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Abstract. Efficient querying of XML streams will be one of
the fundamental features of next-generation information sys-
tems. In this paper we propose the TurboXPath path proces-
sor, which accepts a language equivalent to a subset of the
for-let-where constructs of XQuery over a single document.
TurboXPath can be extended to provide full XQuery support
or used to augment federated database engines for efficient
handling of queries over XML data streams produced by ex-
ternal sources. Internally, TurboXPath uses a tree-shaped path
expression with multiple outputs to drive the execution. The
result of a query execution is a sequence of tuples of XML
fragments matching the output nodes. Based on a streamed
execution model, TurboXPath scales up to large documents
and has limited memory consumption for increased concur-
rency. Experimental evaluation of a prototype demonstrates
performance gains compared to other state-of-the-art path pro-
cessors.

1 Introduction

Modern relational database engines are currently adding sup-
port for a new XML data type and a set of new XML-related
operators [12]. These systems already have efficient and well-
tuned implementation of the relational operators that can be
reapplied to querying XML streams. Nevertheless, they lack
support for XPath [8] expressions, which are used to navigate
through XML documents in most XML query mechanisms
such as XQuery [5] and SQL/XML [12].

This paper discusses the design and implementation of
TurboXPath, a prototype system that processes path queries
over XML streams. TurboXPath accepts a subset of the
XQuery for-let-where construct with some of the variables
marked to be bound out. The result is a sequence of tuples of
variable bindings representing document fragments or atomic
values. In this paper we focus on describing how TurboXPath
is applied over XML streams; however, most of the techniques
discussed here are also applicable to prestored XML. Stream-
ing algorithms, as the one presented in this paper, are well
suited for processing queries specified in order-preserving
languages such as XQuery. As opposed to relational queries

where, in the absence of explicit ordering statements, the plan
can produce the result in any order, XQuery requires the or-
der of nodes to be preserved based on the order in which they
appear in the input document.

While there are several implementations of XPath/XSLT
that can be adapted for path processing in an XQuery engine,
these are inadequate for the task. One obstacle in using the cur-
rent XPath/XSLT technology in conjunction with an XQuery
engine is the mismatch between the tuple-oriented model of
the XQuery for-let-where construct and the node set model of
the XPath processors. The same discrepancy is present when
comparing the node set model with the relational algebra used
in relational database engines. Retrieving multiple values from
an XML document corresponds to retrieving multiple columns
from a relational table and is very often needed.Achieving this
goal for XML streams using the available XPath processors
requires either materialization of the whole input document or
multiple passes over the stream, which is not always possible,
as in the case of data streamed from Web services.

Recently an XQuery implementation [13] and some
XPath implementations [14,15,18–20] that operate over XML
streams have been reported. However, none of these ap-
proaches addresses the issue of extraction of multiple bind-
ings in tuples and adapting the processing model to relational
database engines. We survey these approaches in the related
work section and compare TurboXPath with some of them in
the experimental evaluation section.

This paper presents a design description and experimen-
tal evaluation of the TurboXPath system. The distinguishing
features of TurboXPath are:

• Queries are evaluated in a single, document-order pass
over the input document stream.

• Tuples of correlated document fragments (bindings) are
produced as results. The result is in document order (as
defined by the XQuery standard) with duplicates removed.

• The input XQuery query is translated into a parse tree with
multiple output nodes that, in conjunction with an event
stack, is used to process the query. TurboXPath avoids the
translation of the query into a finite state automaton (FSA),
a technique used in some of the related approaches [16,
18,19], and the creation of automata states at runtime [14,
15], which is very expensive computationally and might
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degrade query performance in scenarios where several in-
dependent queries are executed in parallel over different
XML streams.

• TurboXPath supports a complex set of XQuery features
including for, let, and where clauses with XPath paths
composed of steps using child, descendant, self, parent,
and ancestor axes; any node test (‘*’); functions, and arith-
metic and structural predicates. In conjunction with a new
XML data type and some new XML-related operators,
TurboXPath can provide the remaining functionality for
full XQuery runtime in relational database engines.

• TurboXPath operates over any document, including cases
when the document is recursive with regard to the query.
We define those cases and discuss how they impose harder
processing requirements on streamed XQuery processors.

The main contributions of this paper include:

1. The description of an XQuery processing system that
works as a runtime operator in a relational engine (Sect. 2).

2. A new algorithm for XQuery processing over streams that
avoids the translation to finite-state automata and the cre-
ation of automata states at runtime (Sect. 2.2).

3. The definition of when a document is recursive with re-
spect to a query and the impact of recursive documents in
the processing of XML streams (Sect. 2.2).

4. The description of optimization techniques for predicate
evaluation in XQuery (Sect. 2.3).

5. Experimental results that show orders of magnitude im-
provement when comparing TurboXPath with other XML
processing systems (Sect. 3).

The rest of this paper is organized as follows. Section 2
contains the technical core of the paper describing the design
of the TurboXPath processor. Section 3 presents an experi-
mental evaluation of our prototype implementation. Section 4
discusses related research projects and alternative approaches.
Section 5 concludes the paper and presents our future research
directions.

2 TurboXPath architecture and implementation

To provide context for the subsequent discussion, we first il-
lustrate how TurboXPath fits into the architecture of an XML-
enabled database engine. In such database engines, XQuery
queries are translated into execution plans where the path pro-
cessing operators have the same role as table accesses in tradi-
tional query evaluation pipelines. The fragments extracted by
the path processing operators can then be transformed and
combined by traditional relational operators such as joins,
grouping, correlation, sorting, etc. and by XML-specific op-
erators, like the XML generation operators used to process
the return clause of XQuery. Figure 1 illustrates an execution
plan for the multidocument XQuery query:

for $c in doc("d1")//customer
for $p in
doc("d2")//profiles[cid/text() = $c/cid/text()]
for $o in $c/order[date = ‘12/12/01’]
return

<result>
{$c/name} {$p/status} {$o/amount}

</result>

doc1//customer

cid name order

amount date

cid name amount

doc2//profile

cid status

cid status

cid =XQuery cid

statusname amount

XML generation
operators

statusname amount

doc1//customer

cid name order

amount date

doc1//customer

cid name order

amount date

cid name amount

doc2//profile

cid status

cid status

doc2//profile

cid status

cid status

cid =XQuery cid

statusname amount

XML generation
operators

statusname amount

Fig. 1. Example query evaluation plan

In this plan, the query is decomposed into two single doc-
ument accesses that produce tuples of XML fragments from
“d1” and “d2”. These tuples are then combined by a join on
“cid”, using the XQuery equality operator. Finally, XML gen-
eration operators are used to format the result as specified by
the return clause.

