop

 tree (MTT)

ion strategy works in
mmary pruning and it
s in XML documents

tom-up evaluation or
hind the access-order
istics based on data

er evaluation to
employ. We have to note here that this approach is not
novel. The Lore query optimizer also addressed this same
problem [23]. However, the Lore optimizer used a
“heavy” approach. That is, the Lore optimizer inserted a
Glue operator at each branch of the XML document in
order to determine the order of the evaluation, which
resulted in a large query plan search space. For instance,
as reported in [23] for a document with level 7, the total
number of possible plans is in the range of 8 billion, while
using the Lore pruning strategy this number was reduced
to 948, which is still a large number. Using our heuristic

given pattern tree PT and a
TTmatched ToXin Trees (M) those su re

MTT are adorned with the corresponding nod
predicates from the pattern tree PT.

we have a plan right away and, as we present i
using this pla

n
n we obtain a performance compar

r

we h
r
 c
n
f ex

’
l in
t

 i
at we have
nseq
i

 selectivity. In this case, we would like to
t

r
ri
c s order

con
a

av
 nod
to

options.
nters

st
e

, we
n

te the predicate on city.
n
pt
o

y enumerate all possible combination
he
y

tradition of relational query optimization, heuristics can
be used. In order to present these heuristics, first we have
to introduce a number of terms.

Definition 1: in the context of a MTT, given a node n
and a set of predicates S attached to the node n, we call
node selectivity factor for node n, noted Fn, the expected
fraction of instances of the node n that satisfy the
predicate set S.

Node selectivity factor is a similar concept with the
selectivity factor in System R. For instance, in the case
when the predicate set S is constituted by a single equality

 distribution of the
ystem R) then: Fn =
e number of distinct
 to the node n.

l to the node selectivity factor is
 the selectivity model
nd in [5].
umber of instances of

node n that satisfy the predicate set S, noted Nn,S, can be
 * NCARDn , where
ardinality) of the n

TT, assume a node p
 node n is a child node of p. We

) node n, noted (Sp)n,
of the node p’s instances, that are selected

n that stems from the
parent and the (child) node is part of it.

) node n and a parent

ARDn * (1/Foutp,n)

t of parent node p for the
child node n and it represents the average number of

nodes n for an instance of a parent node p.
f children nodes, the
nodes n is computed

NCARDp. Replacing the
ula we obtain:

imization strategy the
se we would like to

t selectivity.
finition 3: we call joint cost of two path expressions

st of evaluating first a
on plus the cost of
p-down evaluation.
ost is Cfirst_child-parent-

tation is that the path
ated first, using a

ile the path
luated second using a

Based on the definitions above we can present the
heuristics that we employ. These heuristics are based on a
uniform distribution assumption for node instances. By
uniform distribution we understand that child nodes with
a common parent have approximately the same number of
instances. That is, we make the assumption that the fan-
out (number of children instances) for all instances of a
certain parent node are approximately the same. We refer
to these heuristics as uniform distribution heuristics.
These heuristics employ the following two properties (that
follow from the assumption).

section 6,
able with

and direction among the MTT edges. Nevert
approach is time consuming. Consequentl

predicate and assuming a uniform
values of the node n (similar to S

the state of the art.
Another difference from the Lore optimize

have already reduced the search space by
holistic path summary pruning. Consequently,
compute plans only for the MTTs and not fo
ToXin tree. Computing the plan comprises by:
the right order selection and the right directio
We present both of these concepts by means o
For instance, for the MTT from Figure 6, in
retrieve all nodes that satisfy the selection pred
can proceed as follows. First we evaluate
‘/supplier/state’ then ‘/supplier/city
‘/supplier/supplier_no’. Finally, we intersect al
of the ‘supplier’ node obtained from the evalua
paths and the predicates. Evidently, this is an
method of evaluating the tree. The reason is th
two predicates on nodes state and city. Co
there is a possibility that one of these pred
higher

is that we
using the

1/ICARDn , where ICARDn is th
values in the Value Table associated

The choice of a mode
ave to

the entire
omputing
selection.

orthogonal to this work. However,
that we employ in ToXop can be fou

Using the selectivity factor, the n

ample.
order to

icates we
the path

then

computed as follows: Nn,S = Fn
NCARDn is the total number (c
elements.

