Social and Information Networks

CSCC46H, Fall 2022
Lecture 4

Prof. Ashton Anderson
ashton@cs.toronto.edu

Logistics

Al due next week on MarkUs, last time submissions will be accepted is Friday at IOam ET.

First letter of last name A-J? First blog post due next Friday at 5pm. https://cmsweb.utsc.utoronto.ca/c46blog-f22/

CSCC46 Piazza created

Today

Signed networks
Homophily and Friendship Paradox

Positive and Negative Relationships

So far, edges mostly interpreted positively
-Friendship
-Interaction
-Collaboration

But relationships can be negative too
—Dislike
—Bad interaction
—Enemy

Network Representation

How would you model this?

Signed Networks

Networks with positive and negative relationships

Consider an undirected complete graph Label each edge as either:
Positive: friendship, trust, positive sentiment, ...
Negative: enemy, distrust, negative sentiment, ...

Questions about Signed Networks

What are the typical patterns of interaction in signed networks?

How do we reason about local and global structure of positive and negative interactions?

What are the patterns in empirical data?

Signed Networks

Networks with positive and negative relationships
 Our basic unit of investigation will be signed triangles

Focus on undirected networks

Structural Balance

Structural Balance

Four signed triads: which are stable?

Structural Balance

Four signed triads: which are stable?

Theory of Structural Balance

Start with the intuition [Heider '46]:

Friend of my friend is my friend
Enemy of enemy is my friend
Enemy of friend is my enemy
Look at connected triples of nodes:

Consistent with "friend of a friend" or "enemy of the enemy" intuition

Inconsistent with the "friend of a friend" or "enemy of the enemy" intuition

Structural Balance

Which network is balanced?

Balanced/Unbalanced Networks

Define: A complete graph is balanced if every connected triple of nodes has:

All 3 edges labeled + or Exactly I edge labeled +

Unbalanced

The Tribes of Eastern Central Highlands of New Guinea

How general is this?

set Y

Local Balance \rightarrow Global Factions

The Balance Theorem: Balance implies global coalitions [Cartwright-Harary]

If all triangles are balanced, then either:
A) The network contains only positive edges, or
B) The network can be split into two factions: Nodes can be split into 2 sets where negative edges only point between the sets

Balance Theorem

Global coalitions => balance

Straightforward

Every complete graph that looks like "this" is balanced

Balance => Global coalitions

Less straightforward

Every complete graph that's balanced looks like "this"?

Balance Theorem

Global coalitions => balance:

Any triangle is one of two types:
A) All 3 nodes in one of the partitions
B) 2 nodes in one partition, I in the other
A): all 3 edges are $+\longrightarrow$ balanced
B): 2 nodes in one partition are + , other 2 edges are - \longrightarrow balanced

Proof of Balance Theorem

Balance => Global coalitions:

Pick a node A.
Because it's a complete graph, \mathbf{A} is either friends or enemies with each person.
Now check 3 cases:

Proof of Balance Theorem

Balance Theorem

Global coalitions => balance Straight-forward

Every complete graph partitioned into two friendly coalitions that dislike either other is balanced

Balance => Global coalitions

Less straight-forward

Every complete graph that's balanced can be partitioned into two friendly coalitions that dislike either other

European alliances, pre-WWI

(a) Three Emperors' League 187281

(d) French-Russian Alliance 1891 94

(b) Triple Alliance 1882

(e) Entente Cordiale 1904

(c) German-Russian Lapse 1890

(f) British Russian Alliance 1907

Example: International Relations

International relations:
Positive edge: alliance
Negative edge: animosity

Separation of Bangladesh from Pakistan in 1971: US supports Pakistan. Why?
USSR was the enemy of China
China was the enemy of India India was the enemy of Pakistan
US was friendly with China
China vetoed
Bangladesh from U.N.

Dynamic Model of Structural Balance

In a simple model of edge evolution in signed networks, all end states are balanced [Marvel et al., PNAS 20II]

Structural Balance

What if we allow three mutual enemies?

