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Modeling relationships of varying strength



Networks & Communities

We often think of networks “looking™ like this:

What can lead to such a conceptual picture?



Networks: Flow of Information

How does information flow through networks?
What structurally distinct roles do nodes play?

What roles do different links (short vs. long) play?
How people find out about new jobs!?

Mark Granovetter, part of his PhD in 1960s

People find the information through personal contacts
But: Contacts were often acquaintances
rather than close friends

This is surprising: One would expect your friends to help
you out more than casual acquaintances

Why is it that acquaintances are most helpful?



Granovetter’s Answer

Two perspectives on

Structural: Friendships span different parts of the network

The two highlighted edges are
structurally different: one spans two
different “communities” and the
other is inside a community

Interpersonal: Friendship between two people vary in
strength, you can be close or not so close to someone



How do new edges form?

Which edge is more likely:
a—b or a—c!



Triadic closure

If two people in a social network have a friend in
common, then there is an increased likelihood that they will
become friends themselves at some point in the future.



Triadic Closure

Triadic closure == High clustering coefficient

Reasons for triadic closure:
If B and € have a friend A in common:

— B is more likely to meet C
(both spend time with A)

— B and C trust each other more
(they have a friend in common)
— A has an incentive to bring B and C together

(easier for A to maintain two disjoint relationships)



Granovetter’s Explanation

Granovetter makes a connection between the
social and structural roles of an edge

First point: Structure
Structurally embedded edges are also socially strong

Long-range edges spanning different parts of the
network are socially weak
Second point: Information

Long-range edges allow you to gather information from
different parts of the network and get a job

Structurally embedded edges are
heavily redundant in terms of
information access




Network Vocabulary: Span and Bridges

. Bridge
Define: Span \
The Span of an edge is the distance of the
edge endpoints if the edge is deleted.

Define: Bridge edge

If removed, it disconnects the graph

Local bridge

Define: Local bridge m
Edge of Span > 2

(any edge that doesn’t close a triangle)




Granovetter’s Explanation

Edge:
Wor$S

Model: Two types of edges:

Strong (friend), Weak (acquaintance)

Model: Strong Triadic Closure property:

Two strong ties imply a third edge

If node A has strong ties to both nodes B and C, then there
must be an edge (strong or weak) between B and C

Fact: If strong triadic closure is
satisfied then local bridges
are weak ties!




Local Bridges and Weak ties

Claim: if node A satisfies Strong Triadic Closure and has two strong
ties, then any local bridge adjacent to A must be a weak tie

Proof: By contradiction:

Assume A satisfies Strong Triadic Closure
and has two strong ties

Let A—B be a local bridge, and assume it is a
strong tie (to try to derive a contradiction)
Then B—C must exist because of Strong
Triadic Closure

But then A-B is not a local bridge, because
its span is 2 (without A-B,A—C-B is the shortest
path)




Conceptual Picture of Networks

Granovetter’s theory leads to the following
conceptual picture of networks

Strong ties

/Weak ties

N 4




Granovetter’s Explanation

Weak ties have access to
I Access to other sources and other
kinds of information

Strong ties have redundant information



Tie strength In real data

For many years Granovetter’s theory was
not tested

But, today we have large who-talks-to-whom graphs:
Email, Messenger, Cell phones, Facebook

Onnela et al. 2007:
Cell-phone network of 20% of country’s population

Edge strength: # phone calls



Define: Edge overlap as
the number of shared
neighbours divided by the
union of neighbours:

N(i) " N(j)
N(i) UN(j)

Oij —

O;; = 0 when i—j is a local bridge

Oj; = 1 when i and j have all
neighbours in common

Neighborhood Overlap

0ii=0

Oi=1/3

C

Oi=1




Let’s measure the empirical
relationship between edge strength
and overlap in a real network!

Legend:

X=axis: edge strength (# calls
between nodes)

y=axis: overlap (how much edge
bridges different parts of the
network)

What do you think it will look like?

Neighborhood overlap
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Phones: Edge Overlap vs. Strength
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Phones: Edge Overlap vs. Strength

Legend: A
True: The data
Permuted strengths: Keep 02
the network structure o True
. ©
but randomly reassign = o
edge strengths 3 .15 [Permuted -
_g strengths
Observation: £ 01
Highly used links 2 X
have high overlap! 2 05 P
Weak links have small overlap (bridg <
| 0
Granovetter was right 0 02 04 06 08 1

Edge strength (#calls)



Real Network, Real Tie Strengths

Real edge strengths in mobile call graph

Strong ties are more embedded (have higher overlap), and
occur mostly in clustered communities




Real Net, Permuted Tie Strengths

Same network, same set of edge strengths but now

strengths are randomly shuffled
Now high overlap edges are much more likely to span different
parts of the network (not what we see in real life)




Link Removal by Strength

An important, recurring concept in network analysis is network
robustness: how quickly does the graph become disconnected
as you remove links!?