Definition 2: in the context of a M
and a node n, such that

stances
ion of the

call parent selectivity of the (child
the fraction

nef icient after evaluating the path expressio
p n

f

uently,
cates has
 evaluate

e the next
node that
ght order

The parent selectivity for a (child
node p is computed as follows:

 (Sp)n = Nn,S * (1/Foutp,n) = Fn * NC

Where Foutp,n is the fan-ou

the higher selectivity path first and then evalua
path only for those instances of the supplie
satisfy the first path. We call this process the
selection and it is the first part of the ac
selection.

The second part of access order selection
the right direction selection. Assume that we ev
the path ‘/supplier/state’; this means that we h
supplier nodes for which there are child state
satisfy the predicate on state. The next step is
the path ‘/supplier/city’. There are two

es

stitutes
luate first
e a set of

Considering a uniform distribution o
fan-out of parent node p for children
as follows: Foutp,n = NCARDn /

children

es that
 evaluate
 The first

fan-out in the parent selectivity form

(Sp)n = Fn * NCARDp
one is to use a bottom-up evaluation and i
supplier nodes selected by the ‘/supplier/city’
those supplier nodes selected by the ‘/supplier/
The second approach is to perform a top-down
A top-down evaluation works as follows: for th
supplier that satisfy the ‘/supplier/state’ path
their corresponding city children nodes and the
city nodes only we evalua

ect the
path with
ate’ path.
valuation.
ose nodes

In the access-order selection opt

parent selectivity is important becau
evaluate first child nodes with higher paren

De
 select

 for these

 selection
imization
ach is to
s of order
less, this

, in the

that stem from the same root, the co
path using a bottom-up evaluati
evaluating the second path using a to

The notation for the joint c
second_child. The meaning of the no
‘/parent/first_child’ will be evalu
bottom-up evaluation wh
‘/parent/second_child’ will be eva
top-down evaluation.

The right order selection and right directio
are part of the access-order selection o
strategy. In order to compute them, one appr
exhaustivel

Property 1: in the case of a uniform distrib
MTT rooted in node a with nodes b and c as
node b has a higher selectivity than node c

ut
ch
,
th

ut
c
od

he

 c

s ows:
 sort the children according to parent s

 selectivity

a

hol
mmary pruning and access-order sele

 foll

 T

the

s the access order plan (i.e. the query pl
the Traverse operator evaluates the MTTs according to
the access order plan. An MTT augmented with t
order plan, i.e. a plan augment tree, is presented
7. Presenting in detail each of these operators
the scope of this paper; more details on each
operators and the algorithms that they emplo
found in [5].

ion, for a
ildren, if
then: the
e parent

ion, for a
hildren, if
e c, then

6.2 Data sets

The data sets that we used are pres
obtained the DBLP and the SWISSPR
University of Washington XML
data sets are large, with millions o
shallow. However, these data sets di
while DBLP is very regular in it

parent selectivity of node b is higher than
selectivity of node c and Cbac < Ccab.

Property 2: in the case of a uniform distrib
MTT rooted in node a with nodes b and c as
node b has a higher parent selectivity than n
the cost of evaluating c top-down is less than t
evaluating c bottom-up.

Using the uniform distribution heuristic we
the search space for the access order
Subsequently, the search algorithm works a
first, we

cost of

an restrict
selection.
 foll

different kinds of structures that
SWISSPROT is rather irregular, wi
structures.

The third data set that we used is XMAR
xmlgen with factors ranging from 0

electivity;
second, we evaluate the path with the lowest
using a bottom-up evaluation; next, we evaluate

aths, in the selectivity order, using
 all other
top-down

istic path

we refer to XMARK documents gene
1.9.

6.3 Queries
p
evaluation.

The ToXop operator that employs both
ction is

ows:
The queries that we used are presented in T
1 through 7 are inspired from the

su
ToXinScan. The signature of the operator is as

 ToXinScan((TTD, TID), PT) = Traverse(

 ComputePlan(PruneToXinTree((TTD,

Where the PruneToXinTree operator performs
path summary pruning, the ComputePlan
compute

ID), PT)

holistic

categories:
• Punctual queries (Q3, Q4, Q5, Q

query only a small portion
operator
an) and

high selectivity, thus they return a
• Low selectivity queries (Q9, Q14)

he access • Grouped twig q
 in Figure
is beyond
 of these
y can be

for which the nodes that might be
grouped into a compact region in t

• Scattered twig queries (Q1, Q2,
queries for which the nodes that
answer are scattered through the e