The documents against which queries are evaluated can
either be stored locally in the database or obtained from other
XML-enabled data sources over the network. The TurboXPath
component takes an XML document (stream) identifier and
an XQuery fragment passed by the compiler. It generates an
intermediate result with n XML data type columns as output,
where n is the number of variables that must be extracted
from the stream in order for the other components to process
the query. In Fig. 1 the operator on the bottom left represents
one invocation of TurboXPath with the query fragment:

for $c in
doc("d1.xml")//customer[order/date="12/12/01"]

let $cid := $c/cid/text()
let $name := $c/name
for $o in $c/order
let $a in $o/amount
return-tuple $cid, $name, $a;

This query fragment is derived from the sample query and
retrieves all the variables from “d1” that are required to fully
evaluate the query. A correspondent XQuery fragment is used
for “d2”. The processing of the “d2” stream is represented in
the query plan by the TurboXPath operator on the bottom right
of Fig. 1.

The return-tuple clause in the query fragment example
is used to identify the variables to be bound out. It does not
conform to the XQuery standard and is used here only to de-
scribe the internal tuple-based interface between the runtime
operators in the system. In the example, the TurboXPath op-
erator for “d1” returns tuples with three bindings (document
fragments), one for each bound-out variable.

TurboXPath can process both for and let clauses. Let
clauses are processed in a manner similar to that of the for
clauses, except that multiple results are grouped together and
returned as a single sequence of XML fragments. Such push-
ing of grouping into the TurboXPath operator is simple to per-
form while it reduces the number of tuples flowing through the
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Fig. 2. System architecture

engine. Since the processing of let and for clauses is similar,
in the rest of the paper we only describe the processing of the
for clause queries.

The main components of TurboXPath are the expression
parser, the evaluator, and the tuple constructor/buffer man-
ager, as illustrated in Fig. 2. The input path expressions are
parsed and connected into a single parse tree (PT) with multi-
ple output nodes. Intermediate results representing XML frag-
ments retrieved from the input document are stored in buffers
associated with the output and predicate nodes. During docu-
ment processing, a SAX parser generates events from the input
XML stream. The evaluator uses these events to perform the
state transitions and populate the buffers. It is also responsible
for triggering the tuple construction module when the output
buffers contain enough information to output result tuples. The
following sections detail each of these components.

2.1 Expression parser

The expression parser is responsible for parsing the set of path
expressions and producing a single parse tree (PT). Nodes in
the PT correspond to node tests in the input path expressions
while edges correspond to the relationship between node tests
in the query. In the case when a node test in the query is fol-
lowed by a predicate containing multiple branches, or when
several expressions are rooted in the same variable, the corre-
sponding PT node has multiple children. Figure 3 illustrates
the PT generated by parsing the query of the bottom left op-
erator in Fig. 1. Each PT has a special root node at the top,
represented by “r” in Fig. 3. Each nonroot node is annotated
with an axis indicator, indicating one of the XQuery step axes.
There are several axes defined in XQuery (some optional), al-
lowing each document node to be reached at any point of the
processing. The discussion in this paper concentrates on the
processing of the child and descendant axes. The other for-
ward axes – attribute, (descendant-or-)self, and following(-
sibling) – are supported with minor additions to the presented
mechanism. For example, node tests with the attribute axis
are represented in the PT by separate nodes and are handled
in a similar fashion as element node tests; steps with self and
descendant-or-self axes are supported by a slight addition to
the matching mechanism described in Sect. 2.2. In [3] we de-
scribed query tree rewrites for handling of the ancestor and
parent axes.
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Fig. 3. Parse tree example

The PT in Fig. 3 contains nodes with child and descendant
axes. We use dotted lines to represent descendant axes and
solid lines to represent child axes. The “customer” node has
three children. The nodes corresponding to the variables listed
in the return-tuple clause are called output nodes. Any PT
node, including an internal node, can be an output node. Output
nodes can also be descendants of other output nodes. In Fig. 3
the output nodes “name”, “amount”, and the text node are
distinguished from the other nodes by double circles.

A PT node may also have a set of associated predicate
trees. Each predicate tree is anchored at a PT node, called the
context node of that predicate. In the example, “customer” is
the context node for the predicate on the order date. Predicate
tree nodes are shown in gray in the figure. Predicate trees are
composed of leafs that are either constants or pointers to nodes
in the PT subtree rooted at the context node. Internal predicate
nodes are operators as defined in the XQuery/XPath standard
specifications.

2.2 Evaluator

The evaluator is the central component of TurboXPath. It uses
the PT to process the stream of SAX events generated from
the input document to identify the fragments that are to be ex-
tracted and returned to the database engine. The PT is static,
meaning that it does not change during processing, and can
be reused over several documents. Besides the PT, the eval-
uator uses three dynamic structures that change during query
evaluation depending on the input document:

• Output buffers: store the intermediate results that can be
part of the result tuple.

• Predicate buffers: store the content of nodes participating
in predicate expressions.

• Work array (WA): used to match the document nodes with
query steps and to support existential predicate evaluation.

Figure 3 shows predicate and output buffers for the exam-
ple query. The WA represents an inlined tree structure and can
be compared in function to the DOM tree of the traditional
XPath processors. An important difference is that the WA rep-
resents only the “interesting” portions of the tree, based on
the already seen input. Furthermore, the WA is specifically
designed for efficient processing of the query as opposed to
the dual (traversal and query processing) purpose of the DOM
representations in XPath/XSLT processors. During document
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processing, the WA changes depending on the input. Each WA
entry has four fields:

• Pointer to the corresponding PT node,
• Document level at which the entry was added to the array,
• References between parent-child WA entries,
• Status flag, used during the processing to indicate if the

corresponding document node has satisfied the query con-
ditions.

The SAX events produced by parsing the input doc-
ument are transformed into evaluator events of the form
(name, type, document level), where name is the node test
name and type is the event type, which can be OPEN, CLOSE,
ATTRIBUTE, COMMENT, or PI. The document level is
maintained by the SAX event handler by simply counting
the OPEN and CLOSE events. By convention, the document
root appears at level 0. The processing of a document starts
with a (ROOT, OPEN, 0) event and ends with a corresponding
CLOSE event.