The faster the network falls apart, the more prone to failure it is

Test importance of edges by changing the order in which you
remove them



Link Removal by Strength

In the mobile call graph, we will test the importance of strong/weak
edges, as well as high/low overlap edges, by employing this strategy

Must start here
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Link Removal by Strength

Removing links by strength (#calls)

Low to high

High to low

= : Low
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Link Removal by Overlap

Removing links based on overlap

Low to high
High to low

Low disconnects
the network
much sooner

/

Size of largest component

Conceptual picture
of network structure

Fraction of removed links



Network Communities

Granovetter’s strength of weak ties
theory suggests that networks are

composed of tightly connected sets
of nodes

Network commmunities:

Sets of nhodes with lots of connections inside
and few to outside (the rest of the network)



Social Network Data

Zachary’s Karate club network:

Observe social ties and rivalries in a university karate club

(27 O (25)
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Social Network Data

Zachary’s Karate club network:
Observe social ties and rivalries in a university karate club
During his observation, conflicts led the group to split

Split could be explained by a minimum cut in the network
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NCAA Football Network

e Can we identify node groups!
, Vo (communities, modules,
N SaaVig"; clusters)
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NCAA Football Network

NCAA conferences

Mid American

Big East

Atlantic Coast
SEC
Conference USA

Big 12

Western Athletic

Pacific 10
Mountain West
Big 10

Sun Belt

O @ ® OO0 0 e OO0 e e

Independents

Nodes: Teams
Edges: Games played




Facebook Ego-network

Can we identify social
communities!?

Nodes: Users
Edges: Friendships



Facebook Ego-network

Nodes: Users
Edges: Friendships

Social communities



Micro-Markets in Sponsored Search

Find micro-markets by partitioning the
“query x advertiser” graph:

- — TEEE

query

sports
hetting .

advertiser



Protein-Protein Interactions

e o RTINS T Y Can we identify

functional modules?

SR\ Nodes: Proteins
o, Edges: Interactions



Protein-Protein Interactions

Nodes: Proteins
Edges: Interactions




ommunity Structure on Reddit
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Community Structure

Many real-world networks exhibit community structure that is
“obvious” to the naked eye

But what about finding communities from data?

be

be
be
be
he

twe
twe
twe
twe
twe
betwee

e

on
ocn
&

en

n

n
n

between
between
between
between
between
between
between

5
5
5
]
]
]
o
o
é
}
3
3
9

and
and
and
and
and
and
and
and
and
and
and
and
and

T,

LN
- | .l T ll- I
- !"5' :.L



Finding Network Communities

How to automatically find such densely connected
groups of nodes!

|deally such automatically detected clusters would
then correspond to real groups

For example:
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Note: We will work with undirected (unweighted) graphs



Graph Partitioning

Two general approaches:
|. Start with every node in the same cluster and break apart at
“weak links” (“divisive clustering”)

2. Start with every node in its own “community” and join
communities that are close together (“agglomerative
clustering’)

__Jﬁ sl ﬂ iy H L1454 Lﬂ




Graph Partitioning

We'll do the first: start with the whole graph as a community
and recursively split it up into smaller communities

Consider the following graph:

Where would you make the first cut!?



Graph Partitioning

We'll do the first: start with the whole graph as a
community and recursively split it up

Consider the following graph:

And now!?



Graph Partitioning

We'll do the first: start with the whole graph as a
community and recursively split it up

Consider the following graph:




Graph Partitioning

We'll do the first: start with the whole graph as a
community and recursively split it up

Consider the following graph:

Tightly-knit regions




Graph Partitioning

This naturally produces nested communities

This is familiar from everyday life:
— Countries, provinces, cities...
— Sports, Arts, Business then teams, art forms, sectors

D

8
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Graph Partitioning

A number of both agglomerative and divisive clustering
methods will find this partitioning

—Divisive will delete 7-8 first, etc.

—Agglomerative would add 7-8 last, etc.

8




Graph Partitioning

Back to divisive clustering:VWhy is 7-8 a good candidate
for the first cut?

It is a bridge

Recall that a weak tie is defined as an edge that separates weakly-conni




Graph Partitioning

Divisive clustering algorithm: Recursively remove bridges!?

Right idea, but not strong enough: There are other
bridges too (which ones?)

3-7,6-7,8-9,8-12 are also bridges!