6.3 TwigStackScan vs. TwigStack

In or

pruning as well as the traditional T
compute twig queries. In order to
summary information we extended
encoding by adding path summary
this encoding as extended region alge
has the following representation

Figure 7: A plan augmented MTT tree

6 Experimental results

6.1 Experimental setup

We ran our experiments on 1.6 GHz Pentium M processor
with 1GB of RAM running Windows XP Professional
version 2002 Service Pack 1. The implementation of all
algorithms (including TwigStack) was done in Java using
Sun’s j2re1.4.1_02. For all experiments the following
JVM settings were used: “-Xmx896m -Xms896m”.

ented in Table 1. We
OT data from the

repository [25]. Both
f nodes, and they are
ffer in their structure;

s structure, with five
 repeat many times,
th many one-of-a-kind

K. We used
.1 to 1.9 and then we

removed the content of all Text tags except the first word
from each. When the factor is not specified (e.g. Table 2)

rated with a factor of

able 2. Queries
PRIX papers [28, 29]
MARK data set. The
ied into the following

8) that is, queries that
 of the document and have a

 small answer.
 that is, they return a

large answer.
ueries (Q11, Q12, Q13) that is, queries

 part of the answer are
he document.
Q6, Q7, Q10) that is,
 might be part of the
ntire document.

der to establish the benefits of holistic path summary
ariant of TwigStack, that we

holistic path summary
wigStack technique to
 incorporate the path
 the region algebra
information. We call

bra encoding and it
 for elements and string

values, respectively:
• [DocID, Term, Start, End, Level, SchemaID],
• [DocID, Term, TextValue, Start, Level, SchemaID]

Where DocID is the document ID; Term is the tag name;
Start/End are the offsets in the document where the tag
starts/ends measured as word count; TextValue is the
CDATA or the attribute value; Level is the document
level; SchemaID can be any numbering scheme; in
TwigStackScan we use the TT node ID as SchemaID.

while the rest are queries on the X
queries from Table 2 can be classif

pruning we implemented a v
call TwigStackScan, which uses

Dataset Name Size (KB) # of E # of
A

ext Total #
odes

Max-depth lements
ttributes

of T
of N

DBLP 130, 3,3 6 848 2,254 6 726 32,130 404,27 3,005, 6,74
SWISSPROT 112,130 2,189,859 2,013,844 7,180,734 5 2,977,031
XMARK 112,486 2, 9,710 726,783 1,478,252 4,974,745 10 76

Table 1: Datasets

ataset #of Twig
Matches

 Query D

1 //inproceedings[./author="Jim Gray"] [./year="1990 @key
2 //www[./editor]/url
3 //book/author[text() ="C.J. Date"] L
4 //inproceedings[./title/text()
5 //Entry/Keyword SWIS

Q6 //Entry/PFAM[@prim_id="PF00304"] [.//DISULFID/ SWISSPROT 6 Descr]
7 //Entry[./Org="Piroplasmida"]//Author

Q8 //site/people/person[@id = "person0"] XMARK 1
Q9 //site/people/person/name

10 //regions/samerica/item[./location = "United
./@id AND ./name AND ./quantity AND ./payment]

11 //person[@id = "person217" AND .
"Lubbock" AND ./country/text() = "United States]]/name

Q "]/ DBLP 6
Q DBLP 5
Q DB P 13
Q = "Semantic Analysis Patterns."]/author DBLP 1
Q [text() = "Rhizomelic chondrodysplasia punctata"] SPROT 3

Q SWISSPROT 13

XMARK 38,760
Q States" AND XMARK 8

Q /address [./city/text() = XMARK 1

Q12 //person[@i [./city/text() =
"Lubbock" AND ./country/text() = "United States]]/name

XMARK 1 d = "person20125" AND ./address

Q13 //person[@id = "person4802
"Lubbock" AND ./country/text(

Q14 //person[@id AND ./addres
./country/text() = "United State

Table 2: T

Query Q8 is a “punctual” query, it retrie
elements that are descendants of site elements
attribute equal to ‘person0’. Disregarding the
size and generation factor, for all XMark docu
is only one person element that satisfies this
Since TwigStack filters early the element stre
regard to the selection predicate (@id = "perso
case) we would expect that the running time of
to be the same, independent of document
Figure 8a we conclude that this is not the case.
running time of TwigStackScan remained
constant, independent of document size, the ru
of TwigStack increased significantly with th