The evaluator works by trying to match incoming events
to all the WA entries. A match occurs when both the docu-
ment levels and the names of the event and the WA entry are
the same. A match also occurs when only the names match if
the entry corresponds to a descendant path step (in this case
the document level is ignored). On the other hand, when an
entry corresponds to an any node test PT node (represented by
“*” in XQuery), the name comparison always returns TRUE
and only the document level is considered. WA entries corre-
sponding to attributes, comments, and processing instruction
(PI) node tests match only events of typeATTRIBUTE, COM-
MENT, and PI, respectively. The ATTRIBUTE events for the
evaluator are produced by iterating over the attributes in the
StartElement SAX handler. ATTRIBUTE, COMMENT, and
PI events are handled in a manner similar to two consecutive
OPEN and CLOSE events and are not discussed further in the
paper.

The following actions are performed by the evaluator when
a match is found for OPEN and CLOSE events:

• OPEN: For each child of the PT node corresponding to
the matched WA entry, a new child WA entry is added,
carrying the current document level incremented by one.
The children added for the same WA match compose a
sibling group.
When the matched WA entry corresponds to a leaf node in
the PT, no new entries are added to the WA. In this case,
if the PT node is not an output node, the status flag of
the matched WA entry is set to TRUE, indicating that all
the conditions for this node have been satisfied. For each
matched entry corresponding to an output node in the PT
(either leaf or not), a buffer is created to save its content.
This buffer is then added to a list of active buffers. During
processing, every SAX event is forwarded to all the active
buffers. In our current prototype implementation we use
UTF16 textual representation for the buffered document
fragments. When parsing a portion of the input stream that
is to be buffered, the content of each event is translated
from its original encoding into UTF16 and added to all
active buffers.

• CLOSE: For every output node (either leaf or not), the
CLOSE event removes the buffers associated with the

matched node from the list of active buffers. For the leaf
output node the CLOSE event also sets its status in the
WA to TRUE. This change of the status indicates that the
matching was satisfied and that the results are available in
the corresponding output buffers. CLOSE events have no
effect on leaf entries that are not output nodes since their
status can be updated on OPEN events.
If the matched node is an intermediate PT node (nonleaf),
the WA must contain a sibling group that was added when
the same node was matched with a corresponding OPEN
event. During the CLOSE event, the status of the node
must be evaluated by checking the status of its sibling
group entries. For simplicity, let us consider that there are
no predicates involved (predicates will be discussed in de-
tail in Sect. 2.3). In this case the status flags of the node
is computed by AND-ing the status flags of its sibling
group. At this point, the sibling group entries are removed
from the WA. The matched WA entry, however, remains
to be used when its parent node is closed. Furthermore,
if the status of the matched WA entry was previously set
to TRUE, it remains so even if the evaluation of its status
returned FALSE. This allows for the existential semantics
of XQuery where a path is satisfied over a set of children
nodes if any of the nodes satisfy all the conditions (and
not necessarily the last one).
Note that if the status of the node evaluates to FALSE, the
buffers added between the matching OPEN and CLOSE
events need to be purged from the queues. The mechanism
to identify these buffers is presented in Sect. 2.5.

State transitions in the evaluator are represented by
changes of the content of the WA. To illustrate the processing,
we use a simple query and a small document stream, shown in
Fig. 4. The state of the evaluator after each event is represented
in the figure by a snapshot of the WA. The event leading to a
snapshot is given at the top. In each entry, a node test name
is used to represent pointers to the corresponding PT nodes.
The document level is shown in the lower right corner, and the
evaluation status (TRUE/FALSE) is in the upper right corner.
Entries matching node tests that are performed over the de-
scendant axis have “*” instead of a document level number. A
link on the left side of the WA entries is used to relate multiple
entries from a single sibling group. The references between
parent/child WA entries are omitted for clarity.

The array grows with events matching nonleaf PT nodes.
For each occurrence of the two consecutive “a” elements in
the document, one sibling group consisting of entry “c”, and
“b” is added. These sibling groups are removed when the cor-
responding “a” nodes are closed. Note that an entry for “a” is
added to the array before the first “a” in the document is seen
and persists after the last “a” is closed. This is due to the fact
that the WA represents not only the important nodes that have
already been seen in the document, but also the nodes that we
are looking for. The status of the “a” entry is set when the first
“a” is closed. Once set to TRUE, the status is unchanged until
the entry is removed from the array. In the example, this is
apparent when the second “a” node does not satisfy the con-
dition (there is no “c” child), and the status of the “a” entry
remains TRUE. This principle allows the same data structure
(WA) to be used for keeping track of which conditions have
been satisfied so far as well as for detecting relevant document
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Fig. 4. Processing of the query //a[c]b
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Fig. 5. Processing of the query //a[c]b over a document recursive w.r.t. the query

nodes. The status of the root “r” entry mirrors the status of its
only child. TurboXPath uses this optimization to be able to use
the root node status as an indicator in containment queries.

The status of the “c” entry is set to TRUE when the “c”
element is open. The “c” node is not an output node, and there-
fore its condition is satisfied when we encounter (OPEN) the
first “c” under the current “a” node. As “b” is an output node,
the status of “b” WA entries is changed when a “b” element
is closed, since only then are the output buffers complete and
able to be used to generate the tuples.

One difficulty in designing a streamed XML path proces-
sor is to provide correct behavior when the input document is
recursive with regard to the query.

Definition. A document D is recursive with regard to a query
Q iff there exist two document nodes n1, n2 ∈ D such that
n1 is an ancestor of n2 and both n1 and n2 match the same
node q in the query tree.

The document in Fig. 5 is recursive with regard to the query
“//a[c]b” since the nested “a” nodes match the “a” node in the
query tree. The same document is not recursive with regard to
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the query “/a/a” since each “a” node of the document matches
a different node in the query tree. A document does not need
to have a recursive structure (DTD or Schema) to be recursive
with a query: every document is recursive w.r.t. to the query
“//*”. For a document to be recursive w.r.t. a query, the query
must contain at least one step with a descendant axis. In the
following discussion we refer to processing documents that
are recursive w.r.t. the query as “recursive cases”.

Due to the nature of the streaming data, retrieving frag-
ments and constructing tuples in recursive cases requires the
processor to evaluate conditions for several elements simul-
taneously and calls for more elaborate solutions. While not
common, correct handling of recursive cases is important to
ensure correct evaluation over any input document.

In nonrecursive cases theWA has at most one entry for each
PT node, limiting the size of the array to the size of the query.
The WA is therefore preallocated to this size to limit the mem-
ory management calls to the operating system. In recursive
cases the WA size can increase over this limit due to multiple
WA entries corresponding to the same PT node. This is nec-
essary since WA entries for recursive elements will be parents
of multiple sibling groups, each representing an independent
thread of control evaluating one of the recursive occurrences
of the element. In the general case, the maximum size of the
WA is therefore proportional to the product of the degree of
recursion and the maximum fanout (number of children) in the
PT. Recursive cases are not common, so WA entries for the re-
cursive elements are allocated dynamically from the memory
heap. An important point is that the memory required for the
WA does not grow exponentially with the query size, which is
an improvement over techniques based on automata [16,18,
19], as will be discussed in Sect. 4.

