
Tandem Training for Language Models

Robert West,1* Ashton Anderson,2* Ece Kamar,3 Eric Horvitz3

1EPFL, 2University of Toronto, 3Microsoft
robert.west@epfl.ch, ashton@cs.toronto.edu, eckamar@microsoft.com, horvitz@microsoft.com

Abstract

As language models continue to rapidly im-
prove, we can expect their actions and rea-
soning to become difficult or impossible for
weaker agents and humans to follow, under-
mining interpretability and oversight. With
an eye on long-term futures, we pursue meth-
ods that encourage models to produce solu-
tions that remain intelligible to weaker collab-
orators. We formalize intelligibility as handoff
robustness: a strong model’s solution is intel-
ligible to a weaker model if randomly hand-
ing off control to the weaker model along the
solution path does not cause failure. Building
on this criterion, we introduce tandem training
for language models, a reinforcement learn-
ing (RL) paradigm in which rollout tokens
are intermittently and randomly sampled from
a frozen weak model rather than the strong
model being trained. Because rollouts succeed
only when the strong model’s actions and rea-
soning process can be continued by the weak
model—when the two can co-construct a suc-
cessful solution—optimizing standard RL ob-
jectives with tandem training implicitly incen-
tivizes both correctness and intelligibility. In
the GSM8K math reasoning task, tandem train-
ing reliably teaches models to abandon jargon
and adapt their language to weaker partners
while keeping task accuracy high. Our results
demonstrate a promising route to building
AI systems that remain auditable by weaker
agents, with implications for human–AI col-
laboration and multi-agent communication.

1 Introduction

Artificial intelligence (AI) is rapidly becoming
more capable. AI models have already matched
or surpassed human capabilities in several mile-
stone domains, and most researchers expect this
trend to continue. As AI improves, however, its
actions and reasoning will often become difficult

*Work done as visiting researchers at Microsoft Research.

or impossible for weaker agents and humans to
follow because AI improvement is often driven
by autonomous learning loops, synthetic data, and
proxy rewards, causing model behavior to poten-
tially stray from what humans or other agents
might find familiar or intuitive.

This poses serious risks and challenges. Highly
capable but unintelligible models may be useful in
isolation or in highly modular environments. But
when collaboration is useful or necessary, or when
oversight is required, or in any scenario where in-
terpretability and control are important, unintelli-
gibility is a major problem. An agent with hard-
to-follow reasoning, uninterpretable actions, or un-
predictable decision-making increases the risk of
detrimental outcomes in any system in which it
plays a part. Without being intelligible, AI models
and agents are limited in the extent to which they
can collaborate with people, integrate into multi-
agent systems, and be broadly beneficial.

With long-term futures in mind, we pursue
methods that encourage models to produce high-
quality solutions while remaining intelligible to
weaker collaborators. We focus on language mod-
els, given their ubiquity and ability. One way to
approach the problem of intelligibility would be
to design elaborate system prompts, provide su-
pervised examples, or construct custom rewards,
but these bespoke solutions would be fraught with
challenges. They would likely be brittle, easily
gamed, and limited in scope.

We adopt another approach, where intelligibil-
ity is defined in a pragmatic, outcome-based man-
ner: a (stronger) senior model Msen is considered
intelligible to a (weaker) junior model Mjun if Mjun
can take over during randomly assigned portions
of a solution path without causing task failure.
Imagine a model in the process of solving a prob-
lem, when randomly and unpredictably, it must
hand off control to a weaker collaborator to con-
tinue solving the problem, and this handoff may

1

Standard reinforcement learning (RL) Tandem training

TRAINING

Prove that
the sum of
the first n

natural
numbers is

n(n+1)/2

Prove that
the sum of
the first n

natural
numbers is

n(n+1)/2

PromptPrompt

Prompt

Prove that
the sum of
the first n

odd natural
numbers is

n2

Prompt

Prove that
the sum of
the first n

odd natural
numbers is

n2

① Senior generates responses on its own

Response
rollouts

Response
rollouts

Response Response

Senior generates response on its own
Senior generates response on its own

(as after standard RL training)

① Senior and junior generate responses
together by taking turns randomly

Correct but unintuitive to junior:
hard to understand, verify, correct,

collaborate, etc.

Correct and intuitive to junior:
easy to understand, verify, correct,

collaborate, etc.

?

③ Update senior’s policy to increase expected reward ③ Update senior’s policy to increase expected reward
Junior’s policy remains frozen

TESTING

TRAINING

TESTING

② Reward
high if senior

didn’t fail

② Reward
high if neither senior nor

junior failed

Senior: trained
stronger model

Junior: frozen
weaker model

By induction: For n = 1, we have n(n+1)/2 = 1. Now assume

Define the generating function for the sequence ak = k …

If we pair the first and last numbers, each pair sums to n …

Define the generating function for the sequence ak = 2k – 1 …

Define the generating element of the cyclic group of the n …

By induction: For n = 1, we have n2 = 1. Now assume that …

Figure 1: Tandem training vs. standard RL. Standard RL (left) only encourages correct solutions, regardless of
whether they are intelligible to other models or humans, which raises concerns about interpretability and oversight.
We define intelligibility via handoff robustness, positing that a partial solution is intelligible to another agent if that
agent could continue the solution, at least for a few steps, without derailing it into failure. Tandem training (right)
encourages handoff robustness, and thus intelligibility, by letting the trained model (“senior”) generate solutions
together with a frozen (typically weaker) “junior” model, taking turns randomly. Since rewards are high only if
neither senior nor junior made a critical mistake, the senior is encouraged to generate solutions that can be correctly
continued (and thus, by our definition, understood) by the junior.

occur several times on the solution path. If Msen
and Mjun can jointly construct successful task solu-
tions, then Mjun must be able to understand Msen’s
behavior and actions well enough to continue suc-
cessfully. We consider this a strong form of intel-
ligibility, as the weaker collaborator is not simply
interpreting the stronger model’s actions post hoc,
but actively co-constructs successful solutions.

Such handoff robustness is not straightforward
to achieve. We tackle the challenge by introduc-
ing a novel paradigm for training language models,
which we call tandem training, inspired by a proof
of concept in chess (Hamade et al., 2024). Tandem
training (cf. Fig. 1) can be combined with any re-
inforcement learning (RL) algorithm used for lan-
guage model training. In RL, solution rollouts are
sampled from the language model being trained,
with the goal of training being to make successful
rollouts more likely. Tandem training modifies the
rollout phase by sometimes sampling next tokens
from a frozen junior model Mjun rather than the se-
nior model Msen being trained. Whether the next
turn’s tokens are sampled from the junior or the
senior model is determined randomly. As rollouts
are more likely to be successful when Msen gen-
erates text that can be continued by Mjun without
introducing errors that lead to task failure, optimiz-

ing Msen via tandem training incentivizes not only
correct, but also intelligible, solutions.