Weak Structural Balance \rightarrow Many Global Factions

Define: A complete network is weakly balanced if there is no triangle with exactly 2 positive edges and I negative edge.

Characterization of Weakly Balanced Networks:
If a labeled complete graph is weakly balanced, then its nodes can be partitioned
(divided into groups such that two nodes belonging to the same group are friends, and every two nodes belonging to different groups are enemies)

Global picture: same thing as before, but with many factions, not necessarily two

Proof of Characterization

Pick a node A.
Because it's a complete graph, \mathbf{A} is either friends or enemies with each person.
Now check 2 cases:

Proof of Characterization

All of A's friends are friends with each other and are enemies with all of A's enemies

Remove A and his friends from the graph and recurse!
Graph still weakly balanced, find a second group, same argument applies, recurse until we've found all factions

Balance in General Networks

So far we've talked about complete graphs
What about incomplete graphs?

Balanced?

Signed Graph: Is it Balanced?

Balance in General Networks

So far we talked about complete graphs

Def I: Local view
Fill in the missing edges to achieve balance

If the graph is "Balance-able", then call it balanced

Balance in General Networks

So far we talked about complete graphs

Def I: Local view
Fill in the missing edges to
 achieve balance

If the graph is "Balance-able", then call it balanced

Balanced?

Balance in General Networks

So far we talked about complete graphs

Def 2: Global view
Divide the graph into two coalitions

If you can separate the graph into coalitions as before, call it balanced

Balance in General Networks

So far we talked about complete graphs

Balanced?

Def I: Local view
Fill in the missing edges to achieve balance

Def 2: Global view

Divide the graph into two coalitions

The 2 definitions are equivalent!

Balance in General Networks

Claim: in general (not necessarily complete) networks, the local and global definitions of balance are equivalent

Def I:Local view

Fill in the missing edges to achieve balance

Def 2: Global view
Divide the graph into two coalitions

Balance in General Networks

Actually easy to see:
Local => global: (if you can fill in edges such that the resulting complete graph is balanced, then it can be divided into coalitions)

After filling in, we have a complete network as before, the Balance Theorem applies

Balance in General Networks

Actually easy to see:

Global => local: (if the graph can be divided into coalitions, then you can fill in edges that results in a complete balanced graph)

Fill in edges within and between coalitions as before: positive edges within the coalitions and negative edges between them

Balance in General Networks

Actually easy to see:
Local => global: after filling
 in, result in complete network as before

Global => local: fill in edges within and between coalitions as before

Done!

Balance in General Networks

We have a natural definition for balance in general signed networks
"Natural" because we arrived at it two different ways that turn out to be equivalent

Balance in General Networks

We have a natural definition for balance in general signed networks
"Natural" because we arrived at it two different ways that turn out to be equivalent

But, there's a problem: how to actually check if a network is balanced in this way?

Balance in General Networks

Why isn't this graph balanced?

Balance in General Networks

Why isn't this graph balanced?

Walk around a cycle, every time we see a negative edge we have to switch coalitions

Is a Signed Network Balanced?

Theorem: Graph is balanced if and only if it contains no cycle with an odd number of negative edges [Harary I953, I 956]

Even length cycle

Odd length

Is a Signed Network Balanced?

Theorem: Graph is balanced if and only if it contains no cycle with an odd number of negative edges [Harary I953, I956]

This theorem is saying that the only way a graph can be unbalanced is if there is a cycle with an odd number of negative cycles. That's the only possible problem!

Even length cycle

Odd length

Is a Signed Network Balanced?

Theorem: Graph is balanced if and only if it contains no cycle with an odd number of negative edges [Harary I953, I 956]

Proof: We will show that every graph is either balanced or contains a cycle with odd number of negative edges (i.e. a constructive proof).

Even length cycle

Odd length

Is a Signed Network Balanced?

Theorem: Graph is balanced if and only if it contains no cycle with an odd number of negative edges [Harary I953, I956]

Proof by algorithm:We will do this by actually constructing an algorithm that either outputs a division into coalitions or a cycle with odd number of negative edges

Even length cycle

Odd length cycle

Is a Signed Network Balanced?

