Auditing Search Engines for Differential Satisfaction across Demographics

Rishabh Mehrotra, Ashton Anderson, Fernando Diaz, Amit Sharma, Hanna Wallach, Emine Yilmaz

University College London
Microsoft Research New York
Fairness across demographics

• Online services - advertised as being available to any user

• Ethical
 • Equal access to everyone

• Practical
 • Equal access helps attract a large and diverse population of users
 • Service providers are scrutinized for seemingly unfair behavior [1,2,3]

• Onus on us
 • develop fair systems

Auditing services for fairness

We offer methods for **auditing a system’s** performance for detection of differences in user satisfaction across demographics.
From public libraries to search engines

- Modern analogue of public libraries
- Dominant role in information access
- Fairness in *performance*!
Are Search Engines Fair?
From public libraries to search engines

Search Engines:
- Rely on ML models to optimize for user satisfaction
- Make use of implicit signals
- **Metric** driven development

... not easy to audit
Tricky: straightforward optimization can lead to differential performance

Goal: estimate difference in user satisfaction between two demographic groups.

- Search engine uses a standard metric: **time spent** on clicked result page as an indicator of satisfaction.

- Suppose older users issue more of **“retirement planning”** queries

<table>
<thead>
<tr>
<th>Age: <30 years</th>
<th>Age: >50 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>80% users</td>
<td>10% users</td>
</tr>
</tbody>
</table>
1. Aggregate Metrics can be misleading

- Overall metrics can hide differential satisfaction

- **Average user satisfaction for “retirement planning” may be high.**

But,

- Average satisfaction for younger users=0.7
- Average satisfaction for older users=0.2
2. Query-level metrics can hide differential satisfaction

Assuming same user satisfaction for “retirement planning” for both older and younger users = 0.7

What if average satisfaction for <query-X> = 0.9? (e.g. <query-X> = “facebook”)

Older users still receive more of lower-quality results than younger users.
3. More critically, even individual-level metrics can also hide differential satisfaction

Metric itself could be confounded with demographics

Consider: Reading time for the same webpage result for the same user satisfaction

Younger Users → Time spent on a webpage

Older Users → Time spent on a webpage
We must control for natural demographic variation to meaningfully audit for differential satisfaction.
Outline

1 Background

2 Data & metrics

3 Proposed approaches:
 1 Context Matching
 2 Hierarchical Multi-level model

4 From metrics to satisfaction

5 Discussion
Data: Demographic characteristics of search engine users

- Internal logs from Bing.com for two weeks
- 4 M users | 32 M impressions | 17 M sessions
- Demographics: Age & Gender
- Age:
 - post-Millenial: <18
 - Millenial: 18-34
 - Generation X: 35-54
 - Baby Boomer: 55-74

... also perform external auditing using comScore data
Metrics Considered

1. Graded Utility (GU)
 • based on search outcome and user effort

2. Reformulation Rate (RR)
 • fraction of queries that were reformulated

3. Successful Click Count (SCC)
 • clicks with significant dwell times

4. Page Click Counts (PCC)
 • total no of clicks on SERP

Goal: estimate difference in user satisfaction between demographic groups

Obvious solution: demographic binning!
Overall metrics across Demographics

- Substantial differences in performance across age
- Gender – not so much

... how true are these?
Pitfalls with Overall Metrics

Conflates two separate effects:

• natural demographic variation caused by the differing traits among the different demographic groups e.g.
 • Different queries issued
 • Different information need for the same query
 • Even for the same satisfaction, demographic A tends to click more than demographic B

• Systemic difference in user satisfaction due to the search engine

... we need to disentangle them!
Utilize work from causal inference
Outline

1 Motivation
2 Problems with naïve auditing
3 Data & Metrics
4 Proposed approaches:
 1 Context Matching
 2 Hierarchical Multi-level model
5 From metrics to satisfaction
6 Discussion
Proposed Approaches

1) Context Matching
2) Multi-level model

Extremely restrictive
More robust

Generalizable
Less Robust
I. Context Matching: selecting for activity with near-identical context

For any two users from different demographics,

1. **Same Query**
2. **Same Information Need:**
 1. Control for user intent: same final SAT click
 2. Only consider navigational queries
3. **Identical top-8 Search Results**

1.2 M impressions
19K unique queries
617K users
Age-wise differences in metrics disappear

- General auditing tool: robust
- Very low coverage across queries
 - Did we control for too much? – lose over 60% of data!
Proposed Approaches