We conduct experiments in the domain of math-
ematical reasoning across three settings and find
that tandem training reliably teaches strong mod-
els to abandon jargon and adapt their language to
weaker models while keeping task accuracy high.
In settings where senior and junior differ in their
math skills, senior-specific notation drops from
99% to 0% within 20 gradient updates—indicating
adaptation to the frozen junior model, which does
not understand this notation—yet senior accuracy
remains above the junior baseline. In settings
where senior and junior use different languages
before training, the senior adapts its language to
the junior’s language, again without senior accu-
racy falling below the junior baseline. These re-
sults demonstrate a practical path to aligning ca-
pable models with weaker collaborators, with the
potential to improve AI model intelligibility and
enable safer, more reliable, and more performant
AI–human and AI–AI interaction.

2 Related work

Tandem training. Our work applies tandem train-
ing, an RL paradigm first introduced by Hamade
et al. (2024) in chess, to language models. Their
work showed that optimizing for partner compati-

2

bility (winning a team chess game) is distinct from
optimizing for raw ability (winning a chess game
on one’s own). We adopt their framework and
setup (e.g., “senior” and “junior” models; random-
ized handoffs between them) and significantly ex-
pand on this work by applying tandem training to
language models, solving reasoning problems, and
moving beyond the adversarial game environment.

RL with verifiable rewards. Recent work demon-
strates that pure RL with automatically verifi-
able outcome rewards can produce strong rea-
soners (Wen et al., 2025), but with the unde-
sirable pathology of degraded intelligibility (Li
et al., 2025; Guo et al., 2025; Wu et al., 2025).
Reasoning chains often become less reliable,
grounded, and interpretable with length and com-
plexity (Cheng et al., 2025; Hassid et al., 2025).

Scalable oversight. There has been a recent push
to enable scalable oversight, where strong models
can be overseen by weaker agents, e.g., via decom-
position (Christiano et al., 2018) or debate (Irving
et al., 2018). Complementary lines replace scarce
human labels with AI feedback or process-level
signals, showing that supervising intermediate rea-
soning can improve correctness and auditability at
scale (Bai et al., 2022; Paul et al., 2023; Lightman
et al., 2023). Research on weak-to-strong general-
ization (Burns et al., 2024) demonstrates that train-
ing with weak supervision can nevertheless sur-
face strong capabilities, formalizing conditions un-
der which a weaker teacher or signal suffices. Our
tandem training approach operationalizes scalable
oversight inside the solution trajectory: instead
of relying on external judges, decompositions, or
teacher labels, we impose random handoffs to a
weaker collaborator during RL and reward success
only when the strong model’s reasoning is continu-
able by weaker agents, incentivizing intelligible
solutions that are more amenable to oversight.

3 Method: tandem training

There are many domains of practical interest in
which we would prefer language models to gener-
ate intelligible, intuitive solution paths, including,
e.g., medicine (where human doctors may need
to make final decisions based on AI-generated di-
agnoses or treatment plans), law (where human
judges may need to rule in cases presented by AI
lawyers), computer use (where human users may
hand off control over their computers to AI agents
and vice versa), or mathematical reasoning (where

human mathematicians may collaborate with AI
models to prove new theorems).

As a concrete example from the math domain,
consider a human collaborating with a reasoning
language model to “Prove that the sum of the first
n natural numbers is n(n+1)/2.” A large and well-
trained reasoning model might have deep knowl-
edge of advanced mathematical techniques and
might wield them precisely; e.g., it might begin its
solution by writing: “Define the generating func-
tion for the sequence ak = k: A(x) =

∑∞
k=1 kxk.”

Although this ansatz is in principle correct and
might be entirely sensible from the model’s point
of view, a human might not be able to follow along,
which would complicate collaboration with, and
verification by, human partners. A more desirable
solution might start by stating: “By induction: For
n = 1, we have n(n+1)/2 = 1.”

We ask: How might one incentivize language
models to produce such intelligible solutions? Po-
tential ways forward include test-time approaches,
such as system prompts describing the nature of in-
telligible, intuitive solutions, and training-time ap-
proaches, such as supervised finetuning on ground-
truth intelligible solutions or RL with intelligibil-
ity rewards. In practice, such approaches are, how-
ever, difficult to implement, as they require ex-
plicitly defining intelligibility a priori—a hard-
to-codify notion that may differ across settings,
agents/users, and times.

We seek more viable methods for encouraging
intelligible outputs without the need to explicitly
define intelligibility, relying instead on the notion
of handoff robustness, which pragmatically and
implicitly defines a partial solution as intelligi-
ble to another agent (a model or human) if that
agent could continue the solution—at least for a
few steps—without derailing it into failure. We op-
erationalize this idea via tandem training, in which
two models—called senior and junior—take turns
randomly during output generation, without coor-
dinating. The (typically weaker) junior model re-
mains frozen, whereas the (typically stronger) se-
nior model is trained1 based on the quality of the
output that the two models co-created. In rollouts
that concluded successfully despite the junior’s
participation, the senior acted in a way that en-
abled the junior to not make critical mistakes (or
else the rollout would have failed), which, per our

1Note the difference from model distillation (Hinton et al.,
2015; Sanh et al., 2019), where, in a reversal of roles, the
stronger model is frozen while the weaker model is trained.

3

definition, means that the senior acted in a way
that was intelligible to the junior. Reinforcing the
senior’s behavior observed in successful rollouts
thus achieves the dual objective of making the se-
nior more intelligible to the junior and keeping
the senior’s performance high. The stochasticity
of turn-taking not only provides a simple rule for
when to switch between models, but also encour-
ages handoff robustness and intelligible outputs in
any situation, and prevents the senior model from
acquiring tricks and reward hacks.

Tandem training can be viewed as a form of
regularization: by injecting noise into the train-
ing process, it encourages simpler, more general-
izable behavior. The approach is especially simi-
lar in spirit to dropout in neural-network training
(Srivastava et al., 2014), where neurons of the net-
work being trained are randomly “muted” so the
network learns not to over-rely on specific activa-
tion patterns. Similarly, in tandem training, the
senior model is randomly “muted” (and replaced
by the “noisier” junior) so the senior learns not to
over-rely on specific reasoning and speaking pat-
terns. Akin to other regularization methods, in-
cluding dropout, noise injection (here via handoffs
to the junior model) is performed only during train-
ing; at test time, the tandem-trained senior model
generates solutions on its own.