Theorem: Graph is balanced if and only if it contains no cycle with an odd number of negative edges [Harary I953, I956]

Proof sketch: Our algorithm will try to assign nodes to coalitions such that the graph is balanced. We will reason that the only way it can fail is if there is a cycle with an odd number of negative edges.

Even length cycle

Odd length

Is a Signed Network Balanced?

Signed graph algorithm:

Step I: Find connected components on + edges and for each component create a super-node

- Since nodes connected by a + edge must be in
same coalition
- If any - edge in the super node, done (cycle with I negative edge)
Step 2: Connect components A and B if there is a

Even length
cycle negative edge between the members

- Note there are only negative edges pointing out of a super-node (otherwise should've connected the two super-nodes that have a positive edge)

Is a Signed Network Balanced?

Signed graph algorithm

- Now we have a graph on super-nodes joined by negative edges
- Just need to consistently assign super-nodes to coalitions X and Y
- BFS starting at any node in the super-node graph (which only has - edges)
- Produces a set of layers of increasing distances from the root

- Call all even layers X and odd layers Y
- If edges are only between adjacent layers (not withinlayer), then all - edges point between X and Y , balanced!
- Otherwise, within-layer edge A-B. Cycle G-A-B-G has length $2 k+l$, therefore it's odd, therefore unbalanced!

Is a Signed Network Balanced?

Two outcomes:

I) label each super-node as either X or Y, in such a way that every edge has endpoints with opposite labels. Then we can create a balanced division of the original graph, by labeling each node the way its supernode is labeled in the reduced graph.
2) find a cycle in the original graph that has an odd number of negative edges

Simply "stitch together" these negative edges using paths consisting entirely of positive edges that go through the insides of the supernodes

Signed Graph: Is it Balanced?

Positive Connected Components

Reduced Graph on Super-Nodes

BFS on Reduced Graph

Using BFS assign each node a side
Graph is unbalanced if any two connected super-nodes are assigned the same side

Where Do Signed Edges Come From?

In many online applications users express positive and negative attitudes/opinions:

- Through actions:
- Rating a product/person
- Pressing a "like" button
- Through text:
- Writing a comment, a review
- Success of these online applications is built on people expressing opinions
- Recommender systems
- Wisdom of the Crowds
- Sharing economy

Global Structure of Signed Nets

Intuitive picture of social network in terms of densely linked clusters

How does structure interact with links?

Embeddedness of
llink (A,B): Number of
 shared neighbors

Global Factions: Embeddedness

Embeddedness of ties:

Positive ties tend to be more embedded

Real Large Signed Networks

Each link $\mathbf{A}=\mathbf{B}$ is explicitly tagged with a sign:

Epinions:Trust/Distrust

Does A trust B's product reviews? (only positive links are visible to users)
Wikipedia: Support/Oppose
Does A support B to become
Wikipedia administrator?

Slashdot: Friend/Foe

Does A like B's comments?
Other examples:

	Epinions	Slashdot	Wikipedia
Nodes	119,217	82,144	7,118
Edges	841,200	549,202	103,747
+ edges	85.0%	77.4%	78.7%
- edges	15.0%	22.6%	21.2%

Online multiplayer games

Balance in Our Network Data

Does structural balance hold?

Compare frequencies of signed triads in real and "shuffled" signs

	Triad	Epinions		Wikipedia		Consistent with Balance?
		$\mathrm{P}(\mathrm{T})$	$\mathrm{P}_{0}(\mathrm{~T})$	P (T)	$\mathrm{P}_{0}(\mathrm{~T})$	
\%	$+O_{+}^{+}$	0.87	0.62	0.70	0.49	\checkmark
$\frac{\stackrel{5}{5}}{\infty}$	$-O_{+}$	0.07	0.05	0.21	0.10	\checkmark
$\begin{aligned} & \stackrel{\rightharpoonup}{\ddot{E}} \\ & \text { تِ } \end{aligned}$	$+{ }_{0}^{+}$	0.05	0.32	0.08	0.49	\checkmark
$\begin{aligned} & \text { ल̄ } \\ & \text { 5 } \end{aligned}$	O_{-}	0.007	0.003	0.011	0.010	X