1) Context Matching
 Extremely restrictive
 More robust

2) Multi-level model
 Generalizable
 Less Robust
Query-level Multilevel Model

• A **hierarchical** approach that treats the data as a mixture of distributions based on demographics and queries

• Non-nested **multi-level** model
 • Users & Queries: nested within **non-nested** age and gender groups & topics
 • second level captures variation with individual query properties

• Age effects
• Gender effects
• Topic effects
• <age, gender, topic> interaction effects

$$E(Y) = f^{-1}(\alpha_{agt} + \beta_{agt}X)$$

$$\begin{pmatrix} \alpha_{agt} \\ \beta_{agt} \end{pmatrix} = \begin{pmatrix} \mu_0 \\ \mu_1 \end{pmatrix} + \alpha_a + \alpha_g + \alpha_t + \alpha_{a \times g \times t} + \beta_a + \beta_g + \beta_t + \beta_{a \times g \times t}$$

$$\begin{pmatrix} \alpha_k \\ \beta_k \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \Sigma_k \right) \quad k \in \{a, g, t\}$$

Specific example: $$GU_i \sim \mathcal{N}(\alpha_{agt} + \beta_{agt}X_i, \sigma_y^2)$$
Age-wise differences appear again: bigger differences for harder queries
Outline

1 Motivation
2 Problems with naïve auditing
3 Data & Metrics
4 Proposed approaches:
 1 Context Matching
 2 Hierarchical Multi-level model
5 From metrics to satisfaction
6 Discussion
From Metric to Satisfaction

• Estimating absolute satisfaction is non-trivial

• We estimate relative satisfaction by considering pairs of impressions:
 • which impression led to a higher satisfaction

• Construct a conservative “high-precision, low-recall” proxy for pairwise satisfaction
 • by only considering “big” differences in observed metric for the same query

• Logistic regression model for estimating probability of impression i being more satisfied than impression j:

\[P(S_i > S_j) = \logit^{-1}(\beta_0 + \beta_{a_i} a_i + \beta_{a_j} a_j + \beta_{g_i} g_i + \beta_{g_j} g_j + \beta_{i,j} a_i a_j g_i g_j) \]
Again, see a small age-wise difference in satisfaction

<table>
<thead>
<tr>
<th>Age i</th>
<th>Age j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.52</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>0.54</td>
</tr>
<tr>
<td>4</td>
<td>0.56</td>
</tr>
</tbody>
</table>

- Older users are slightly more satisfied than younger users

\[P(S_i \succ S_j) \]
Discussion

- Auditing is more nuanced than merely measuring metrics on demographically-binned traffic
 - developed techniques to auditing search engines
- We find light trend towards older users being more satisfied.
- General framework for internally auditing systems
 - Plug-in different metrics
 - Plug-in different demographics/user groups

Future Work

- Develop metrics which are not confounded with demographics
- Investigate causes of metric differences
 - Query level analysis
 - SERP level analysis
- Dwell time thresholds for SAT prediction based on demographic information
Auditing is more nuanced than merely measuring metrics on demographically-binned traffic.

General framework for auditing systems
- Plug-in different metrics
- Plug-in different demographics/user groups

Thank You!

Rishabh Mehrotra
PhD candidate @ UCL
http://www.rishabhmehrotra.com

@erishabh
r.mehrotra@cs.ucl.ac.uk
Future Work

<table>
<thead>
<tr>
<th>Query</th>
<th>Demographics</th>
<th>Metric Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>essential oils guide</td>
<td>Female Age 2</td>
<td>vs</td>
</tr>
<tr>
<td>make your own game</td>
<td>male3</td>
<td>vs</td>
</tr>
<tr>
<td>macbook pro vs macbook air</td>
<td>Female2</td>
<td>vs</td>
</tr>
<tr>
<td>editing software for youtube videos</td>
<td>Male2</td>
<td>vs</td>
</tr>
<tr>
<td>emotions</td>
<td>Male2</td>
<td>vs</td>
</tr>
<tr>
<td>avaya phone manual</td>
<td>Female3</td>
<td>vs</td>
</tr>
<tr>
<td>catholic saints</td>
<td>Male4</td>
<td>vs</td>
</tr>
<tr>
<td>futures market</td>
<td>Male3</td>
<td>vs</td>
</tr>
<tr>
<td>medal of honor walkthrough ps3</td>
<td>Male3</td>
<td>vs</td>
</tr>
<tr>
<td>all wheel drive cars</td>
<td>Male4</td>
<td>vs</td>
</tr>
<tr>
<td>kob tv albuquerque news 4</td>
<td>Female4</td>
<td>vs</td>
</tr>
<tr>
<td>foods high in iron</td>
<td>Female3</td>
<td>vs</td>
</tr>
<tr>
<td>478-288-1122</td>
<td>Male3</td>
<td>vs</td>
</tr>
<tr>
<td>cheeseburger dip</td>
<td>Female4</td>
<td>vs</td>
</tr>
<tr>
<td>argosy capital</td>
<td>Male3</td>
<td>vs</td>
</tr>
</tbody>
</table>
External Auditing