At a lower level, tandem training alternates be-
tween two phases: (1) generating tandem rollouts,
and (2) updating the senior’s policy based on them.

Tandem rollout generation. To generate tandem
rollouts, we devised a decoding algorithm where
two language models Msen and Mjun work together
to co-create an output. The granularity of stochas-
tic turn-taking is a design parameter that deter-
mines the atomic units of text between which a
handoff from one model to the other can occur,
such as tokens, words, sentences, paragraphs, rea-
soning steps, etc. The tandem decoder keeps both
models in GPU memory. Abstractly, the same in-
put x is fed to both models, but as the models
may use different prompting modalities (e.g., lan-
guage, system prompt, demonstrations, chat tem-
plate), the concrete text sequences xsen and xjun
seen by the two models may differ. To co-create a
shared response y, whenever a new token yt+1 is to
be generated to continue the partial response y1:t ,
each model m ∈ {sen, jun} independently samples
a token ym

t+1 ∼ Mm(xm y1:t) given the shared con-
text. Let mt be the currently active model (where

m1 is chosen randomly). If appending ymt
t+1 to y1:t

would begin a new unit (e.g., word or sentence),
we toss a coin (we use p = 0.5) to determine the
new active model mt+1; else, mt+1 = mt (since the
current unit has not concluded yet). Last, we ex-
tend the shared partial solution by mt+1’s proposal:
y1:t+1 = y1:t ymt+1

t+1 .

Senior policy update. In order to update the se-
nior model based on tandem rollouts, tandem train-
ing can leverage any RL method for language mod-
eling, including REINFORCE (Williams, 1992),
PPO (Schulman et al., 2017), GRPO (Shao et al.,
2024), etc., which perform gradient descent to
maximize the expected reward of rollouts, where
rewards may be obtained from programmatic veri-
fiers, trained reward models, humans, etc. We em-
phasize that tandem training does not require any
explicit information about the differences between
the senior and junior models, such as skill level,
expected formatting, domain-specific jargon, etc.;
updates are entirely based on the success of tan-
dem rollouts. This is important as the differences
between senior and junior might be subtle, diffi-
cult to express, or unknown.

4 Experimental setup

To explore and evaluate the paradigm of tandem
training for language models, we conduct exper-
iments in the domain of mathematical reasoning,
which offers multiple benefits as a first testing
ground for tandem training. First, researchers
have shown that strong math reasoning models can
be trained using RL without human supervision,
relying solely on rewards obtained by automati-
cally verifying answer correctness (Kaliszyk et al.,
2018; Wang et al., 2025; Wen et al., 2025). In the
absence of auxiliary rewards encouraging human-
readable reasoning traces, such models have no in-
centive to reason in intelligible ways, which has
already led to concerning outcomes, such as the
“poor readability and language mixing” demon-
strated by DeepSeek-R1-Zero (Guo et al., 2025).
There is an immediate need to prevent reasoning
models from becoming unintelligible to humans,
and tandem training holds promise to directly ad-
dress this pressing challenge.

In addition to its practical relevance, math rea-
soning has the advantage that the wide difficulty
range of math problems allows us to begin by
working with smaller models. Although tandem
training is inspired by the challenge of making su-

4

perhuman AI behave intelligibly to humans, we
may begin with less capable model pairs. Instead
of considering a superhuman AI as senior and a
human as junior, we may use a stronger, but still
subhuman, model as senior and a weaker model as
junior—shifting the performance levels downward
while maintaining a capability differential.

We work with the GSM8K (Grade School Math
8K) benchmark and construct tandem pairs from
differently trained or prompted variants of the
Llama-2 model family, as described next.2

4.1 Data

GSM8K consists of 8,792 math word problems
(7,473 for training, 1,319 for testing) that typically
require two to eight steps of elementary arithmetic
operations to solve (Cobbe et al., 2021). The data-
set consists of English question–answer pairs, e.g.,

Q: Julie is making Caesar salad for a family picnic. At the
market, she spends $8 on green lettuce and $6 on red
lettuce. If each type of lettuce costs $2 per pound, how
many total pounds of lettuce did she buy?

A: The total cost of the green and red lettuce is $8 + $6 =
$≪8+6=14≫14. Julie bought $14 / $2 = ≪14/2=7≫7
pounds of lettuce. #### 7

In the ground-truth answer, the final numerical
solution is always given after “####”. We also
point out the special notation used for performing
arithmetic: whenever an equality sign appears in
the text (e.g., “$14 / $2 =”), it is followed by a
“clean” version (e.g., without dollar signs) of the
preceding calculation, enclosed in double angle
brackets (≪≫). Presumably, this notation was in-
troduced to facilitate parsing out arithmetic opera-
tions as “programs”. In our setting, we may con-
sider it domain-specific “jargon” that a generalist
model would not use by default.

4.2 Models

We construct tandem pairs from various language
models derived from Llama-2-7b:3

Specialist model.4 Obtained from Llama-2-7b via
supervised finetuning on the training portion of
GSM8K, this model demonstrates increased per-
formance on GSM8K (39% test accuracy, vs. 24%
for vanilla Llama-2-7b-chat). It is prompted with

2All code, models, and data are made publicly available at
https://github.com/epfl-dlab/lm-tandem-training

3https://hf.co/meta-llama/Llama-2-7b
4https://hf.co/RedHatAI/Llama-2-7b-gsm8k

the question only (no system prompt, no chat tem-
plate) and, per its training data, uses ≪≫ jargon
(cf. Sec. 4.1) in its answers.

Base models. Here we prompt the chat version
of Llama-2-7b5 in one of five languages L (En-
glish, German, French, Bulgarian, Serbian), us-
ing a system prompt and two in-context question–
answer demonstrations to explain the task and
the expected output format and language (see Ap-
pendix A), followed by the GSM8K question. The
entire prompt is provided in language L (ques-
tions were translated ahead of time using GPT-4.1-
mini), which effectively switches the model’s de-
fault language from English to L. As the base mod-
els were not specifically tuned for GSM8K, they
do not produce ≪≫ jargon. GSM8K test accuracy
ranges between 12% (Serbian) and 24% (English).