7
)

1 " AND ./address [./city/text() =
 = "

XMARK

document. The explanation is that Twig
retrieves and filters only the id attributes under

United States]]/name
[./city/text() = "Lubbock" AND

]/name
XMARK

ig queries in an XPath representation

s
s]

80

w

v
 w

m

n
 T
si

n

e s
S

 t
tag, while TwigStack retrieves all id attributes, not only
from the person tag but also from category, item and
open_auction elements (for the path summaries, thus the
exiting schemata, for the XMARK, DBLP and
SWISSPROT documents used in this experiments please
refer to [5]). The total number of id attribute instances
evidently increases with document size, explaining the
degradation in performance of the TwigStack algorithm.

We have to note as well a modest increase in
TwigStackScan’s execution time. This increase is due to
the additional work that the algorithm has to perform

person streams

 first advantage of the
egy, namely when the

 summary pruning
r a punctual query

g times for TwigStack
r brevity, we omitted some of the

 yield similar results
t for the performance
StackScan. In Table 3
wigStackScan versus
be categorized as:

l that is, less than 2.0
(e.g. queries Q1, Q5, Q9 and Q14); significant that is,
close to one order of magnitude (e.g. queries Q3, Q6, Q8,
Q10 and Q11) and up to 75 (e.g. query Q2).

Based on the motivation for the holistic path summary
pruning in the context of stack algorithms, we would
expect to obtain significant speedups for the case when
XPath nodes have multiple matches in a document and
some nodes are part of the answer and some nodes are
not. One such example is query Q1, where the elements
author and year are not only part of inproceedings but
also article, book, mastersthesis and phdthesis. However,

es person
ith the id

document
ents there
criterion.
ams with
0" in this
wigStack
ze. From

because the size of the people and
increases with document size.

From Figure 8a we can deduct a
holistic path summary pruning strat
strategy is applicable, holistic path
assures a constant running time fo
disregarding the document size.

In Table 3 we present the runnin
and TwigStackScan. Fo

While the
relatively
ning time
ize of the
tackScan

he person

queries from Table 2 because they
and while these queries are relevan
of ToXinScan they are not for Twig
we also present the speedup of T
TwigStack. The speedups can
inexistent (e.g. query Q7); margina

the speedup for query Q1 is not significant, onl
explanation lies in the fact that the main con
DBLP data set is inproceedings thus adding
nodes does not produce a significant
Nevertheless, it is quite the opposite for query Q
In query Q3 the book content is relatively sma
adding the unnecessary nodes induces a
speedup of 8.96. The speedup increases furt

y
te

d

ll
s

he
r da ware

as www e DBL set, ref
e 75.38 up for Tw n.
uery TwigStack

s)
TwigStackScan

s)
ig

gSt

1.49. The
nt of the
the extra
ifference.
2 an

6.4 ToXinScan vs. TwigStack

In Figure 8a we also plotted
ToXinScan vs. TwigStack and as exp

d Q3.
, thus not
ignificant
r for Q2
, encoded
lected by

Stack/
ackScan

1.49

while the performance of T
significantly.

In Figure 8b we plotted the sp
size of ToXinScan versus TwigStac
and Q10. As shown, there is a wide
between these queries. At the botto
the punctual query, with the l
explanation lies in the highly selecti
attribute. That is, TwigStack cons
filterin

whe e the conte
 in th

nt referring to
P data

tabase soft
 is very small,

th speed igStackSca
Q

(m (m
Tw

Twi
Q1 7,
Q2 3,
Q3 43
Q5 18
Q6 ,430 752 6
Q7 ,687 6,891 6
Q

108 4,779
75.38
8.96
1.03
8.55
0.97

id streams, to be exact) but in the
instance of the id attribute, the o
predicate. Overall ToXinScan’s
between 3 and 9 times.