Figure 5 shows a recursive case where the document from
the previous example is modified so that instead of two con-
secutive “a” elements the second “a” element is nested within
the first. In this modified example, after the second “a” ele-
ment is opened, there are two “a” sibling groups composed of
“b” and “c” entries, one for each “a” element. The “c” event
matches only the WA entry with the appropriate document
level. This reflects the fact the “c” entry is a child of only one
of the enclosing “a” elements. The “b” events, on the other
hand, match both “b” entries since the “b” node test is speci-
fied using the descendent axis. Upon closing of the inner “a”
element, the flags in the WA entries of its sibling group are
AND-ed. The status of the “a” entry is changed to TRUE since
both entries have status TRUE. This is not the case when the
outer “a” element closes since there is no “c” child in this case.
While this does not have an effect on the “a” status flag, which
remains TRUE, it results in a dropped buffer for the second
“b” element since it does not participate in any output tuple
(buffer management is further discussed in Sect. 2.5). Note
that, although the second “b” element is evaluated to TRUE,
it does not change the status of the flags already set to TRUE
by the first “b” element, reflecting the fact that a descendant
“b” had already been found.

2.3 Predicate evaluation

The predicates are evaluated when the document node match-
ing the anchor PT node is closed. Terms of boolean predicates
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=amount datetext()

ordername
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cid

12/12/01
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order

Fig. 6. Predicate pushdown example

that are simple paths are evaluated by using the values of the
status flags in the WA entries of the sibling group correspond-
ing to the matched entry. In the example in Fig. 5, when an
“a” node is closed, the status flags of the “b” and “c” entries
are AND-ed by the predicate anchored at the “a” PT node.
However, in the general case, predicate evaluation may re-
quire non-boolean values stored in predicate buffers. In the
example in Fig. 3 order dates are stored in predicate buffers
during the processing of each customer node. When the “cus-
tomer” element is closed, the predicate is evaluated over the
order dates.

As with output buffers, during expression parsing, all the
nodes that need to be buffered in predicate buffers are marked
with a flag in the PT and the system allocates the predicate
buffers for storing their content. In addition, both predicate
and output buffer queues preserve document order. This is a
requirement for predicate buffers in order to support positional
predicates and XPath 1.0 compatibility mode casting rules that
are order dependent.

As a strongly typed language based on the Query Data
Model [5], XQuery requires data types to evaluate the op-
erators. For example, the type of the “date” element in the
example in Fig. 3 determines if the generic equality operator
is interpreted as an equality between integers, strings, or date
type items. The data types in our prototype are added to the
SAX events by a modification of the Xerces validating parser
and the SAX interface. While there are several technical chal-
lenges in providing correct type information in a SAX parser,
these are beyond the scope of this paper, and we will ignore the
typing issues in the rest of the discussion. Each buffer entry is
then annotated with its type for use in the operator evaluation.

In general, a predicate can be completely evaluated only
when its anchor node is closed. The predicate in the expres-
sion customer[evenings phone ! = daytime phone], for ex-
ample, can only be evaluated when the “customer” element
is closed since the XQuery existential semantics requires that
every combination of “evening phone” and “daytime phone”
is tested for a match. However, predicates that refer to only one
PT node can be eagerly evaluated, increasing the system per-
formance and reducing the buffering requirements. In these
cases, TurboXPath applies a rewrite named predicate push-
down. To illustrate this rewrite, we look back at the example
based on Fig. 3 where we had to accumulate all order dates un-
der a customer before applying the predicate. Figure 6 shows
an alternative representation of the same query where the pred-
icate is anchored at the “date” node, instead of being anchored
at the “customer” node as in the nonoptimized PT. In this case
the predicate is evaluated for each “date” node without having
to accumulate several values before evaluation.
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2.4 Tuple construction

As the tuple processing model of the database engine requires
matching (joining) the retrieved XML fragments with tuples,
if several fragments for one or more of the tuple variables ap-
pear before the tuple is completed, these fragments must be
buffered. For example, when returning tuples <a, b>, Tur-
boXPath must buffer all “a”s that appear in the document be-
fore the first “b” appears (or vice versa). Furthermore, only
tuples where the fragments satisfy the structural constraints
of the query should be emitted. The goal of the tuple construc-
tion phase is to construct the correct tuples, out of all possible
tuples in the cross product of the output buffers.

Since in the streaming model the document is unavailable
at tuple construction time, each buffer must be annotated with
enough information to complete the tuple construction. In or-
der to preserve the position of the buffer content in the input
document tree, a unique node ID (NID) is assigned to each
matched node in the input document. Document nodes that do
not match query nodes are ignored. Each buffer is annotated
with its ancestor NIDs grouped into sets corresponding to the
matched query nodes. We refer to these sets as ancestor sets
(ASs). Each buffer has one ancestor set per ancestor in the
query tree. Each set contains the NIDs of the document nodes
matching the corresponding query node. An AS contains more
than one NID only in recursive cases, where the same query
node is matched by more than one document node.

In the following discussion we first present a simple nested
loop join (NLJ) algorithm for the tuple construction. Then we
show how simple improvements to this algorithm allow for an
execution model similar to a merge join, which is worst-case
optimal in time (the execution time is linear with the size of
the result). We illustrate the process using the following query
over the document fragment in Fig. 7. The example document
represents a customer-order hierarchy and is close in structure
to the running example used in the rest of the paper. In order
to demonstrate some technical issues with recursive cases we
assume that the “order” elements can be nested within each
other. To simplify the presentation we also assume that the
NIDs assigned to the elements in the example are the numbers
given after each start element tag.

for $customer in document("...")/customer
for $name in $customer/name/text()

for $order in $customer//order
for $date in $order/date

for $amount in $order/amount
return-tuple $name, $date, $amount;

Since there are three variables in the output tuple, the sys-
tem keeps three buffer queues. After processing the example
document, the queues contain all together 7 buffers. The result,
however, contains only 3 tuples as opposed to 12 produced by
the cross product of all the buffer queues. Some of the tuples
are pruned from the result since they do not satisfy the struc-
tural constraints of the document. In the example, “amount”
and “date” elements appear in the same tuple only if both
were found under the same “order” element. This reasoning
can be applied recursively up the parse tree: “name” buffers
join with <amount, date> tuples that appear within the same
“customer” element.