4.3 Training and testing

We consider three settings, each of which com-
bines the above models in a way that allows us
to observe whether tandem training produces the
desired effects (input languages in parentheses):

1. Skill disparity: Msen = specialist (English);
Mjun = base (English); jargon = {≪≫}

2. Skill & language disparity: Msen = special-
ist (English); Mjun = base (Ljun ̸= English);
jargon = {≪≫, English}

3. Language disparity: Msen = base (Lsen);
Mjun = base (Ljun ̸= Lsen); jargon = {Lsen}

In the skill disparity setting, we should expect
successful tandem training of the senior model to
decrease usage of the GSM8K-specific ≪≫ jar-
gon, while maintaining task accuracy well above
that of the junior model. In the skill and lan-
guage disparity setting, the senior additionally dif-
fers from the junior with respect to its input lan-
guage, so in addition to ≪≫ jargon, we should
expect successful tandem training to also make the
senior respond in the junior’s input language Ljun,
rather than in English (the senior’s input language).
Finally, in the language disparity setting, neither
the senior nor the junior was specifically tuned for
GSM8K, so ≪≫ jargon plays no role here. In-
stead, the senior’s input language Lsen can be con-
sidered jargon, and we should expect successful
tandem training to make the senior respond in the
junior’s, rather than its own, input language.

5https://hf.co/meta-llama/Llama-2-7b-chat-hf

5

https://github.com/epfl-dlab/lm-tandem-training
https://hf.co/meta-llama/Llama-2-7b
https://hf.co/RedHatAI/Llama-2-7b-gsm8k
https://hf.co/meta-llama/Llama-2-7b-chat-hf

0 20 40 60 80

0.
0

0.
6

en junior
P

r(
<

<
>

>
)

0 20 40 60 80

0.
0

0.
4

0.
8

P
r(

en
)

0 20 40 60 80

0.
0

0.
4

0.
8

P
r(L

ju
n)

0 20 40 60 80

0.
0

0.
2

0.
4

A
cc

ur
ac

y

Gradient updates

0 20 40 60 80

0.
0

0.
6

de junior

0 20 40 60 80

0.
0

0.
4

0.
8

0 20 40 60 80

0.
0

0.
4

0.
8

0 20 40 60 80

0.
0

0.
2

0.
4

Gradient updates

0 20 40 60 80

0.
0

0.
6

fr junior

0 20 40 60 80

0.
0

0.
4

0.
8

0 20 40 60 80
0.

0
0.

4
0.

8

0 20 40 60 80

0.
0

0.
2

0.
4

Gradient updates

0 20 40 60 80

0.
0

0.
6

bg junior

0 20 40 60 80

0.
0

0.
4

0.
8

0 20 40 60 80

0.
0

0.
4

0.
8

0 20 40 60 80

0.
0

0.
2

0.
4

Gradient updates

0 20 40 60 80

0.
0

0.
6

sr junior

0 20 40 60 80

0.
0

0.
4

0.
8

0 20 40 60 80

0.
0

0.
4

0.
8

0 20 40 60 80

0.
0

0.
2

0.
4

Gradient updates

Figure 2: Column 1: Results for skill disparity setting, where tandem-trained senior is GSM8K specialist, and
frozen junior is Llama-2 prompted in English. Columns 2–4: Results for skill and language disparity setting,
where junior is Llama-2 prompted in non-English languages (one per column: German, French, Bulgarian, Ser-
bian). Row 1: Use of notational jargon (≪≫). Row 2: Use of linguistic jargon (English). Row 3: Use of junior
language. Row 4: Accuracy. Curves: Tandem-trained senior (with 95% CIs). Shaded bands: Frozen junior (95%
CIs). Takeaway: Tandem training reduces senior model jargon while keeping senior accuracy above junior level.

In all settings, we tandem-train the senior for
one epoch on the GSM8K training portion and
evaluate it (on its own, without the junior) on the
testing portion. Training is done using a variant of
the REINFORCE (Williams, 1992) RL algorithm
with binary rewards, where the following steps are
iterated: (1) Given a batch of input questions, sam-
ple a set of (in our case, two) tandem rollouts for
each question (cf. Sec. 3). (2) Perform an SGD
update to increase the log-likelihood of the correct
rollouts, while discarding incorrect rollouts.

When computing the log-likelihood of a rollout,
one may also mask tokens produced by the junior,
as they were not produced by the (senior) model
being trained, but for simplicity we did not per-
form masking in the main experiments reported
here. Turn-taking in tandem rollouts was carried
out uniformly at random at the word level (cf.
Sec. 3). The senior model was tuned using low-
rank adapters on all linear layers (Hu et al., 2022).
For hyperparameters, see Appendix B.

We emphasize that our goal is not to develop
new RL algorithms, but to showcase the novel tan-
dem training paradigm, which can, in principle, be

used with any RL algorithm. Hence, it is advanta-
geous if tandem training works even with a sim-
ple RL algorithm, such as the one presented here.
(See Appendix E for an exploration of more com-
plex variants, allowing for soft-masking of junior
tokens and for not discarding incorrect rollouts.)

5 Results

Since the two-fold goal of tandem training is for
the trained senior model to stop using jargon while
keeping task accuracy high, we track accuracy as
well as jargon over the course of training. We do
so by storing checkpoints after every 10 gradient
updates and using them to generate senior answers
for the GSM8K test set. Accuracy is measured as
the fraction of answers that provide the correct nu-
merical solution. Jargon is measured in two ways:
notational jargon is the fraction of answers that
contain ≪ or ≫, whereas linguistic jargon is the
probability of the senior’s input language Lsen in
its generated output, according to a language iden-
tification method based on a fastText model (see
Appendix C). Next, we discuss results for each of
the three settings described in Sec. 4.3.

6

Skill disparity. The leftmost column of Fig. 2
shows results for the skill disparity setting, where,
during tandem training, an (English) GSM8K-
specialist senior is paired with a base-Llama-2
junior prompted in English. We observe that,
whereas before tandem training the senior uses
notational jargon (≪≫) in nearly every answer
(99%), it entirely stops doing so (0%) within 20
gradient updates.6 At this point, accuracy is 33%,
slightly down from the 39% achieved by the senior
before tandem training, and considerably higher
than the 24% achieved by the frozen junior. There-
after, accuracy first decreases and then remains sta-
ble and largely above junior level. We discuss and
mitigate the accuracy decrease in the final para-
graph of this section.

Skill and language disparity. The four right
columns of Fig. 2 show results for the skill and
language disparity setting, where tandem training
pairs the (English) GSM8K-specialist junior with
a base-Llama-2 junior prompted in a non-English
language Ljun. Notational jargon (≪≫) vanishes
as quickly as in the above-discussed skill dispar-
ity setting (within 20 gradient updates). Linguis-
tic jargon also disappears as a consequence of tan-
dem training: for three of the four junior languages
Ljun, the senior has entirely abandoned English in
favor of Ljun within 50 gradient updates; for the
fourth junior language (Bulgarian), within 80 up-
dates. At the same time, senior accuracy remains
significantly above junior level throughout train-
ing. Overall, tandem training again has the desired
effect: to make senior jargon disappear while keep-
ing accuracy above junior level.