The second query, Q9, is similar
predicate on the id attribute, thus it is a

015 40
0 48
8 183

5.87
1.43

17.71
9.41

query. Because there is no longer a
does not perform any filtering and
streams for any occurrences of t
behavior resulted in a significant pe
for ToXinScan reflected in the graph, in t

8 699 119
Q9 804 5,442 3,
Q10 8,326 470
Q11 1,167 124
Q14 4,493 2,520

Table 3: The running times and the spee
TwigStackScan vs. TwigStack

Pruning the path summary is not always

For instance, the speedup for query Q7 is
TwigStack performs better than TwigStack
explanation relies in the fact that the Org a
elements can be found only under the Entry el

1.78
ps for

eneficial.
.97, thus
can. The
d Author
ent, thus

additional
formance
 by the
Keyword

60 times.
The best improvement is exhibi

heavy twig query, from 33 to 122 tim
each of the element tags in the qu
sections of the document in di
TwigStack does an extensive computation that
yield any useful matches.

Queries Q11, Q12 and Q13
structures with different values for th
on the id attribute. The first va
beginning of the area that has to be
sub-tree under the person element; t
in the middle of this a

du

b
0
S
n

em

er
d

m

nd
t,

9
ear in many

distinct paths, thus the pruning should be beneficial.
However, the speedup is only marginal 1.43 and 1.78
respectively. Moreover, the queries are the low selectivity
versions of queries Q8 and Q11, which perform to the
expectation with speedups of 5.87 and 9.41. The
explanation lies in the extensive computation performed
by both queries due to the queries’ low selectivity, for
instance Q9 returns 38,760 twig matches. Thus, the
advantage that the pruning is inducing by loading fewer
nodes to be probed is overshadowed by the computational
time per se.

the performance of
ected, on a punctual

query the performance of ToXinScan remains constant
wigStack degrades

eedup with document
k for queries Q8, Q9

 difference in speedup
m of the heap is Q8,

owest speedup. The
ve predicate on the id
umes time only by

g an additional number of id attributes (three more
 end retains only one
ne that satisfies the
improvement ranges

 to Q8 but missing the
low selectivity

 predicate, TwigStack
 loads and probes all
he id attribute. This
rformance advantage

he range of 20 to

ted by query Q10, a
es. The reason is that
ery appears in many
fferent paths, thus

does not

have a similar twig
e selection predicates

lue “217” is at the
 queried, namely the
he “21,125” value is

rea while the value “48,027” is at
e same twig structure
ces of these queries to

d as it can be
the performance of

arding the value of the
ance of TwigStack

tly. The explanation lies in the fact that
ToXinScan performs an optimization, thus rightly
identifies the position of the answer nodes.

In Table 4 we present the speedups of ToXinScan
versus TwigStack for all queries from the query set. As
can be inferred from the table, ToXinScan outperforms
TwigStack marginally for punctual queries, with speedups
from 2 to 9. The explanation relies in the reduced
computation that has to be perform in order to process the
answer, thus ToXinScan’s optimization strategy does not
produce a significant difference.

the pruning does not help, moreover it ads an
computational time that is reflected in the p
degradation. A similar situation is reflecte
speedup of 1.03 for query Q5, because the
element is found only under the Entry ele
situation is the opposite for query Q6, where th
attribute and the Descr element appear u
elements and not only under the Entry elemen
in an 8.55 speedup.

A surprising result is exposed by queries Q
In both cases the elements from the query app

ent. The
e prim_id
er many
 resulting

 and Q14.

the end. Because the queries have th
one might expect that the performan
be similar. Nevertheless, it is not the case, an
inferred from Figure 8c; while
ToXinScan remains constant disreg
selection predicate, the perform
degrades significan

0

100

5.3 11.8 23.6 41.4 64.9 82.9

XML file size (MB)

200

300

400

500

600

700

800

112.5

tim
e

(m
s) ToXinScan

TwigStackScan
TwigStack

0

23.6 41.4

20

40

60

80

100

120

140

64.9 82.9

B)

sp
ee

pu
p

112.5

XML file size (M

Q8
Q9
Q10

0

500

Q11

1,000

1,500

2,000

2,500

3,000

Q12 Q13

m
s ToXinScan

TwigStack

Figure 8a: Q8 execution time (ms) for Figure 8b: Speedup

8

Figure 8c: Execution times (ms) for
12 and Q13 for

 and TwigStack

 queri
es, thus the

optimization starts to pay-off inducing speedups ra g
2 ti s and scattered

twig queries the optimization strategy proves extr ly
eficial in speed ging 1 to 122