- Experiment on a publicly available dataset
- 2 weeks logs of comScore data
- Use PCC metric to gauge satisfaction
- Probability of impression i being more satisfied than impression j:

$$P(S_i > S_j) = \logit^{-1}(\beta_0 + \beta_{a_i}a_i + \beta_{a_j}a_j + \beta_{g_i}g_i + \beta_{g_j}g_j + \beta_{ij}a_i a_j g_i g_j)$$
Future Work
Demographic distribution of user activity

- **fraction of users**
 - Female
 - Male

- **query frequency**
 - Female
 - Male

- **Age Groups**
 - 1
 - 2
 - 3
 - 4

- **Query Type**
 - Navigational
 - Informational

- **Body Parts**
 - Head
 - Torso
 - Tail
Characterizing Demographics: Gender

No of Users

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>5000000</td>
</tr>
</tbody>
</table>

Avg Session Length (no of Impressions)

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 1 2 3</td>
</tr>
</tbody>
</table>

Avg No of Characters Per Query

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% Head Queries

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Avg No of Sessions Per User

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 1 2 3</td>
</tr>
</tbody>
</table>

Avg No of Words Per Query

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 1 2 3</td>
</tr>
</tbody>
</table>

% Nav Queries

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 1 2 3</td>
<td></td>
</tr>
</tbody>
</table>

% Tail Queries

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Some highly discriminating queries in terms of P(D|Q):

<table>
<thead>
<tr>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>premier league</td>
<td>pinterest</td>
</tr>
<tr>
<td>bbc football</td>
<td>hautelook</td>
</tr>
<tr>
<td>watchespn</td>
<td>weight watchers</td>
</tr>
<tr>
<td>pirate bay</td>
<td>sephora</td>
</tr>
</tbody>
</table>
External Auditing

- Experiment on a publicly available dataset
- 2 weeks logs of comScore data
- Use PCC metric to gauge satisfaction
- Probability of impression i being more satisfied than impression j:

\[
P(S_i \succ S_j) = \logit^{-1}(\beta_0 + \beta_{a_i} a_i + \beta_{a_j} a_j + \beta_{g_i} g_i + \beta_{g_j} g_j + \beta_{ij} a_i a_j g_i g_j)
\]
Characterizing Demographics:

Some highly discriminating queries in terms of $P(D|Q)$:
• Young user, Old user
• Issue same query
• See search results
• How satisfied are you?
Query level Difficulty

- X_i: Feature corresponding to inherent difficulty of query
- Typical methods (reformulations, dwell times) employ user behavior – correlated with demographics
- Need a measure unconfounded with demographics
- Method:
 - Per demographic order query by increasing order of avg GU score
 - Compute per demographic percentile of the query (~query’s difficulty in each demographic)
 - Mean of percentiles across demographics
Algorithm 1 Compute satisfaction label

1: if $RR_i < RR_j$ then return +1
2: if $RR_i > RR_j$ then return -1
3: if $GU_i - GU_j > \delta^1_{GU}$ then return +1
4: if $GU_j - GU_i > \delta^1_{GU}$ then return -1
5: if $SCC_i - SCC_j > \delta^1_{SCC}$ then return +1
6: if $SCC_j - SCC_i > \delta^1_{SCC}$ then return -1
7: if $GU_i - GU_j > \delta^2_{GU} \land SCC_i - SCC_j > \delta^2_{SCC}$ then return +1
8: if $GU_j - GU_i > \delta^2_{GU} \land SCC_j - SCC_i > \delta^2_{SCC}$ then return -1
9: else return 0