Language disparity. Finally, we consider the
language disparity setting, where both the senior
and junior are base-Llama-2 models, but prompted
in different languages Lsen and Ljun, respectively.
Here, the senior’s input language Lsen is consid-
ered jargon. As observed in Fig. 3, tandem train-
ing leads the senior to abandon its jargon fast
and adopt the junior’s language instead, typically
within 20 gradient updates. In terms of accuracy
(Fig. 4), we find that, when the junior beats the se-
nior before training, the senior catches up; when

6 To confirm that jargon indeed disappears due to tandem
training, rather than simply due to RL, we isolated the effects
of tandem training and RL in a supplementary experiment
where we trained the senior using the same RL method, but
on rollouts produced by the senior alone. In this setup, jargon
remains at 99% for all checkpoints, confirming tandem train-
ing, rather than mere RL, as the cause for vanishing jargon.

they do equally well before training, it remains
this way; and when the senior beats the junior
before training, senior accuracy tends to decrease
(see discussion in next paragraph), but never be-
low junior accuracy. The tenor is again that tan-
dem training makes jargon disappear without driv-
ing accuracy below junior level. Note in Fig. 3
that the switch from Lsen to Ljun is never direct,
but always passes through an intermediate phase
(around gradient update 10) where the senior out-
puts English—which is neither Lsen nor Ljun. In
other words, English appears as a transitory lin-
gua franca. Inspection of tandem rollouts from
training shows that, in early training, rollouts of-
ten begin with a mix of Lsen and Ljun, which seems
to confuse the models and lead them to switch to
English amidst rollouts. As such English comple-
tions tend to be more successful, the trained senior
adopts this behavior, but the frozen junior main-
tains its tendency to produce Ljun, especially early
on in rollouts. This, in turn, lets the senior eventu-
ally abandon English in favor of Ljun.

Mitigating accuracy decrease. In the above re-
sults, senior accuracy tends to decrease towards
junior accuracy over the course of tandem training.
We hypothesize that the decrease is due to a grad-
ual distribution shift: easier problems are more
likely to be solved correctly, and since our simple
RL method discards incorrect rollouts, the senior
adapts to easier problems over the course of train-
ing. However, since the test set still follows the
overall difficulty distribution, test accuracy suffers.
This hypothesis is supported by a supplementary
experiment where RL was performed with rollouts
from the senior alone, rather than tandem rollouts
(cf. footnote 6): here, too, test accuracy decreased
with more training (from 40% to 34%), pointing
to the RL method, rather than tandem rollouts,
as the cause of accuracy deterioration. We thus
experimented with two modifications to the RL
method: (1) instead of discarding incorrect roll-
outs, include them in the log-likelihood objective
with negative weight c < 0; (2) instead of weigh-
ing senior and junior tokens equally in the objec-
tive, “soft-mask” junior tokens via a multiplicative
factor j < 1. Modification 1 enables learning from
failure; modification 2 lets the senior focus more
on its own than on the junior’s behavior. (Note
that the simpler RL method used in the main ex-
periments above corresponds to c = 0, j = 1.) In
Appendix E we show that, by optimizing the hy-

7

en junior
en

 s
en

io
r Pr(en)

Pr(de)
Pr(fr)
Pr(bg)
Pr(sr)

0 20 40 60 80

0.
0

0.
4

0.
8

de junior

0 20 40 60 80

0.
0

0.
4

0.
8

fr junior

0 20 40 60 80

0.
0

0.
4

0.
8

bg junior

0 20 40 60 80

0.
0

0.
4

0.
8

sr junior

0 20 40 60 80

0.
0

0.
4

0.
8

de
 s

en
io

r

0 20 40 60 80

0.
0

0.
4

0.
8

0 20 40 60 80

0.
0

0.
4

0.
8

0 20 40 60 80

0.
0

0.
4

0.
8

0 20 40 60 80

0.
0

0.
4

0.
8

fr
 s

en
io

r

0 20 40 60 80

0.
0

0.
4

0.
8

0 20 40 60 80

0.
0

0.
4

0.
8

0 20 40 60 80

0.
0

0.
4

0.
8

0 20 40 60 80

0.
0

0.
4

0.
8

bg
 s

en
io

r

0 20 40 60 80

0.
0

0.
4

0.
8

0 20 40 60 80

0.
0

0.
4

0.
8

0 20 40 60 80

0.
0

0.
4

0.
8

0 20 40 60 80

0.
0

0.
4

0.
8

sr
 s

en
io

r

Gradient updates
0 20 40 60 80

0.
0

0.
4

0.
8

Gradient updates
0 20 40 60 80

0.
0

0.
4

0.
8

Gradient updates
0 20 40 60 80

0.
0

0.
4

0.
8

Gradient updates Gradient updates

Figure 3: Results for language disparity setting, where tandem-trained senior (rows) and frozen junior (columns)
are Llama-2 models prompted in different languages. Plots show senior’s language use when applying checkpoints
from tandem training to GSM8K test data. (Senior and junior accuracy shown in Fig. 4.) Takeaway: Tandem
training reduces senior jargon (use of senior’s input language) without driving accuracy below junior level.

perparameters (c, j) on a validation set, the accu-
racy decrease is strongly mitigated, while jargon
still vanishes entirely—the best of both worlds.

6 Discussion

Result summary. Across all three settings, tan-
dem training rapidly suppresses “jargon”, indicat-
ing the senior model learning to adapt to become
compatible with the junior model, while main-
taining above-junior accuracy. This is the core
promise of tandem training: we can incentivize an
AI model to adapt its behavior and actions to be
compatible with a given weaker collaborator with-
out an overly negative impact on its capabilities.
Taken together, the results show that handoff ro-
bustness, our method of encouraging intelligibility,
can be induced directly inside the RL trajectory by
randomizing which partner generates next, creat-
ing pressure for the senior to produce continuable
reasoning traces rather than idiosyncratic ones.

