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Motivation

Modern machine learning systems can surpass 
human decision making

Human compatible machine learning systems 
are becoming more important

Source: Comunidad de Software Libre Hackem



Existing work

Characterize decision-
making with an 
aggregate measure: 
skill, performance, age, 
…

What we want

AI systems that 
understand humans as 
individuals: strengths, 
weaknesses, style, …

Motivation, cont



Behavioral 
Stylometry
Task of identifying 
individuals simply from 
their decisions



Chess as a Model System

Superhuman 
AI

� Since 2007
� Open-source
� Stockfish
� Leela Chess Zero

Large 
Datasets

� Lichess – open 
database

� 2.6+ Billion chess 
games

Diverse 
players

� Many countries 
� Accurate skill 
measure (Elo)
� Higher is stronger

Relatively 
Benign

� Games are public 
with limited PII

� Lower risk to 
players



Task Setup

Identify a specific chess player 
from a finite of pool of candidates, 
using their moves during games Given a set of moves from a query

set (𝑥𝑞) of games by an unknown 
target player, find the correct 
label for the player from a 
candidate pool of labelled 
players, from the universe of all 
players. Each labelled player has a 
reference set (𝑥𝑟) of games.



Methods, Model Design

� Few shot learning approach

� Transformer takes in a chess 
game, outputs game 
embedding vector

� Training with Generalized End-
to-End Loss (GE2E) loss2
� Designed for speaker verification in audio

2 Li Wan, Quan Wang, Alan Papir, and Ignacio Lopez Moreno. Generalized end-to-end loss for speaker verification. In 2018 IEEE International Conference on Acoustics, Speech and 
Signal Processing (ICASSP), pages 4879–4883, 2018. URL: https://wangquan.me/files/research/GE2E_ICASSP_2018.pdf



Methods, Model Pipeline

� Moves are represented as 
images:
� (state before, state after)

� CNN resnet -> move vector

� Transformer takes all moves 
from game -> game vector (𝑦)

� Centroid combines game 
vectors -> player vector (𝑐)
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Generalized End-to-End Loss (GE2E)

Minimize cosine distance between 
games by the same player

Maximize the distance between 
samples from other players

1. Builds a similarity matrix on a 
batch of 𝑁×𝑀 games

� 𝑁 is number of players
� 𝑀 is number of games per player

2. For each game by each player, 
calculate game vector 𝑥!"

� 𝑖th game from the jth player

3. For each player compute the 
centroid of their games 𝑐!

4. Then compute similarity 
matrix 𝑆!",$

� 𝑤 and 𝑏 are learned scaling parameters
Sji,k =

(
w · cos(yji, c

(�i)
j ) + b if k = j;

w · cos(yji, ck) + b otherwise.
<latexit sha1_base64="ZyPsrG4awF2Ay1fSWmhZe1bzKFI="></latexit>



Generalized End-to-End Loss (GE2E), Loss Calculation

Loss per sample is then 
calculated as:
� 𝑖th game from the jth player

Total loss for the batch is:

L(yji) = �Sji,j + log
NX

k=1

exp(Sji,k)
<latexit sha1_base64="IE3LatPs5wdJk5ppIC1ytAGIyUU="></latexit>

LGE2E =
X

j,i

L(yji)
<latexit sha1_base64="gxIslBfmjVzyf8ZheL1rJxyQAM0=">AAACDnicbVDLSsNAFJ3UV62vqEs3wVKoICWpgm6EohRddFHBPqAJYTKdtGMnD2YmQgj5Ajf+ihsXirh17c6/cdJmoa0HLhzOuZd773FCSrjQ9W+lsLS8srpWXC9tbG5t76i7e10eRAzhDgpowPoO5JgSH3cEERT3Q4ah51DccyZXmd97wIyTwL8TcYgtD4584hIEhZRstdKyk+tmvZlemDzy7OT+mKStqulBMXbcJE6lQtIjWy3rNX0KbZEYOSmDHG1b/TKHAYo87AtEIecDQw+FlUAmCKI4LZkRxyFEEzjCA0l96GFuJdN3Uq0ilaHmBkyWL7Sp+nsigR7nsefIzuxOPu9l4n/eIBLuuZUQP4wE9tFskRtRTQRalo02JAwjQWNJIGJE3qqhMWQQCZlgSYZgzL+8SLr1mnFSq9+elhuXeRxFcAAOQRUY4Aw0wA1ogw5A4BE8g1fwpjwpL8q78jFrLSj5zD74A+XzB/OBnBE=</latexit>