Query Stack
s)

inScan
(ms)

igS
Xin

TwigStack, TwigStackScan,
ToXinScan with document size for Q

The computation required for grouped twig

slightly higher than punctual queri

TwigStack/ToXinScan
, Q9, Q10 with document size

queries Q11, Q
ToXinScan

as a surprise is that employing a path summa

es is

ngin

eme

 magnitu over the
plementati The relative

n spee nds on

ry tack/
from 1 to 28. For low selec vity querie

ben ducing ups ran from 5

Twig
(m

ToX Tw
To

Q1 7,108 130
Q2 3,015 39
Q3 38
Q4 430 46 9
Q5 188 87
Q6 6,430 80
Q7 6,687 131
Q8 699 75

. ToXinScan
Q1

tack/
Scan
54.68
77.31
4.29

Q5 80.37 43.15
Table 5: Speedup of TwigStack

TwigStack / PRI
6 90

.35
2.16

80.37

6. Conclusions
We present experimental results
performan

51.05
9.32

57.28
122.44
12.97

advantage of path summaries in
optimization strategies: holistic path
and access-order selection.

The use of path summaries a
statistics in the ToXop optimize
advantages to the u

Q9 5 5,442 9
Q10 8,326 68
Q11 1,167 90
Q12 1,816 92
Q13 2,746 95
Q14 4,493 93

Table 4: ToXinScan vs. TwigStack

6.5 ToXinScan vs. PRIX

It is no surprise that the speedup of PRIX over
due to the use of a full index,

19.74
28.80
48.31

wigStack,
at comes
, with no

relational query optimizers.
Path summaries enable our first

holistic path summary pruning
considerable the query plan search
the regions from the document th
answer. We provide experimental dat
when applicable, this strategy
improvements of an order of magnit

Access-order selection, the
strategy that we propose, works
holistic path pruning, and further red

T
 is considerable. Wh

ry
index data structures, and simple heuristics we achieve a
speedup of the same order of magnitude, while
performing less work, since building the PRIX data
structures is quite computationally intensive. In Table 5
we present the speedups of ToXinScan and PRIX versus
TwigStack. The speedups of PRIX versus TwigStack are
taken from the PRIX papers [28, 29]. The comparison
between ToXinScan and TwigStack was performed with
our implementation of both methods

As can be inferred from Table 5, both ToXinScan and
PRIX achieve a speedup in the range of one to two orders

of de respective TwigStack
im on. size of the PRIX vs.
ToXinSca dups depe the query.

Que TwigS TwigStack/PRIX
(from [28, 29])

 / ToXinScan vs.
X

that characterize the
ce of an XML query optimizer that takes

conjunction with two
 summary pruning

ugmented with data
r provides similar

se of system catalog information in

optimization strategy,
, which reduces

 space by identifying
at contain the query

a that suggest that,
 can easily yield
ude.
second optimization
in conjunction with
uces the plan search

space by using cost-based heuristics. Employing access-
order selection can easily yield improvements of two
orders of magnitude with respect to algorithms that work
on encoded-element streams. Moreover, the
improvements are in the same order of magnitude as those
achieved by state-of-the-art indexing techniques for XML
documents. The advantage of our proposed approach lies
in the reduced cost of creating a path summary (which can
be done with essentially one pass over the document),
compared with indexing techniques that require a

54.68 14.01
Q2 77.31 145.00

substantially larger amount of computation to g
indexes. In summary: with little (effort to

ener
p

erfor

erime
xing a
ribed

e also interested in extending the use
stics to support better cost models and

estimates.

B
[F. N

xpre
B

[Ope
2

[J
in

y

[
val

BT
A. M
oX
ho

[“Access Methods for XML
to,

[on, “
es

[. Srivastava, N. Koudas, “Holi
”,

[c
ng and Queryi

Eval
n

er
S, 1995.

ysical
Independence, Constraints, and Optimization
Universal Plans”, Proc. VLDB, 1999.

[11] M.F. Fernandez, D. Suciu, “Optimizing Regular Path
Expressions Using Graph Schemas”, Proc. ICDE,
1998.

[12] T. Fiebig, S. Helmer, C. Kanne, G. Moerkotte, J.
Neumann, R. Schiele, T. Westmann, “Natix: A
Technology Overview”, Proc. Web, Web-Services,
and Database Systems, 2002.