Learning signals. Our current sequence-level ob-
jective attributes rewards to entire rollouts, which
is simple and effective but coarse. Three com-
plementary refinements target sharper, lower-vari-
ance credit signals. First, masking junior-authored
tokens during likelihood and policy-gradient com-
putations can prevent spurious credit from leaking
onto text that the trainable senior did not produce,
aligning gradients with the senior’s actual contri-
butions. Second, learning from negative examples
can leverage failed rollouts as informative counter-
factuals: contrastive or penalty terms could down-
weight the specific trajectories and specific seg-
ments most predictive of handoff failure. Third,
token- and span-level preference learning (Deng
and Mineiro, 2024) can localize blame and credit
to the precise tokens where handoffs break, rather
than pooling signal uniformly across the trajectory.
Our work shows that tandem training is effective
even when combined with a simple RL method,
and we expect the benefits to increase further with
more sophisticated RL methods. This expectation

8

en junior
en

 s
en

io
r

Senior accuracy
(with 95% CIs)

Junior accuracy
(95% CI)

0 20 40 60 80

0.
00

0.
15

0.
30

de junior

0 20 40 60 80

0.
00

0.
15

0.
30

fr junior

0 20 40 60 80

0.
00

0.
15

0.
30

bg junior

0 20 40 60 80

0.
00

0.
15

0.
30

sr junior

0 20 40 60 80

0.
00

0.
15

0.
30

de
 s

en
io

r

0 20 40 60 80

0.
00

0.
15

0.
30

0 20 40 60 80

0.
00

0.
15

0.
30

0 20 40 60 80

0.
00

0.
15

0.
30

0 20 40 60 80

0.
00

0.
15

0.
30

fr
 s

en
io

r

0 20 40 60 80

0.
00

0.
15

0.
30

0 20 40 60 80

0.
00

0.
15

0.
30

0 20 40 60 80

0.
00

0.
15

0.
30

0 20 40 60 80

0.
00

0.
15

0.
30

bg
 s

en
io

r

0 20 40 60 80

0.
00

0.
15

0.
30

0 20 40 60 80

0.
00

0.
15

0.
30

0 20 40 60 80

0.
00

0.
15

0.
30

0 20 40 60 80

0.
00

0.
15

0.
30

sr
 s

en
io

r

Gradient updates
0 20 40 60 80

0.
00

0.
15

0.
30

Gradient updates
0 20 40 60 80

0.
00

0.
15

0.
30

Gradient updates
0 20 40 60 80

0.
00

0.
15

0.
30

Gradient updates Gradient updates

Figure 4: Senior and junior accuracy for language disparity setting, where tandem-trained senior (rows) and frozen
junior (columns) are Llama-2 models prompted in different languages.

is supported by the initial experiments laid out at
the end of Sec. 5 and in Appendix E, which show
that the first two refinements listed above improve
senior task accuracy.

Extending the framework. We present an atomic
setting with a frozen junior and a trained senior,
but there are many natural extensions of this basic
tandem training framework. Co-adaptation would
be possible by training both models, either simul-
taneously or by alternating which is trained and
which is frozen, perhaps with additional anchoring
constraints to prevent private codes from emerging.
The “junior model” role can be expanded to design
and control the type of compatibility we want to
produce in the senior model; one could imagine
varying junior competence, style, language, tool
use, etc., to regularize the senior toward broadly
intelligible behavior. An automated framework
could maintain a pool of juniors that are swapped
in via a bandit algorithm or curriculum policy
where juniors that expose failure modes are prior-
itized and juniors that the senior has already mas-
tered are gradually retired. It is also possible to ap-

ply tandem training earlier in the stack (e.g., late
pretraining or supervised finetuning) to encourage
intelligibility as a more fundamental attribute. Fi-
nally, we limited our attention to fixed i.i.d. hand-
offs, which could likely be improved with a hand-
off schedule that optimizes robustness.

7 Conclusion

This work introduces tandem training for language
models, a novel RL paradigm that operational-
izes and encourages intelligibility via handoff ro-
bustness. The approach is lightweight, architec-
ture-agnostic, and complementary to existing RL
pipelines. Our results show that by making intel-
ligibility a prerequisite for reward, tandem train-
ing aligns AI models toward behavior that partners
can pick up, audit, and extend, with benefits for
scalable oversight and practical collaboration. We
see great promise in harnessing tandem training in
multi-agent systems and human–AI collaboration.

9

8 Limitations

Our principal goal is to investigate the viability of
tandem training for encouraging language models
to produce more intuitive and intelligible output.
The settings and methods we consider in this first
paper are hence limited in scope:

• We consider a single application domain
(mathematical reasoning) and evaluate on
a single benchmark (GSM8K). An impor-
tant avenue for future work is to investigate
whether the paradigm works equally well in
other domains, and what makes a domain
more or less amenable to tandem training.

• Although tandem training can in principle be
combined with any RL algorithm, we tested it
only with REINFORCE with binary rewards.
While future work should improve the RL
method (cf. discussion in Sec. 6), we consider
it an advantage that tandem training works
even with simple RL, and we expect it to
be even more effective when combined with
more advanced RL.

• The tandem decoder implementation de-
scribed in Sec. 3 assumes that both models
(junior and senior) use the same tokenizer.
An extension to different tokenizers would be
straightforward.

9 Ethical considerations

This work investigates tandem training as a way
to operationalize intelligibility by requiring that a
strong model’s partial solutions be continuable by
a weaker collaborator under randomized handoffs
during RL. Our experiments use public math word-
problem data (GSM8K) and off-the-shelf Llama-
2-7b variants; no human subjects or personal data
are involved.

Potential benefits and misuse. By design, tan-
dem training increases handoff robustness and re-
duces jargon, which can strengthen auditability
and scalable oversight by weaker agents. However,
improved continuability could be misapplied to co-
ordinate more effectively with colluding AIs or to
make reasoning traces more persuasive in undesir-
able contexts. To mitigate this, we recommend
anchoring mechanisms, e.g., human-language con-
straints, verifiers, and audits, especially when both
partners are trained, to deter private codes and pre-
serve human understandability.

10 Reproducibility statement

Experiments were run on machines with one or
two Nvidia A100 GPUs with 80 GB of memory
each. Data, models, training and testing procedure,
and evaluation methodology are described in the
main text. Hyperparameters, prompts, and further
method details are listed as appendices. Model ar-
tifacts used to instantiate seniors and juniors are
referenced in the main text. We release all code,
models, and data required to reproduce our results.

Acknowledgments

This work was performed when Robert West and
Ashton Anderson spent their sabbaticals as Visit-
ing Researchers with the AI Frontiers group at Mi-
crosoft Research. Thanks to all our Microsoft col-
leagues for their thoughtful feedback on this work
(in particular Saleema Amershi, Siddhartha Sen,
and Tim Davidson) and for their warm welcome
in Redmond and New York! We also gratefully ac-
knowledge the help of Raghav Singhal and Difan
Jiao, who ran additional experiments during the re-
view phase (Appendix E).

