Social and Information Networks

CSCC46H, Fall 2019 Lecture 4

Prof. Ashton Anderson ashton@cs.toronto.edu

Logistics

A1 due next Monday @ 12pm on MarkUs

First letter of last name A-H? First blog post due this Friday

Today

Signed networks
Empirical phenomena in networks

Positive and Negative Relationships

So far, edges mostly interpreted positively

- —Friendship
- -Interaction
- —Collaboration

But relationships can be negative too

- —Dislike
- —Bad interaction
- —Enemy

Network Representation

How would you model this?

Signed Networks

Networks with positive and negative relationships

Consider an undirected complete graph Label each edge as either:

Positive: friendship, trust, positive sentiment, ...

Negative: enemy, distrust, negative sentiment, ...

Questions about Signed Networks

What are the typical patterns of interaction in signed networks?

How do we reason about local and global structure of positive and negative interactions?

What are the patterns in empirical data?

Signed Networks

Networks with positive and negative relationships

Our basic unit of investigation will be signed triangles

Focus on undirected networks

Four signed triads: which are stable?

Four signed triads: which are stable?

Theory of Structural Balance

Start with the intuition [Heider '46]:

Friend of my friend is my friend

Enemy of enemy is my friend

Enemy of friend is my enemy

Look at connected triples of nodes:

Consistent with "friend of a friend" or "enemy of the enemy" intuition Inconsistent with the "friend of a friend" or "enemy of the enemy" intuition

Which network is balanced?

Balanced/Unbalanced Networks

<u>Define</u>: A complete graph is *balanced* if every connected triple of nodes has:

All 3 edges labeled + or Exactly 1 edge labeled +

The Tribes of Eastern Central Highlands of New Guinea

How general is this?

Local Balance → **Global Factions**

The Balance Theorem: Balance implies global coalitions [Cartwright-Harary]

If all triangles are balanced, then either:

- A) The network contains only positive edges, or
- B) The network can be split into two factions: Nodes can be split into 2 sets where negative edges only point between the sets

Balance Theorem

Global coalitions => balance Straightforward

Every complete graph that looks like "this" is balanced

Balance => Global coalitions

Less straightforward

Every complete graph that's balanced looks like "this"?

Balance Theorem

Global coalitions => balance:

Any triangle is one of two types:

- A) All 3 nodes in one of the partitions
- B) 2 nodes in one partition, 1 in the other
- A): all 3 edges are + balanced
- B): 2 nodes in one partition are +, other 2 edges are → balanced

Proof of Balance Theorem

Balance => Global coalitions:

Pick a node A.

Because it's a complete graph, A is either friends or enemies with each person.

Now check 3 cases:

Proof of Balance Theorem

Balance Theorem

Every complete graph partitioned into two friendly coalitions that dislike either other is balanced

Balance => Global coalitions Less straight-forward

Every complete graph that's balanced can be partitioned into two friendly coalitions that dislike either other

European alliances, pre-WWI

GB AH Ge

(a) Three Emperors' League 1872–81

(b) Triple Alliance 1882

(c) German-Russian Lapse 1890

GB AH Ge

(d) French-Russian Alliance 1891-

(e) Entente Cordiale 1904

(f) British Russian Alliance 1907

Example: International Relations

International relations:

Positive edge: alliance

Negative edge: animosity

Separation of Bangladesh from Pakistan in 1971: US

supports Pakistan. Why?

USSR was the enemy of China

China was the enemy of India

India was the enemy of Pakistan

US was friendly with **C**hina

China vetoed

Bangladesh from U.N.

What if we allow three mutual enemies?

Weak Structural Balance → Many Global Factions

<u>Define</u>: A complete network is weakly balanced if there is no triangle with exactly 2 positive edges and 1 negative edge.

Characterization of Weakly Balanced Networks:

If a labeled complete graph is weakly balanced, then its nodes can be partitioned

(divided into groups such that two nodes belonging to the same group are friends, and every two nodes belonging to different groups are enemies)

Global picture: same thing as before, but with many factions, not necessarily two

Proof of Characterization

Pick a node A.

