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Humans and Machines

One leading narrative for Al: humans versus machines

For any given domain, when will algorithms exceed expert-level
human performance?



Humans and Machines

A set of questions around human/Al interaction:

* Relative performance of humans and algorithms

* Algorithms as lenses on human decision-making

* Humans and algorithms working together: pathways for
introducing algorithms into complex human systems

Can we use algorithms to characterise and predict human error?



Chess for Decision-Making

Long-standing model system for
decision-making

* “The drosophila of artificial intelligence.”
—John McCarthy, 1960

* “The drosophila of psychology.”
—Herb Simon and William Chase, 1973

Chess provides data on a sequence of cognitively difficult tasks.
When a human player chooses a move, we have data on:

* The task instance: the chess position itself.

* The skill of the decision-maker:a chess player’s Elo rating.

* The time available to make the decision.

Can we use computation to analyze human performance!?

* Characterize human “blunders” (mistakes in choice of move)

* Chess as the drosophila of machine superintelligence!?



A History of Chess Engines

* 1988: First recorded win by computer
against human grandmaster under standard
tournament conditions.

* 1997: Deep Blue defeats world champion
Kasparov in 6-game match.

* 2002-2003: Draws against world champions .
using desktop computers.

* 2005: Last recorded win by a human player
against a full-strength desktop computer
engine under standard tournament
conditions.

* 2007: Computers defeat several top players
with “pawn odds.”




Chess for Decision-Making

0 @ Analysis 1

Lines: 3 2 # Stock ¢ ¢ Stop

-1.41 [+][*] 2... Rc4 3. Rb6+ Kf5 4. Rxab d4 5. RaS5+
Kf6 6. Bf2Z Rc1+ 7. Ke2 d3+ 8. Kxd3 Nxf2+ 9. Ke3 Nh1
10. h4 gxh4 11. Rxh5 Rc4 12. a5 Ng3 13. Rh8 Nf5+
14. Kf3 Rad 15. Ra8 Nd4+ 16. Kg4 Nc6+ 17. Kh3
Nxa5 (depth 20, 0:00:09)

-1.07 [+]1[*] 2... Rc2 3. g4 hxg4 4. hxg4 Rc4 5. Rb6+
Kf7 6. Rb7+ Ke6 7. Rb6+ Keb5 8. Rxab d4 9. Rab+ Kf6
10. Bg1 Rc1+ 11. Kg2 d3 12. Bd4+ Kg6 13. Be3 d2 14.
Ra6+ Kf7 15. Ra7+ Ke6 16. Ra6+ Ke5 17. Rab+ Kf6
18. Ra6+ Ke7 19. Ra7+ Kd6 20. Bxd2 Nxd2 21. Rg7
(depth 19, 0:00:09)

-0.94 [+][*] 2... g4 3. hxg4 hxg4 4. Rd7 Nf6 5. Re7
Rc4 6. a5 Kf5 7. Rf7 d4 8. Bd2 Ke6 9. Ra7 Ne4 10.
Rxa6+ Kf5 11. Be1 Rc1 12. Ra8 d3 13. Rf8+ Kg5 14.
Rg8+ Kf4 15. a6 (depth 19, 0:00:09)

[+] 2... Rc4 (suggested move)

Could use chess engines to evaluate moves |[Biswas-Regan 2015]

* Promising, since engines are vastly superior to the world’s best players

* Engines sometimes detect clear-cut errors, but very often a “grey area’”:
engines and humans disagree, but doesn’t necessarily change the
outcome of the game



Chess for Decision-Making

® White to move
8 . O Black to move

7 Win in 15

Move Value
g 6 Rg3-b3  Winin 15
Rg3-g7 Winin 17
Rg3-g8 Winin 17
@ 5 Rg3-f3  Winin 20
Rg3-e3 Winin 20
Rg3-d3  Winin 20
E @ 4 Rg3-c3  Winin 20
Rg3-g6 Winin 20
Bd6-e5 Winin 22

Rg3-a3 Draw

3 Rg3-h3  Draw

Rg3-g2 Draw

Rg3-g1 Draw

2 Rg3-g4 Draw

Rg3-g5 Draw
Kf5-e5 Draw
1 D Kf5-f6 Draw
Kf5-e6 Draw

We use the fact that chess has been solved for positions with at
most / pieces on the board.

 “Tablebases” record all possible positions with <=7 pieces
* Can determine (game-theoretic) blunders by table look-up

* These positions are still difficult for even the world’s best players

The Stiller moves are awesome, almost scary, because you know they are the truth, God’s Algorithm;
it’s like being revealed the Meaning of Life, but you don’t understand one word.