References
Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda

Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, and 1
others. 2022. Training a helpful and harmless assis-
tant with reinforcement learning from human feed-
back. arXiv preprint arXiv:2204.05862.

Collin Burns, Amanda Askell, Long Chen, and 1 oth-
ers. 2024. Weak-to-strong generalization: Eliciting
strong capabilities with weak supervision. In Pro-
ceedings of the 41st International Conference on
Machine Learning, volume 235 of Proceedings of
Machine Learning Research. PMLR.

Jiahao Cheng, Tiancheng Su, Jia Yuan, Guoxiu He, Ji-
awei Liu, Xinqi Tao, Jingwen Xie, and Huaxia Li.
2025. Chain-of-thought prompting obscures halluci-
nation cues in large language models: An empirical
evaluation. arXiv preprint arXiv:2506.17088.

Paul Christiano, Buck Shlegeris, and Dario Amodei.
2018. Supervising strong learners by amplifying
weak experts. arXiv preprint arXiv:1810.08575.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

10

https://proceedings.mlr.press/v235/burns24b.html
https://proceedings.mlr.press/v235/burns24b.html

Yihe Deng and Paul Mineiro. 2024. Flow-dpo:
Improving llm mathematical reasoning through
online multi-agent learning. arXiv preprint
arXiv:2410.22304.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong
Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Karim Hamade, Reid McIlroy-Young, Siddhartha Sen,
Jon Kleinberg, and Ashton Anderson. 2024. Design-
ing skill-compatible ai: Methodologies and frame-
works in chess. arXiv preprint arXiv:2405.05066.

Michael Hassid, Gabriel Synnaeve, Yossi Adi, and
Roy Schwartz. 2025. Don’t overthink it. preferring
shorter thinking chains for improved llm reasoning.
arXiv preprint arXiv:2505.17813.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, and 1 others. 2022. Lora: Low-rank
adaptation of large language models. ICLR, 1(2):3.

Geoffrey Irving, Paul Christiano, and Dario Amodei.
2018. Ai safety via debate. arXiv preprint
arXiv:1805.00899.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hérve Jégou, and Tomas Mikolov.
2016a. FastText.zip: Compressing text classifica-
tion models. arXiv preprint arXiv:1612.03651.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
and Tomas Mikolov. 2016b. Bag of tricks
for efficient text classification. arXiv preprint
arXiv:1607.01759.

Cezary Kaliszyk, Josef Urban, Henryk Michalewski,
and Miroslav Olšák. 2018. Reinforcement learning
of theorem proving. Advances in Neural Informa-
tion Processing Systems, 31.

Yihao Li, Jiayi Xin, Miranda Muqing Miao, Qi Long,
and Lyle Ungar. 2025. The impact of language
mixing on bilingual llm reasoning. arXiv preprint
arXiv:2507.15849.

Hadar Lightman and 1 others. 2023. Let’s verify step
by step. arXiv preprint arXiv:2305.20050.

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beat-
riz Borges, Antoine Bosselut, Robert West, and Boi
Faltings. 2023. REFINER: Reasoning feedback on
intermediate representations. In Proceedings of the
18th Conference of the European Chapter of the As-
sociation for Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: Smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal pol-
icy optimization algorithms. In Proceedings of the
34th International Conference on Machine Learning
(ICML).

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, and 1 others. 2024. Deepseek-
math: Pushing the limits of mathematical reason-
ing in open language models. arXiv preprint
arXiv:2402.03300.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren,
Lucas Liu, Baolin Peng, Hao Cheng, Xuehai He,
Kuan Wang, Jianfeng Gao, Weizhu Chen, Shuohang
Wang, Simon Shaolei Du, and Yelong Shen. 2025.
Reinforcement learning for reasoning in large lan-
guage models with one training example. arXiv
preprint arXiv:2504.20571.

Xumeng Wen, Zihan Liu, Shun Zheng, Zhijian Xu,
Shengyu Ye, Zhirong Wu, Xiao Liang, Yang Wang,
Junjie Li, Ziming Miao, Jiang Bian, and Mao Yang.
2025. Reinforcement learning with verifiable re-
wards implicitly incentivizes correct reasoning in
base llms. arXiv preprint arXiv:2506.14245.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3):229–256.

Yuyang Wu, Yifei Wang, Ziyu Ye, Tianqi Du, Ste-
fanie Jegelka, and Yisen Wang. 2025. When more is
less: Understanding chain-of-thought length in llms.
arXiv preprint arXiv:2502.07266.

A Llama-2 prompts

Llama-2-7b-chat was prompted for GSM8K with
a system prompt, followed by two question–
answer demonstrations, followed by the input
question.

A.1 System prompt
You are a math reasoning assistant spe-
cialized in solving grade school math
word problems. Your task is to provide a
clear, step-by-step explanation of the so-
lution and, importantly, to output the fi-
nal numerical answer on a separate line
in exactly the following format:

11

https://arxiv.org/abs/1805.00899
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2504.20571
https://arxiv.org/abs/2504.20571
https://arxiv.org/abs/2506.14245
https://arxiv.org/abs/2506.14245
https://arxiv.org/abs/2506.14245

“#### <final answer>”
where <final answer> is the numerical
result (without any units or extra sym-
bols). Do not include any additional text
or formatting on that final line, just a sin-
gle number.

When the model was used in a non-English lan-
guage L, the above system prompt was extended
by the following instruction and translated into L:

Respond exclusively in L. Never use En-
glish or any other language. If you use
the English language or any other lan-
guage, the answer is invalid. Every part
of the response must be entirely L.

A.2 Demonstrations
Showing demonstrations serves to exemplify the
expected output format and language described in
the system prompt. The following two question–
answer pairs wer used as demonstrations:

[USER] Natalia sold clips to 48 of her
friends in April, and then she sold half
as many clips in May. How many clips
did Natalia sell altogether in April and
May?

[ASSISTANT] Natalia sold 48/2 = 24
clips in May. Natalia sold 48+24 =
72 clips altogether in April and May.
72

[USER] Betty is saving money for a new
wallet which costs $100. Betty has only
half of the money she needs. Her parents
decided to give her $15 for that purpose,
and her grandparents twice as much as
her parents. How much more money
does Betty need to buy the wallet?

[ASSISTANT] In the beginning, Betty
has only 100 / 2 = $50. Betty’s grand-
parents gave her 15 * 2 = $30. This
means, Betty needs 100 - 50 - 30 - 15
= $5 more. #### 5

When the model was used in a non-English lan-
guage L, the demonstrations were also translated
to L, with the following exception: during devel-
opment, we found that Llama-2 is less likely to fall
back to English (its majority training language),
especially during mixed-language tandem rollouts,
when one demonstration has a question in English

and an answer in L, emphasizing that the model
should always revert to L. We hence always keep
the first demonstration’s question (but not its re-
sponse) in English.