Because it's a complete graph, A is either friends or enemies with each person.

Now check 2 cases:

Proof of Characterization

All of A's friends are friends with each other and are enemies with all of A's enemies

Remove A and his friends from the graph and recurse!

Graph still weakly balanced, find a second group, same argument applies, recurse until we've found all factions

So far we've talked about complete graphs

What about incomplete graphs?

Signed Graph: Is it Balanced?

So far we talked about complete graphs

5, 2

Def 1: Local view

Fill in the missing edges to achieve balance

If the graph is "Balance-able", then call it balanced

Balanced?

So far we talked about complete graphs

Def 1: Local view Fill in the missing of

Fill in the missing edges to achieve balance

Balanced?

So far we talked about complete graphs

Def 2: Global view

Divide the graph into two coalitions

If you can separate the graph into coalitions as before, call it balanced

So far we talked about complete graphs

Balanced?

Def I: Local view

Fill in the missing edges to achieve balance

Def 2: Global view

Divide the graph into two coalitions

The 2 definitions are equivalent!

Claim: in general (not necessarily complete) networks, the local and global definitions of balance are equivalent

Def I: Local view

Fill in the missing edges to achieve balance

Def 2: Global view

Divide the graph into two coalitions

Actually easy to see:

Local => global: (if you can fill in edges such that the resulting complete graph is balanced, then it can be divided into coalitions)

After filling in, we have a complete network as before, the Balance Theorem applies

Actually easy to see:

Global => local: (if the graph can be divided into coalitions, then you can fill in edges that results in a complete balanced graph)

Fill in edges within and between coalitions as before: positive edges within the coalitions and negative edges between them

Actually easy to see:

Local => global: after filling in, result in complete network as before

Global => local: fill in edges within and between coalitions as before

Done!

We have a natural definition for **balance** in general signed networks

"Natural" because we arrived at it two different ways that turn out to be equivalent

We have a natural definition for balance in general signed networks

"Natural" because we arrived at it two different ways that turn out to be equivalent

But, there's a problem: how to actually check if a network is balanced in this way?

Why isn't this graph balanced?

Why isn't this graph balanced?

Walk around a cycle, every time we see a negative edge we have to switch coalitions

Theorem: Graph is **balanced** if and only if it contains **no cycle with an odd number of negative** edges [Harary 1953, 1956]

Theorem: Graph is **balanced** if and only if it contains **no cycle with an odd number of negative** edges [Harary 1953, 1956]

This theorem is saying that the only way a graph can be unbalanced is if there is a cycle with an odd number of negative cycles. That's the only possible problem!

Theorem: Graph is **balanced** if and only if it contains **no cycle with an odd number of negative** edges [Harary 1953, 1956]

<u>Proof</u>: We will show that every graph is either balanced or contains a cycle with odd number of negative edges

Theorem: Graph is **balanced** if and only if it contains **no cycle with an odd number of negative** edges [Harary 1953, 1956]

Proof by algorithm: We will do this by actually constructing an algorithm that either outputs a division into coalitions or a cycle with odd number of negative edges

Because these are the only two outcomes, this proves the claim

Theorem: Graph is **balanced** if and only if it contains **no cycle with an odd number of negative** edges [Harary 1953, 1956]

Proof sketch: Our algorithm will try to assign nodes to coalitions such that the graph is balanced. We will reason that the only way it can fail is if there is a cycle with an odd number of negative edges.