SGD with momentum is used for optimizing



Inference

� Given query set (𝑥%) of a target player
� Calculate game vectors
� Compute centroid (player vector)
� Find nearest labelled player in candidate pool
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Data

� Chess games from Lichess3

� Players with ratings between 

1100 and 2000 Elo

� Blitz games (3-5 minute)

� Players with over 1000 games

� Trained on seen set of 
players
� 63.7 million games
� 16,181 players in total

� Unseen set: players never 
seen during training

� All results shown are on 
games the models were 
not trained on

3 Reid McIlroy-Young, Russell Wang, Siddhartha Sen, Jon Kleinberg, and Ashton Anderson. “Learning Personalized Models of Human Behavior in Chess”. URL: https://arxiv.org/abs/2008.10086 



Experimental Setup

� Each target in the evaluation pool
is considered separately

� Target players have query set (𝑥𝑞) 
of 100 games

� Candidate players have reference 
set (𝑥𝑠) of 100 games

� Focus on k=15
� 16th and onwards moves by player
� Mid/late game, as early is often formulaic



Baseline Model

� Sample 5 move sequence from a 
each game
� k=15: 16th to 20th moves
� k=0: 1st to 5th moves

� one-hot 4096-dimensional 
encoding vector for each move

� Sum game vectors, normalize
� Uses cosine distance like 

transformer model



Results, After Move 15 (k=15)

Test Description

� Candidate pool 2844 
players
� 2266 in seen, player in training
� 578 in unseen, player not in 

training

� Only used decisions/moves 
after both players have 
made 15 actions 

Accuracy (Top 1)

Random Baseline Our 
Model

Unseen 
Only

0.04% 24.4% 86.0% 

Unseen+ 
Seen

0.04% 26.8% 85.4% 



Results, Whole Game (k=0)

Test Description

� Candidate pool 2844 
players
� 2266 in seen, player in training
� 578 in unseen, player not in 

training

� All moves in the game are 
used 

Accuracy (Top 1)

Random Baseline Our 
Model

Unseen 
Only

0.04% 92.9% 97.9% 

Unseen+ 
Seen

0.04% 92.9% 98.2% 



Results, Other Datasets, k=15
� McIlroy-Young et al. 
� 400 players, candidate=evaluation pool
� Personalized model as comparison

� Requires  20k+ reference games

� High Ranked Players
� Lichess and chess.com leaderboards
� Candidate pool: high rank + mid rank
� Evaluation pool: high rank

� Large Dataset
� 41,184 players from Lichess
� Candidate=evaluation pool
� Includes 16k seen players

Baseline Personalized Our Model

McIlroy-
Young et 
al. 

47.8% 55.2% 95.3%

High 
Ranked 
Players

2.7% 30.1% 

Large 
Dataset

8.49% 54.0% 

Accuracy (Top 1)



Increasing 𝑥𝑟 or 𝑥𝑞 size has diminishing returns
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Ethics

• This can be used to identify players who wish to remain anonymous 
• The embedding could also reveal other information, such as gender

Privacy

• These methods may be applicable to other domains
• This work is a first look at the implications of behavioral stylometry
• The research community should develop understanding before 

applying these techniques to a higher stakes domain

Generalization



Conclusion

Behavioral Stylometry
is a novel problem

• Design AI systems 
that can recognize 
people based on 
their decisions

Few shot 
identification of chess 

players

• Transformer model 
that embeds players 
and games as 
vectors in a high 
dimensional space

Ethical Considerations 
require further 
consideration

• Privacy for existing 
players

• Generalizations may 
cause significant 
concerns



Additional Information

Code github.com/CSSLab/
behavioral-stylometry

Email reidmcy@cs.toronto.edu

Twitter twitter.com/maiachess

Website maiachess.com