[13] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F.
Riccardi, T. Westmann, M. J. Carey, A. Sundararajan,

 “The BEA/XQRL Streaming XQuery

des, “Enabling
Optimization in

. VLDB, 1997.
Galanis, A. Kini, R.

ao, F. Tian, S. Viglas, Y.
eWitt, “Mixed Mode
VLDB, 2003.

. Chapman, L.V.S.
aparizos, J. Patel, D.
, Y. Wu, C. Yu,

abase”, VLDBJ, 2003.
Lakshmanan, Divesh

Srivastava, K. Thompson, “TAX: A Tree Algebra for

. Yu, “Holistic Twig
 Documents”, Proc. VLDB,

Shenoy, P. Bohannon, E. Gudes,
r Indexing Paths in

ICDE, 2002.
bs.com/galax/

arian, J. Siméon, “Projecting XML
.

ompile-Time Path
op on Q. Proc. for

d Data Formats, 1999.
ery Optimization for

XML” Proc. VLDB, 1999.
ctures for Path

ons”, .
XML Repository”,

/research/xmldatasets.
akis, Y.E. Ioannidis,
XML Twigs”, Proc.

Lim, K. W. Ong, “D(k)-Index: An
Graph-Structured

dexing and Querying
Proc. ICDE, 2004.

o, B. Moon, “PRIX: Indexing and Querying
s”, Technical Report
, 2003.

“Indexing XML Data
with ToXin”, Proc. WebDB, 2001.

[31] H. Wang, S. Park, W. Fan, P.S. Yu, “VIST: A
Dynamic Index Method for Querying XML Data by
Tree Structures”, Proc. SIGMOD, 2003.

[32] Y. Wu, J. Patel, H.V. Jagadish, “Using Histograms to
Estimate Answer Size for XML Queries”, Journal of
Information Science 2002.

[33] C. Zhang, J.F. Naughton, D.J. DeWitt, Q. Luo, G.M.
Lohman, “On Supporting Containment Queries in
Relational Database Management Systems”, Proc.
VLDB, 2001.

ate the

[10] A. Deutsch, L. Popa, V. Tannen, “Ph

G. Agrawal,
reprocess

mance
Processor”, Proc. VLDB, 2003.

 [14] R. Goldman, J. Widom, “DataGuiXML data) you can achieve a lot (of p
improvement in query processing)!

Future work includes incorporating and exp
with a wider variety of native XML inde
methods within the uniform framework desc
We ar

nting
ccess

 here.

Query Formulation and
Semistructured Databases”, Proc

[15] A. Halverson, J. Burger, L.
Krishnamurthy, A.N. R

of XML-
 cost

Wang, J.F. Naughton, D. J. D
XML Query Processing”, Proc.

 [16] H.V. Jagadish, S. Al-Khalifa, A
specific stati

ibliography
1] A. Aboulnaga, A. Alameldeen, J. aughton,

ssions

“TIMBER: A Native XML Dat
[17] H.V. Jagadish, Laks V.S.

“Estimating the Selectivity of XML Path E
for Internet Scale Applications”, Proc. VLD

2] S. Al-Khalifa, H.V. Jagadish, “Combining
, 2001.

rators
XML”, Proc. DBPL, 2001.

[18] H. Jiang, W. Wang, H. Lu, J.X
in XML Query Processing”, Proc. VLDB,

3] S. Al-Khalifa, H.V. Jagadish, N. Koudas,
Divesh Srivastava, Y. Wu, “Structural Jo

002. Joins on Indexed XML
.M. Patel,

s: A
2003.

[19] R. Kaushik, P.
Primitive for Efficient XML Quer
Matching”, Proc. ICDE, 2002.

34] A. Arion, A. Bonifati, G. Costa, S. D'Ag

 Pattern “Exploiting Local Similarity fo
Graph-Structured Data”, Proc.

uanno, I.
uation

[20] Lucent's Galax, http://db.bell-la
[21] A. MManolescu, A. Pugliese, “Efficient Query E

over Compressed XML Data”, Proc. ED 2004.
ihaila,

Documents”, Proc. VLDB, 2003
[4] D. Barbosa, A. Barta, A.O. Mendelzon, G.