Homophily

- US middle school + high school
- node color = self-identified race

Homophily: Age

- Facebook friendship network, 201I

Homophily: Nationality

- Facebook friendship network, 20II

Homophily: Friend count

- Facebook friendship network, 201I

Homophily

- Connections don't form uniformly at random
- Null model: what if they were forming at random?
- Measuring homophily: are there fewer connections between nodes across traits than you'd expect at random?
- Homophily test: If the fraction of cross-gender edges is significantly less than at random, then there is evidence of homophily.

Homophily

$\mathrm{P}=$ Probability that a node is white
$q=$ Probability that a node is red

Prob an edge is between two white nodes?
Prob an edge is between two red nodes?
Prob an edge is between I red, I white?

Homophily test:

Homophily

$p=$ Probability that a node is white
$6 / 9=2 / 3$
$q=$ Probability that a node is red
$3 / 9=1 / 3$

Prob an edge is between two white nodes?
Prob an edge is between two red nodes?
Prob an edge is between I red, I white? 2pq

Homophily test:
$2 p q=4 / 9=8 / 18$

The Friendship Paradox

Friendship paradox

Your friends probably have more friends than you do

Friendship paradox

Average degree <= Average friend degree

Friendship paradox

- Facebook friend graph (20|2):
- 720M people, 70B edges
- Average Facebook user number of friends: 190
- Average friend's number of friends: 635
- User's friend count was lower than the average of their friends' friend counts 93% of the time
- ???

Friendship paradox

- Consider an example:
- Two buses to school
- One big one with 90 students
- One small one with 10 students
- Average bus size $=50$
- This is misleading...

Friendship paradox

- Consider an example:
- Two buses to school
- One big one with 90 students
- One small one with 10 students
- Average bus size $=50$
- What about average bus-rider experience?

Friendship paradox

- From students' point of view:
- How packed is your bus?
- 90 students say 90
- 10 students say 10

Average bus-rider experience $=$

$$
[(90 * 90)+(10 * 10)] / 100=82
$$

Friendship paradox

- Friend counts: I, 3, 2, 2.
- Average friend count:
- Average friend count of a friend:

Friendship paradox

- Friend counts: I, 3, 2, 2.
- Average friend count: 8/4=2
- Average friend count of a friend:

$$
\mathrm{A}: 3, \operatorname{avg}=3
$$

$$
B: 1,2,2, \operatorname{avg}=5 / 3
$$

$$
C: 3,2, \operatorname{avg}=2.5
$$

$$
\mathrm{D}: 3,2, \operatorname{avg}=2.5
$$

Avg friend of friends $=2.4166>2$

B mentioned 3 times, A only I

"Friendship paradox"

- Avg friend count person \leq Avg friend count of friend
- Avg \# on a train \leq Avg \# on "train experience"

"Friendship paradox"

- Avg friend count person \leq Avg friend count of friend
- Avg \# on a train \leq Avg \# on "train experience"

- Basic principle: weighted averages

"Friendship paradox"

- Friend average $=\underline{\text { Weighted average }}$

Average

- Friend average $=$ Average $+\quad$ Variance

Average

Friendship paradox on FB

Corollary paradoxes

- "Your friends log in more than you" (and more)

Friendship paradox

- Not a social fact!
- It's a mathematical fact
- Applies to virtually any network
- But it has social implications...
- Web pages you link to probably have more links
- People you high-five probably high-five more people than you
- Etc etc

Friendship paradox

- Application: Disease outbreak

- Many diseases spread via social networks
- Model: immunize random friends of random people instead of random people
- With random people: need to immunize 80-90\% of population
- With random friends of random people: only immunize 20-40\% of population
- We'll study contagion in later weeks