Signed graph algorithm:

Step 1: Find connected components on + edges and for each component create a super-node

- Since nodes connected by a + edge must be in same coalition
- If any edge in the super node, done (cycle with 1 negative edge)

 Note there are only negative edges pointing out of a super-node (otherwise should've connected the two super-nodes that have a positive edge)

Signed graph algorithm

- Now we have a graph on super-nodes joined by negative edges
- Just need to consistently assign super-nodes to coalitions X and Y
- BFS starting at any node in the super-node graph (which only has – edges)
- Produces a set of layers of increasing distances from the root
- Call all even layers X and odd layers Y
- If edges are only between adjacent layers (not withinlayer), then all – edges point between X and Y, balanced!
- Otherwise, within-layer edge A-B. Cycle G-A-B-G has length 2k+1, therefore it's odd, therefore unbalanced!

Two outcomes:

- 1) label each super-node as either X or Y, in such a way that every edge has endpoints with opposite labels. Then we can create a balanced division of the original graph, by labeling each node the way its supernode is labeled in the reduced graph.
- 2) find a cycle in the original graph that has an odd number of negative edges
 Simply "stitch together" these negative edges using paths consisting entirely of positive edges that go through the insides of the supernodes

Signed Graph: Is it Balanced?

Positive Connected Components

Reduced Graph on Super-Nodes

BFS on Reduced Graph

Using BFS assign each node a side

Graph is **unbalanced** if any two connected super-nodes are assigned the **same side**

Where Do Signed Edges Come From?

In many online applications users express positive and negative attitudes/opinions:

- Through <u>actions</u>:
 - Rating a product/person
 - Pressing a "like" button
- Through text:
 - Writing a comment, a review
- Success of these online applications is built on people expressing opinions
 - Recommender systems
 - Wisdom of the Crowds
 - Sharing economy

Global Structure of Signed Nets

Intuitive picture of social network in terms of densely linked clusters

How does structure interact with links?

Embeddedness of link (A,B): Number of shared neighbors

Global Factions: Embeddedness

Embeddedness of ties:

Positive ties tend to be more embedded

Real Large Signed Networks

Each link A-B is explicitly tagged with a sign:

Epinions: Trust/Distrust

Does A trust B's product reviews? (only positive links are visible to users)

Wikipedia: Support/Oppose

Does A support B to become Wikipedia administrator?

Slashdot: Friend/Foe

Does A like B's comments?

Other examples:

Online multiplayer games

	Epinions	Slashdot	Wikipedia
Nodes	119,217	82,144	7,118
Edges	841,200	549,202	103,747
+ edges	85.0%	77.4%	78.7%
- edges	15.0%	22.6%	21.2%

Balance in Our Network Data

Does structural balance hold?

Compare frequencies of signed triads in real and "shuffled" signs

	Tuiod	Epinions		Wikipedia		Consistent with
	Triad	P(T)	$P_0(T)$	P(T)	$P_0(T)$	Balance?
Unbalanced Balanced	+ + +	0.87	0.62	0.70	0.49	√
		0.07	0.05	0.21	0.10	√
	+ +	0.05	0.32	0.08	0.49	√
		0.007	0.003	0.011	0.010	X

P(T) ... fraction of a triads

 $P_0(T)$... triad fraction if the signs would appear at random

Homophily "Birds of a Feather Flock Together"

- US middle school + high school
- node color = self-identified race

Homophily: Age

Facebook friendship network, 2011

Homophily: Nationality

Facebook friendship network, 2011

Homophily: Friend count

Facebook friendship network, 2011

- Connections don't form uniformly at random
- Null model: what if they were forming at random?
- Measuring homophily: are there fewer connections between nodes across traits than you'd expect at random?
- Homophily test: If the fraction of cross-gender edges is <u>significantly</u> less than at random, then there is evidence of homophily.

p = Probability that a node is white

q = Probability that a node is red

Prob an edge is between two white nodes? Prob an edge is between two red nodes? Prob an edge is between 1 red, 1 white?

Homophily test:

p = Probability that a node is white 6/9=2/3

q = Probability that a node is red 3/9=1/3

Prob an edge is between two white nodes? p2

Prob an edge is between two red nodes? q2

Prob an edge is between 1 red, 1 white? 2pq

Homophily test: 2pq = 4/9 = 8/18

Observed: 5/18