The NLJ tuple construction algorithm builds new tuples by
starting from an empty tuple without any fragments (buffers)

and adding buffers to it. The algorithm iterates over the buffers,
and for each buffer it checks if the addition of that buffer to
the tuple would generate a valid (partial) tuple. A tuple is
valid if the intersection of each of all nonempty ancestor sets
associated with that buffer and the corresponding nonempty
ancestor sets of the tuple are not empty. The tuple ancestor set
is an intersection of the corresponding ancestor sets for all the
buffers in the tuple so far. When all variables are bound in the
tuple, the tuple is complete and is emitted.

In this example, the algorithm would start by adding the
first buffer (NID = 2) of the first buffer queue (“name”)
to the initially empty tuple. This would change the tuple
ancestor set corresponding to the “customer” query node
TupleAScust, which would be initialized from the buffer an-
cestor set TupleAScust = AScust = {1}. Next, the algo-
rithm would try to bind values to the remaining two tuple
columns by selecting the first buffer (NID = 4) from the sec-
ond buffer queue (date). In this case, since the intersection
of TupleAScust and AScust for NID = 4 is nonempty, the
binding is added to the tuple. In addition, since NID = 4 has
an ancestor set corresponding to the query node “order”, the
set TupleASorder = {3}. The algorithm would then proceed
for the first “amount” fragment (NID = 5). The correctness
of the tuple would be verified by checking the intersection of
TupleAScust and AScust for NID = 5 and the intersection
of TupleASorder and ASorder for NID = 5, which are both
nonempty. Therefore, the first tuple would be constructed with
buffers representing the elements with NIDs 2, 4, and 5. Fol-
lowing the nested-loop pattern, the “amount” fragment with
NID = 5 would be replaced in the tuple by the next one in the
same queue, which has NID = 9. In this case the intersection
of ASorder and TupleASorder would be empty, and the tuple
for NIDs 2, 4, and 9 would not be emitted. The algorithm then
proceeds for the remaining combinations of output buffers,
generating the tuples in the Result table of Fig. 7.

The tuple construction algorithm emits each tuple once,
independently of the cardinality of the intersections of the an-
cestor sets of the participating buffers. This eliminates the need
for duplicate removal operators on the top of the TurboXPath
operator.

There are a couple ways to bring the performance of the
algorithm above closer to the optimal. We first observe that in-
tersection of only one ancestor set is needed to check if a buffer
fits into a tuple. The intuition is that the path of a buffer inter-
sects with the paths of the other buffers at least in one query
node. In the example above this means that when the “amount”
binding is added, we need to check the intersection only of the
set ASorder since the ancestor paths of “amount” and “date”
intersect at “order”. If the intersection of the ASorder and
TupleASorder is not empty, then the intersections of the sets
corresponding to all the ancestors of “order” are not empty as
well (in the example AScust).

Single ancestor set intersection reduces the complexity of
the tuple construction per buffer queue entry. Nevertheless,
performing NLJ when the buffer queues are long might still
be inefficient. The “wasted effort” in the NLJ algorithm is due
to the iteration over buffer entries that do not fit in the partially
built tuple. For example, if the “customer” element in the ex-
ample above contained a large number of “order” elements,
each with several “date” and “amount” subelements, then the
NLJ would try to match every “date” with every “amount”,
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Fig. 7. Tuple construction output buffers example

while only the “date” and “amount” elements within the same
“order” parent would match.

To improve on this we observe that in nonrecursive cases
all ancestor sets contain only one NID. Furthermore, the NIDs
in the same ancestor set are monotonically increasing. This
property stems from the preorder traversal of the document
during the matching phase, when NIDs are assigned to XML
fragments and the fragments added to the output buffers. Based
on these observations, for nonrecursive cases the NLJ algo-
rithm presented above can be modified into a multiway merge
algorithm. The merge join algorithm requires very small mod-
ification to the NLJ algorithm. The difference is only in how
the merge algorithm moves through the buffers when a buffer
does not fit into the tuple. The NLJ continues to the end of
the queue, while the merge join algorithm backtracks to the
first queue position with the current NID. Furthermore, when
fitting a new element after the backtracking, the merge join
algorithm continues at the first buffer with an NID larger than
the current one, as opposed to the beginning of the queue as
in the NLJ algorithm.

We note here that in a recursive case the merge algorithm
is not applicable. For example, in Fig. 7 the ASorder of frag-
ment 9 contains NID 7, while the following fragment 10 has an
ASorder with NID 6, violating the assumptions that the NIDs
increase monotonically. This inversion is caused by the inner
“order” element eclipsing the outer, as a parent of the element
“<amount> 9 </amount>”. Nevertheless, in the majority of
cases the algorithm is applicable and its execution time is pro-

portional to the number of the returned tuples. The class of
the recursive cases for which NLJ is needed is detected by the
evaluator, and the appropriate tuple construction algorithm is
applied.

2.5 Buffer management

In most scenarios the tuples returned are composed of bindings
from small compartments within a document. As tuples are
generated by combining data within each compartment, the
buffer queues can be cleaned between compartments. In this
section we describe how to determine the boundaries of the
compartments and the circumstances when a buffer can be
discarded in order to release memory and lower the memory
requirements of the processor.

Buffer elimination due to failed condition

The tuple construction algorithm described above requires that
all the buffers in the output buffer queues satisfy the query con-
ditions. Therefore, buffers that do not satisfy these conditions
must be eliminated before the tuple construction starts. As de-
scribed above, the status of each node is evaluated in its close
event. Therefore, when an element is closed and not all the
query conditions are satisfied, its NID is removed from all the
ancestor sets of all buffers in system. If, for some buffer, this
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removal results in an empty set for at least one of the ances-
tor sets, the buffer does not satisfy the query conditions and
it is discarded. As described in the previous section, since in
nonrecursive cases the NIDs in the buffer queue are monoton-
ically increasing, all buffers to be removed are at the top of
the queue. In such cases, hence, it is not necessary to scan the
whole buffer queue to eliminate buffers but only up to the first
buffer that is not removed.

An example of such a case is shown in Fig. 5 presented in
Sect. 2.2. At the point when the outer “a” element is closed,
the output queue of the “b” node contains two buffers, one
for fragment “<b>b1</b>” and another one for fragment
“<b>b2</b>”. The first of these buffers has ASa = {1, 2}, for
both “a” nodes, while the later has ASa = {2}. Since the con-
ditions under the outer “a” (NID = 2) are not satisfied (no “c”
child), the NID of the outer “a” is deleted from the ancestor sets
of both “b” buffers. This leaves the buffer for “<b>b2</b>”
with no valid “a” parent and the buffer is dropped from the
queue. The buffer containing “<b>b1</b>” is not removed
since its ancestor set for “a” still contains the inner “a” (NID
= 1).