B Hyperparameters

Effective batch size 152 or 156
Learning rate 10−4

Training temperature 0.7
Testing temperature 0
Max output length 256
Max input + output length 512
Training rollouts per prompt 2
Torch dtype bfloat16
QLoRA base model quantization 4 bits
QLoRA rank r 16
QLoRA scaling factor α 16
QLoRA target modules All linear

With rollout diversity in mind, when performing
two rollouts per prompt, the second rollout’s coin-
toss sequence was an inverted version (i.e., with
heads and tails swapped) of the first rollout’s coin-
toss sequence.

“All linear” QLoRA target models: q_proj,
k_proj, v_proj, o_proj, gate_proj, up_proj,
down_proj.

C Language identification

In order to infer the languages present in the
model outputs, we rely on the fastText (Joulin
et al., 2016a,b) lid.176.bin language identifica-
tion model.7 Since this model was not trained
for mixed-language text (as often produced during
tandem training), we do not apply the model di-
rectly to the entire text, but use a sliding-window
approach instead, as short windows generally con-
tain less language mixing. First, the input text is
cleaned of digits and symbols (#, =, +, -, *, <, >, ×,
÷, $) and split into tokens. It is then divided into
overlapping windows (“shingles”) of eight tokens
each. Each shingle is passed to the fastText lan-
guage identification model, which returns a proba-
bility distribution over possible languages. Finally,
these per-shingle distributions are averaged across
all shingles to produce a global language distribu-
tion for the text.

7https://fasttext.cc/docs/en/
language-identification.html

12

https://fasttext.cc/docs/en/language-identification.html
https://fasttext.cc/docs/en/language-identification.html

D AI assistants statement

We used AI assistants like Copilot and GPT mod-
els to help us with writing the tandem training
code and to assist with writing.

E Supplemental results

While the main experiments of Sec. 5 used a
variant of REINFORCE with binary rewards (see
Sec. 4.3), we also explored the following general-
ization:

1. Instead of discarding incorrect rollouts, in-
clude them in the loss with negative weight
c < 0 (whereas correct rollouts are included
with positive weight 1).

2. Instead of weighing senior and junior tokens
equally in the loss, “soft-mask” junior tokens
via a multiplicative factor j < 1.

Modification 1 lets the senior learn from failure,
whereas modification 2 lets the senior focus more
on its own than on the junior’s behavior. The sim-
pler RL method used in the main experiments cor-
responds to c = 0, j = 1.

We validated a range of (c, j) combinations in
order to investigate whether a judicious choice
of these hyperparameters can mitigate or prevent
the task-accuracy deterioration observed in Sec. 5
while still teaching the senior to avoid jargon. Im-
portantly, we should not use any predefined no-
tion of jargon in order to choose hyperparame-
ters. One key reason for choosing GSM8K as
a domain was precisely that it offers an exactly
measurable notion of jargon (≪≫), which facil-
itates studying the effects of tandem training; but
in real-world settings we generally do not know
in what aspects—including jargon—senior and ju-
nior might differ.

We hence chose (c, j) without referring to jar-
gon and measured jargon only after the fact, to de-
termine whether the corresponding senior model
with the chosen hyperparameters meets the cri-
teria of reducing jargon while maintaining high
GSM8K task accuracy. Concretely, for each
(c, j), we tandem-trained a senior model for one
epoch on a random sample containing 90% of
the GSM8K training portion and validated the
GSM8K task accuracy of the tandem (consisting
of the trained senior and the frozen junior) on the
remaining 10%. After training, we chose the (c, j)

for which the tandem had maximum validation ac-
curacy on average over the last few training check-
points. Here, the rationale is that, in order for
a tandem—where senior and junior take random
turns during rollouts—to have high GSM8K accu-
racy, the senior must have learned to adapt to the
junior, which we take as a heuristic for choosing a
suitable senior.

In these preliminary experiments, we restricted
ourselves to the skill disparity setting and to the
skill and language disparity setting with a French
junior. The training runs used the same hyperpa-
rameter values listed in Appendix B, with the ex-
ception of effective batch size, which, per GPU ca-
pacity, was set to 160 and 152, respectively. The
tandem model’s validation accuracies are shown in
Fig. 5a and 5b, respectively, leading us to choose
(c = −0.5, j = 0.2) for the skill disparity setting
and (c=−0.3, j = 0.35) for the skill and language
disparity setting. Evaluating the chosen seniors
(on their own, not in a tandem) on the test por-
tion of GSM8K (Fig. 5c) shows that tandem train-
ing makes them stop using jargon (≪≫, and addi-
tionally English in the skill and language disparity
setting) while keeping task accuracy considerably
higher than in the main experiments: whereas in
the main experiments, task accuracy in the skill
disparity setting noticeably dropped from its ini-
tial 39% and stabilized around 30% (Fig. 2, first
column), here it remained at around 40% (Fig. 5c,
top row); and whereas in the skill and language
disparity setting with a French junior (Fig. 2, third
column) it stabilized between 22% and 24%, here
it remained above 30% (Fig. 5c, bottom row).

Taken together, these supplemental results show
that a slightly more sophisticated variant of the RL
method of Sec. 4.3 more closely achieves the key
promise of tandem training: to make the senior
more intelligible without sacrificing performance.
We thus see exploring even more advanced RL al-
gorithms as a promising direction for future work.

13

(a) Validation accuracy: skill disparity setting. (b) Validation accuracy: skill and language disparity setting.

(c) Test results for skill disparity setting (top) and skill and language disparity setting (bottom).

Figure 5: Results for tuning the hyperparameters (c, j) (defined in Appendix E) of the RL algorithm. (a) Validation
accuracy of the tandem model for a range of hyperparameter choices, in the skill disparity setting. (b) Idem, in
the skill and language disparity setting. (c) Test results achieved by the senior models selected based on validation
accuracy. In comparison to Fig. 2 (columns 1 and 3), GSM8K accuracy remains higher, while jargon (≪≫ in the
case of skill disparity, ≪≫ and English in the case of skill and language disparity) still disappears.

14

	Introduction
	Related work
	Method: tandem training
	Experimental setup
	Data
	Models
	Training and testing

	Results
	Discussion
	Conclusion
	Limitations
	Ethical considerations
	Reproducibility statement
	Llama-2 prompts
	System prompt
	Demonstrations

	Hyperparameters
	Language identification
	AI assistants statement
	Supplemental results