F. Rizzolo, P. Rodriguez-Gianolli, “T - The
[22] J. McHugh, J. Widom, “C

Expansion in Lore”, Proc. Worksh
Toronto XML Engine”, Proc. Int. Works
Integration on the Web, 2001.

5] A. Barta,

p on Inf.

Query

Semistr. Data and Non-Standar
[23] J. McHugh, J. Widom, “Qu

Optimization”, Ph.D. Thesis, U. of Toron
6] A. Barta, M.P. Consens, A.O. Mendelz

 2005.
XML

[24] T. Milo, D. Suciu, “Index Stru
Expressi Proc. ICDT, 1999

Query Optimization Using Path Index
XIME-P 2004.

7] N. Bruno, D

”, Proc. [25] G. Miklau, “U.W.
http://www.cs.washington.edu

stic Twig
Proc.

[26] N. Polyzotis, M.N. Garofal
“Selectivity Estimation for Joins: Optimal XML Pattern Matching

SIGMOD, 2002.
35] P. Buneman, B. Choi, W. Fan, R. Hut

Mann, S. Viglas, “Vectorizi
hison, R.

ICDE, 2004.
[27] C. Qun, A.

ng Large

uating

Adaptive Structural Summary for
Data”, Proc. VLDB, 2003. XML Repositories”, Proc. ICDE 2005.

[8] V. Christophides, S. Cluet, G. Moerkotte, “
Queries with Generalized Path Expressio
SIGMOD, 1996.

[9] M. P. Consens, T. Milo, “Algebras for Qu
Regions”, Proc. POD

s”, Proc.
[28] P.R. Rao, B. Moon, “PRIX: In

XML Using Prufer Sequences”,
[29] P.R. Ra

ying Text

 Data
 with

XML Using Prufer Sequence
TR-03-06, U. of Arizona, Tucson

[30] F. Rizzolo, A.O. Mendelzon,

Lakshmanan, A. Nierman, S. P
Srivastava, N. Wiwatwattana

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/b/Bonifati:Angela.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/c/Costa:Gianni.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/d/D=Aguanno:Sandra.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/m/Manolescu:Ioana.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/m/Manolescu:Ioana.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/p/Pugliese:Andrea.html
http://www.informatik.uni-trier.de/%7Eley/db/conf/edbt/edbt2004.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/b/Buneman:Peter.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/c/Choi:Byron.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/h/Hutchison:Robert.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/m/Mann:Robert.html
http://www.informatik.uni-trier.de/%7Eley/db/conf/icde/icde2005.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/c/Christophides:Vassilis.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/m/Moerkotte:Guido.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/d/Deutsch:Alin.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/f/Fern=aacute=ndez:Mary_F=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/r/Riccardi:Fabio.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/w/Westmann:Till.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/c/Carey:Michael_J=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Sundararajan:Arvind.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/g/Goldman:Roy.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/b/Burger:Josef.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/g/Galanis:Leonidas.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/k/Kini:Ameet.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/k/Krishnamurthy:Rajasekar.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/r/Rao:Ajith_Nagaraja.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/t/Tian:Feng.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/v/Viglas:Stratis.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/w/Wang:Yuan.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/n/Naughton:Jeffrey_F=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/d/DeWitt:David_J=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/w/Wang:Wei.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/l/Lu:Hongjun.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/y/Yu:Jeffrey_Xu.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/k/Kaushik:Raghav.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Shenoy:Pradeep.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/g/Gudes:Ehud.html
http://db.bell-labs.com/galax/
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Sim=eacute=on:J=eacute=r=ocirc=me.html
http://www-db.stanford.edu/pub/papers/re.ps
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/m/McHugh:Jason.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/m/Milo:Tova.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/g/Garofalakis:Minos_N=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/i/Ioannidis:Yannis_E=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/q/Qun:Chen.html
http://www.cs.arizona.edu/people/bkmoon/papers/icde04prix.pdf
http://www.cs.arizona.edu/people/bkmoon/papers/icde04prix.pdf
http://www.cs.arizona.edu/people/bkmoon/papers/icde04prix.pdf
http://www.sigmod.org/sigmod/dblp/db/indices/a-tree/p/Park:Sanghyun.html
http://www.sigmod.org/sigmod/dblp/db/indices/a-tree/f/Fan:Wei.html