Buffer elimination due to expiration

As presented above, the tuple construction process assumes
that all the fragments that participate in result tuples are ex-
tracted from the document and stored in buffer queues before
the first tuple is emitted. For most documents this is not nec-
essary. Often, fragments that participate in the result do not
need to be kept in buffers until the end of the document. A
buffer can be discarded after all the possible tuples that use
this buffer have been constructed. To establish this point of
expiration we define the concept of lowest common ancestor
node (LCAN) as a parse tree node such that:

1. It is an ancestor of all the output nodes;
2. It is not a parent of any other node that satisfies 1.

Since each query has at least one output node, each query must
have an LCAN. In fact there is exactly one LCAN for every
query since if there existed two LCAN nodes they could not be
related as child and parent due to condition 2 defined above.

During processing, the evaluator keeps track of the docu-
ment level at which the outermost match to the LCAN is made
(due to recursion there might exist several properly nested
document subtrees with roots matching the LCAN node). At
closing element action, if the closed level matches the out-
ermost LCAN document level and all the conditions in the
closing node are verified, the tuples can be emitted. In this
case, after emitting the tuples, all the buffers are deleted and
all the counters used to generate IDs for the document nodes
are reset. In other words, the LCAN query node allows for
identifying independent compartments of the document. Data
within the compartments are processed independently of data
within other compartments.

In the example shown in Fig. 7, the LCAN node is “cus-
tomer”. By the time the “customer” (NID = 1) closes, all
the conditions are verified, the tuple construction process is
trigged, the correct tuples are emitted, all the buffers are
deleted, and all the counters are reset. Please note that since all
fragments under the “customer” (NID = 1) are removed when

it is closed, the second buffer for “name” (NID = 12) would
not coexist with the remaining buffers shown in Fig. 7. In fact,
by the time the second “name” is buffered it would be the only
fragment in the system buffers and it would get NID = 2 since
the counters would have been reset. As another example, let
us consider the query

for $s in document(‘‘...‘’)//store
let $sn := $s/name
let $cn := $s/customers/customer/name
let $ca := $s/customers/customer/address

return-tuple $sn, $cn

retrieving the store and the customer names applied to the
document:

<store>
<name>Sears</name>
<customers>

<customer>
<name>Jim</name>
<address>Jim’s str.</address>

</customer>
<customer>

<name>John</name>
<address>John’s str.</address>

</customer>
...

</customers>
</store>

The LCAN node is “store” since it is an ancestor of both
output nodes. The names of the customers are kept until the
end of the “store” element because another store name might
appear at any point within this element, producing one more
tuple for each customer. While possible, such document orga-
nization is very unlikely. To avoid unnecessarily large buffer
queues, the processor needs to know either that there is only
one store name or that they are all given before the customer
entries. This is an example of where schema information about
the input document can lower the memory consumption. If in
the query the store name was not an output node, the LCAN
would be lowered to “customer” and buffering time would be
reduced.

Clearly the document organization can impact the perfor-
mance of some queries. In the case where the user can influ-
ence the organization of the input document, the elements
should be grouped by their tag names to allow for use of
schema information as above. Another document organization
rule that might decrease the memory consumption is that the
bulkier extract elements should appear as late in the document
as possible since the elements found earlier in the document
are buffered for a longer time than those found later.

3 Prototype evaluation

The TurboXPath prototype was developed on Windows 2000
using Microsoft Visual C++ and has been tested both on Win-
dows 2000 and AIX 4.3.3 platforms. To parse the input XML
documents, TurboXPath uses the SAX API of the Xerces C++
[23] parser. Xerces is shareware software based on IBM’s
XML parser, which is distributed freely by the Apache Foun-
dation. In the evaluation presented in this section we compare
query completion time and peak memory consumption of the
TurboXPath processor with the Apache Xalan XPath/XSLT
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processor [22]. Xalan also uses Xerces internally, but it is
based on the DOM API where the entire document is parsed
and a tree representation is built into the memory. The pro-
cessing of XPath queries is then performed over the DOM
tree in memory. In order to support similar functionality as
the TurboXPath processor, we have build a simple C++ mod-
ule over the Xalan interfaces to stringify a DOM tree whenever
an intermediate node is retrieved.

To test TurboXPath in conjunction with a relational
database, we used DB2/UDB and encapsulated TurboXPath
into user-defined functions (UDFs) for the three most com-
mon SQL/XML [12] functions: XMLContains, XMLExtract,
and XMLTable. Each function was implemented using both
TurboXPath and Xalan as the core path processor. XMLCon-
tains takes an XPath expression and an XML document as
inputs and returns a boolean value indicating if the XPath is
satisfied by the document. XMLExtract has the same inputs
but it returns an XML fragment as output. Both XMLContains
and XMLExtract are scalar functions. XMLTable, on the other
hand, is a table function that takes a set of XPath expressions
(or an XQuery expression with multiple outputs) and an XML
document as inputs and generates a virtual table in which the
columns correspond to the input expressions.

We also compare TurboXPath against two other publicly
available XML streaming systems: XMLGrep and XSQ [20].
XMLGrep supports most of XPath 1.0; however, its design and
implementation details have not been published. We are un-
aware, for instance, which XML parser is used in XMLGrep.
XSQ is one of the most complete XML stream processing sys-
tems described in the literature. The evaluation section in [20]
shows that XSQ delivers superior performance as compared
with several other engines. XSQ was developed in Java, and it
uses the Xerces Java SAX API for parsing. TurboXPath was
compared to these two systems using a standalone version not
based on UDFs.

We used four different data sets for running the experi-
ments. The first one is a set of files from the DBLP publica-
tion database, varying from 900 KB to 7000 KB. The second
data set is product reviews collected at an online product re-
view site. The individual reviews were aggregated into files
of up to 400 MB. The experiments on this data set were mea-
sured in the standalone version since Xalan could not com-
plete the execution over the large files as a DB2 UDF due to
memory exhaustion. The third data set is a set of randomly
generated files that have been generated from a set of also
randomly generated XPath expressions using the XML gen-
eration tools described in [3]. These files vary from 400 KB
to 8 MB. Finally, for the comparison against XMLGrep and
XSQ we used XMark, which is a standard data set used for
XML benchmarks. XMark provides an XML generator and a
set of suggested queries. The XMark files we used vary from
30 MB to 120 MB.