— Tim Krabbe, commenting on an early tablebase by Lewis Stiller



Chess for Decision-Making

® White to move
8 . O Black to move

Win in 15

7
Move Value
g 6 Rg3-b3  Winin 15
Rg3-g7 Winin 17
Rg3-g8 Winin 17
@ 5 Rg3-f3  Winin 20
Rg3-e3  Winin 20
Rg3-d3  Winin 20
@ 4 Rg3-c3  Winin 20
Rg3-g6  Winin 20
Bd6-e5 Win in 22
Rg3-a3 Draw
3 Rg3-h3  Draw
Rg3-g2  Draw
Rg3-g1  Draw
2 Rg3-g Draw
Rg3-g5 Draw
Kf5-e5 Draw
1 D Kf5-f6 Draw

Kf5-e6 Draw

Data from two sources:

# Games Rating Duration Setting

Casual enthusiasts

FICS 200M 1200-1800 Minutes . .
playing online

GM 1M 2400-2800 Hours Professional
tournaments

Take all <7-piece positions, classify a move as a blunder if and only
if it changes the win/loss/draw outcome



Basic Dependence on Fundamental Dimensions

skill
How does decision quality vary with time !

difficulty



Human Error as a Function of Skill
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Human Error as a Function of Time

Empirical blunder rate
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Human Error as a Function of Time
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Human Error as a Function of Difficulty

s W
A simple measure for the difficulty of a position: ’
the “blunder potential” is the probability of Q )
blundering if you choose a move at random & )

# possible blunders ?

|
O

Blunder potential =

a b c d e f g h

# legal moves

@® White to move
O Black to move

Win in 15
Move

Rg3-b3
Rg3-g7
Rg3-g8
Rg3-f3
Rg3-e3
Rg3-d3
Rg3-c3
Rg3-g6
Bd6-e5
Rg3-a3
Rg3-h3
Rg3-g2
Rg3-g1
Rg3-g4
Rg3-g5
Kf5-e5
Kf5-f6

Kf5-e6
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Human Error as a Function of Difficulty
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Simple, quantal-response model captures how error varies with difficulty:
a particular non-blunder is ¢ times more likely than a particular blunder



Blunder Prediction

Use fundamental dimensions to predict: will the
player blunder in a given instance!

* The difficulty of the position

* The skill of the decision-maker (Elo rating)

* The time remaining

* A set of features encoding difficulty deeper in the game tree

Performance using decision-tree algorithms:

* All features: 75%
* Blunder potential alone: 73%
* Elo of player and opponent: 54%

* Time remaining: 52%



Empirical blunder rate
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Human Error as a Function of Skill
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Difficulty is the dominant feature

To the extent this is surprising, connections with fundamental attribution error, and
Abelson’s Paradox [Abelson 1985]



Human Error as a Function of Skill

Fix blunder potential: higher-depth blunder potential is the dominant feature.

Fix the exact position: skill and time become predictive.

Difficulty is dominant on average. Is this true point-wise?

* For position p, examine blunder rate as a function of skill in p
* Call a position skill-monotone if blunder rate is decreasing in r

* Natural conjecture: all positions are skill-monotone



Fixing the position

Difficulty is dominant on average. Is this true point-wise!

* For position p, examine blunder rate as a function of skill in p
* Call a position skill-monotone if blunder rate is decreasing in r

* Natural conjecture: all positions are skill-monotone

In fact, we observe a wide variation, including skill-anomalous positions
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Connections with U-shaped development



Challenges arising from misleading analogies?

4 4 4 4
3 3 3 3
2 2 2 2
1 1 1 1
a b C d e f g h a b C d e f g h
Blunder rate .046 Blunder rate .079
a b ¢ d e f g h¥ a b ¢ d e f ¢ h ¥

4 4 4 4

3 3 3 3

2 2 2 2

1 1 1 1
a b p d e F g h a b Cc d e f g h

Blunder rate .165 Blunder rate .755
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Reflections on Teaching
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Blunder rate .079

Blunder rate .046

Contrast

Traditional organization in textbooks

Adding information about frequency and rate

Blunder rate .755

Blunder rate .165



Reflections on Teaching

High-level goal: create a human-like Al
Understand and model human decision-making qualities at various levels

Can we build an algorithmic teacher from large-scale data on human decisions?



Reflections

Framework for analyzing human error given large numbers of similarly structured
Instances.

Compare human performance to computational benchmark (in this case a
perfect one)

In chess, difficulty is the dominant predictor of human error

Similar for other domains?

Opportunities for rich understanding of human decision-making using algorithms