The comparative measurements of the execution times and
memory consumption presented in Figs. 8 and 9 were ob-
tained on an IBM ThinkPad T20 with a 700-MHz processor
and 256 MB of RAM and Windows 2000. All experiments
were performed with warm cache. Table 1 presents the queries
used in each graph. The queries were chosen in the way most
of the TurboXPath features are exploited. The queries used for
XMark are based on the suggested queries but have been mod-

ified to accommodate the features not supported by XMLGrep
and XSQ.

Figures 8a and b illustrate the performance of the XML-
Contains boolean UDF in both DBLP and the randomly gen-
erated files. In both cases TurboXPath outperforms Xalan by
several orders of magnitude. An interesting point regarding
XMLContains is the fact that, since TurboXPath uses incre-
mental parsing, it does not need to go over the entire XML
document to produce the result in case of positive queries.
Figure 9a shows a “good” case in which the requested loca-
tion path is probably at the beginning of the document and the
response time is extremely fast. Figure 8b shows the average
case in which the response time is bound by the XML parsing
time.

Figures 8c and d present similar results for the XMLEx-
tract UDFs. In this case, however, the parsing time is the actual
lower bound since the documents have to be completely parsed
in order to generate all the possible matching XML fragments.
TurboXPath is on average only 50% slower than the parsing
time, while Xalan can be up to seven times slower (however,
note that Xalan uses DOM and not SAX). Figure 8e shows
how XMLExtract performs on extremely large files. After the
limit of 60 MB Xalan performance starts to decay exponen-
tially, while TurboXPath continues to show good performance.
The measurements indicate that TurboXPath clearly performs
better. The difference is most notable when the main memory
is exhausted and the operating system starts using the swap
file for virtual memory pages. Figure 8f shows the memory
usage for the execution in Fig. 8e. TurboXPath executable
uses around a 1.7 MB image independent of the input file size,
while the size of the memory used by Xalan’s DOM tree grows
to over 300MB.

Figures 8g and h illustrate the impact of selecting several
outputs while at the same time using a TurboXPath imple-
mentation of the XMLTable UDF. Figure 8g is the result of
a query in which the number of output tuples is independent
of the width of the tuples (number of selected columns). Fig-
ure 8h, on the other hand, shows the result of a query in which
the number of output tuples grows exponentially with the num-
ber of columns. Both queries are similar, the only difference
being that in Fig. 8h we made the LCAN node to be “dblp”
instead of “phdthesis”, which made all the combinations of
“title”, “author”, and “year” valid results. Note that in both
cases the time to select one, two, or three columns simulta-
neously is almost the same, even though the number of result
tuples varied from 20 to 8000 in the second case. This con-
firms that since TurboXPath uses a streamed execution model,
visiting each document node only once, the additional cost of
selecting more than one XML fragment is negligible.

XQuery processing often requires the extraction of many
fragments from a document (or stream). As the experiments
have shown, this can be done with no extra cost in TurboX-
Path. Therefore, the optimizer should generate query plans
that maximize the number of XML fragments extracted by
each invocation of TurboXPath. This is exemplified in Fig. 1,
where the query plan generated by the optimizer makes only
two TurboXPath invocations, one extracting three fragments
from “doc1” (cid, name, and amount) and the other extracting
two fragments from “doc2” (cid, and status). Since there the
experiments have shown that there is no additional cost for
selecting multiple fragments, this is a more efficient plan than
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Fig. 8a–h. Experimental results. a XMLContains (DBLP). b XMLContains (random). c XML Extract (DBLP); d XMLExtract (random).
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Table 1. Queries used in the experiments

Figure number Query

8a, 8c /dblp/*[@key="conf/vldb/2001" and editor and title]/title
8b, 8d //g0//l2[.//s2//d0]//t0[.//u0//b1//q1]//l3//c2
8e, 8f //REVIEW[URL/text() and SEQNUM/text() and EXTRACTOR/text()]
8g for $thesis in /dblp/phdthesis[year < "1994" and author and title]

return-tuple $thesis/title, $thesis/author, $thesis/year;
8h for $thesis in /dblp[phdthesis/year < "1994" and

phdthesis/author and
phdthesis/title]

return-tuple $thesis/title, $thesis/author, $thesis/year;
9a, 9b /site/people/person[@id=‘person0’]/name/text()
9c, 9d //closed auction/price/text()
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Fig. 9a–d. Experimental results. a Execution time (XMark Query 1). b Evaluation time (XMark Query 1). c Execution time (XMark Query 2).
d Evaluation time (XMark Query 2)

one requiring five invocations of TurboXPath, each returning
one fragment.

The graphs in Fig. 9 compare TurboXPath against XML-
Grep and XSQ. Figure 9a shows how the performance of these
systems varies with respect to the size of the input data in an
extraction query that has predicates and returns only one XML
element. This graph also shows the Xerces parsing time in C
and Java, since XSQ is developed in Java. XMLGrep shows
very good performance for small files, but the performance
degrades dramatically for larger files. XSQ scales well, but
it is consistently slower than TurboXPath. Figure 9b factors
out the parsing time for both XSQ and TurboXPath. Note that
we could not do that for XMLGrep since we are unaware
of which parser it uses. Figure 9b shows that even factoring
out the parsing time (parsing in Java is slower than parsing in
C++), TurboXPath is still much faster than XSQ, and the slope
of the curves show that it scales better than XSQ. Figures 9c
and d show similar results for a different XMark query that
involves a descendent step (“//”).

In addition to scaling better than the other systems, Tur-
boXPath is also more complete. Several of the queries pro-
posed by the XMark benchmark cannot be executed in XSQ
and XMLGrep. XQuery expressions that require multiple out-
puts, for instance, would require several invocations of XML-
Grep or XSQ, which would result in even bigger processing
times.

4 Related work

Most of today’s commercial XPath processors are incorpo-
rated into XSLT platforms for document transformation. In
this respect, their implementation assumes that the XML doc-
uments are entirely available at query time. They construct
an internal representation of the documents (most commonly
DOM trees) in order to efficiently evaluate the operators. This
approach does not apply when the documents are streamed,

that is, when only certain fragments of the documents are avail-
able at query time.

However, query processing in streaming environments is
not a new topic. Extensive research in streamed query process-
ing was conducted in areas such as information dissemination
(ID). ID systems register thousands of user profiles and mon-
itor several information sources for matches of these profiles.
XFilter [1], for example, is an ID system based on XPath. It
uses an automaton to process large numbers of simple boolean
XPath queries over large numbers of documents. YFilter ex-
tends XFilter to use a nondeterministic automaton (NFA) in
which the state transitions for multiple queries are precom-
puted instead of advancing an automaton for each query sep-
arately [10]. In contrast, the evaluator of TurboXPath was de-
signed to avoid the translation to finite-state automata (FA)
since such translation is computationally expensive and may
generate an exponentially large number of states [14]. Since
TurboXPath was designed to work in an environment with sev-
eral concurrent users, memory consumption is an issue and the
approaches based on automata may be unfeasible. On the other
hand, ID systems are designed to handle workloads consisting
of large numbers of Xpath expressions and it is not clear how
TurboXPath would apply to that setting.

The evaluator presented in this paper has its roots in the
FA theory. However, XPath queries involving branching re-
quire parentheses in order to verify the structural constraints
and the matching and cannot be processed using pure FA. Tur-
boXPath uses the document level and the WA to perform the
state transition in a manner similar to the transitions of the
nondeterministic FA (NFA), while being able to match the
corresponding OPEN and CLOSE events. There is no notion
of a single state in the evaluator as in FA; instead, a combina-
tion of flags and the content of the WA reflect the current state.
In contrast with the FA approaches, the TurboXPath parse tree
need not be transformed before use. The size of the tree is pro-
portional to the query, and it is always smaller or equal to the
corresponding automata, which in recursive cases is exponen-
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tial in the size of the query [14]. Finally, the PT provides a
natural context for the placement of predicates, a feature that
has not been addressed by most of the other streamed XPath
evaluation frameworks such as [16,18,19].

Another related ID system is XTrie [6]. XTrie differs from
XFilter in that its index is based on decomposing the tree pat-
terns into sequences of element names and indexing them with
a trie. In addition, XTrie supports a bigger XPath subset when
compared to XFilter, supporting queries with AND branches.

In the NiagaraCQ system [7,21] user profiles are expressed
using continuous queries expressed in XML-QL [9]. Continu-
ous queries allow users to get new results whenever an update
of interest occurs in certain information sources. The Nia-
garaCQ project differs from our work in that it focuses on
solutions for grouping large numbers of queries together and
on developing efficient relational operators for variable-rate
streaming environments, as opposed to the efficient evalua-
tion of the path queries.

Tukwila [16,17] has been developed concurrently with
TurboXPath and provides a similar set of features. The core of
the Tukwila system is the X-scan operator for path processing.
During streaming, Tukwila builds an intermediate tree repre-
sentation that is then traversed by the X-scan operator to per-
form the state transitions. Portions of the tree no longer needed
are discarded, with only the relevant pieces of the document
being kept in memory. The tree manager has a function similar
to that of the WA and the output buffers in TurboXPath. Since
processing paths over an XML document requires parenthesis
matching, which is not supported by regular expression au-
tomata, Tukwila uses a stack and a meta-automaton to enable
and disable several deterministic finite automata (DFA) that
represent linear subpaths in the original query. The automata
are generated by first mapping a linear XPath subexpression
to a DFA and then translating the DFA to a nondeterministic
automaton (NFA), possibly producing an exponential number
of states. Furthermore, the Tukwila buffer management as re-
ported in [16,17] cannot handle cases where documents are
recursive w.r.t. the query. Finally, in Tukwila predicates are not
supported in the X-scan operator and are delegated to the rela-
tional engine. On the other hand, Tukwila supports IDREFS,
a feature not yet supported by TurboXPath.

Recently an XQuery implementation [13] and some XPath
implementations [11,14,15,18–20] that operate over XML
streams have been reported. In [13], Florescu et al. describe
an XQuery engine designed for data transformations on XML
streams. Their system is targeted for small XML documents
and is a standalone XQuery processor that does not rely on
any database system. The system proposed in this paper, on
the other hand, is designed to efficiently support any type of
XML document, both streamed and persisted, and can be used
in conjunction with a relational engine. The XPath processors
proposed in [18–20] are based on connecting a set of FA in a
network that represents the query. All these approaches suffer
from the same problem of any implementation based on FA,
which may require memory that grows exponentially with the
size of the query. Of these implementations the one reported in
[20] is the most complete, supporting branching and predicate
evaluation. Performance comparisons between this system and
TurboXPath have been described in Sect. 3. The systems re-
ported in [14,15] are in the area of ID, and as such they support
only boolean queries. Some theoretical bounds in the size of

the automata are presented in [14], while [15] describes how
predicates can be shared by different queries. The predicates
supported by [15] are only boolean predicates for which no
buffering is required. Furthermore, the approach of eliminat-
ing redundant computation among several queries proposed in
[15] is not applicable to the database scenario, where several
queries are executed concurrently over different XML input
streams. An extension to YFilter that supports a limited sub-
set of the FLWR clause in XQuery (the let construct is not
supported) is described in [11] .

Several projects have explored processing XPath queries
over preprocessed documents. Zhang et al. [24] proposed a
region algebralike representation for the XML documents in
which a document is stored in two relations with the follow-
ing schema: {Term, DocID, StartPos, EndPos, LevelNum} for
elements and {Term, DocID, StartPos, LevelNum} for docu-
ment tree leafs. According to this paradigm, computation of a
path expression is performed by joining these two structures.
Complex path queries are divided into a sequence of one-step
queries, and the steps are computed using joins. Al-Khalifa
et al. extended this work with tree-merge and stack-tree joins
[2]. The latter was extended to a new family of join algorithms
called holistic twig joins [4]. None of these approaches was
developed specifically for streaming.

5 Conclusions and future work

This paper presented the TurboXPath system, a streamed pro-
cessor for processing for-let-where constructs of XQuery. The
features supported by TurboXPath were chosen by examining
the emerging XML query standards and identifying a common
core. A distinguishing feature of the TurboXPath system is its
capability to process query trees constructed of several con-
catenated paths returning tuples as results. The tuple-based
interface is suitable for integration in an XQuery database
engine using existing virtual table interfaces. The paper also
presented an experimental evaluation of a prototype imple-
mentation of the TurboXPath processor, where it demonstrated
orders of magnitude lower execution times and memory con-
sumption compared to a DOM-based XPath processor and
substantial performance improvement and richer set of fea-
tures compared to other streamed XPath processors. Finally,
the paper presented a novel XPath processing technique that
does not require the translation of queries to FSAs. This new
technique may require exponentially less memory to process
queries when compared to the previous streaming algorithms
based on FSA.

In our current work we explore expanding the use of Tur-
boXPath over various binary XML formats using a custom
SAX interface. The component producing the SAX events can
skip irrelevant pieces of the document, allowing for improved
performance. As opposed to an iterator-based interface be-
tween the XPath processor and the database storage, the SAX
event-based interface allows for use of the same processing
model for both streams and stored XML documents and re-
quires no additional duplicate elimination operations.
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