Graph Partitioning

Also, sometimes there are no bridges (or even no local
bridges) but “natural” communities still exist




Graph Partitioning

Recall definition of a bridge: an edge that, if you remove it,
disconnects its endpoints

Thus it is an edge that carries a shortest path
(obviously the shortest, since it’s also the only path)

Need a more nuanced definition to distinguish bridges and
“bridge-like” edges from highly embedded edges




Graph Partitioning

Definition: the betweenness of an edge is how many
(fractional) shortest paths travel through it

—For every pair of nodes A,B say there is one unit of “flow” along
the edges from A to B

—Flow between A to B divides evenly among all shortest paths
fromAto B

—If k shortest paths, 1/K flow on each path




Graph Partitioning




Graph Partitioning

One unit of flow from A to B
Two shortest paths from A to B, split evenly among them
So edges a—c, c—b,a—d, d-b get 1/2 flow each from the (A,B) pair

...and repeat for one unit of flow between every other pair of nodes:
(A,C), (A,D), (B,O), (B,D), (C,D)



Girvan-Newman algorithm

Divisive hierarchical clustering based on the notion of edge
betweenness (Number of shortest paths passing through an edge)

Girvan-Newman Algorithm (on undirected unweighted
networks):
Repeat until no edges are left:

—(Re)calculate betweenness of every edge

—Remove edges with highest betweenness (if ties, remove all edges
tied for highest)

—Connected components are communities

Gives a hierarchical decomposition of the network



Girvan-Newman: Example

Consider edge /-8:
—Each node A on left and node B on right has shortest path passing
through /-8

—No flow passing between nodes on same side passes through /-8
—Betweenness(/-8) = 7x7 = 49

Po 2




Girvan-Newman: Example

Other edges:
3-7 carries full flow from 1,2,3 to 4-14: 3x11=33
|-3 carries all flow from | to everyone else except 2: Ix12
= |2
|-2 only carries flow from | to 2: Ix| = |

(10
£
(9
(2) O i (1)

®'@
(14




Girvan-Newman: Example

Girvan-Newman method: Remove edge of highest
betweenness (or multiple if there is a tie)




Girvan-Newman: Example




Girvan-Newman: Example

Step 1: Step 2:
6,66 “, "’ “,
25 units that used to be on 5-7
get shifted to 5-6 and 6-7
Step 3: Step 4:

Q}G - 040 ®@®@ - @ @QD
L= -




Zachary Karate Club

10

31 /
0 34 /14

A

24 32 11
28
- g
— 2
18] 23 Girvan-Newman
7 15
26 2] . 10
25 6 .Bo
31 20
Actual . - = B
9 4 3
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= 32 11
28 ~ 3
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Visualizing Hierarchical Clusters

Dendrogram
Graphical depiction of the hierarchical clustering splits done at
every step

Dendrogram




Zachary Karate Club

Dendrogram

Graphical depiction of the

34

10

31

18

ierarchical clustering splits done at pvery step
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We need to resolve a question

How to compute betweenness!?
Counting all pairs of shortest paths for every
edge is computationally challenging!




How to Compute Betweenness?

Want to compute
betweenness of paths BFS starting from A:
starting at node A




How to Compute Betweenness?

Count the number of shortest paths from A to
all other nodes in the graph:

[ # shortest A-J paths =
# shortest A-G paths +
# shortest A-H paths
# shortest A-| paths = 6
# shortest A-F paths + ...

# shortest A-G paths

# shortest A-K paths

= # shortest A-| paths
+ # shortest A-J paths



How to Compute Betweenness?

How much flow goes from A to other nodes!?

Compute betweenness by working up the tree: If
there are multiple paths count them fractionally

1 Q/ @ 1 @ 1\® 1

The algorithm:
*Add edge flows:

-- node flow = é ﬁ b 1+'|. paths to H

1+> child edges Spiit evenly

-- split the flow up
based on the parent é b 1+0.5 paths to J
value Split 1:2

* Repeat the BFS

procedure for each 1 flow for (A K).
starting node U ° Split evenly




Girvan-Newman

—Repeat for each node in the graph, add up the edge scores
that edges receive in these computations

—For each edge (u,v), must divide by 2 because we counted
it once for u and once for v

—Works on moderately-sized graphs

—To scale to big data, still expensive, and requires
approximations or related more efficient methods




Homophily
“Birds of a Feather Flock Together”



Homophily

- US middle school + high school

« node color = self-identified race



Homophily: Age

&
< —  Age 20
e Age 30
0 Age 40
o e Age 50
Age 60
Random edge

Fraction
0.10

0.05

0.00

20 40 60 80 100
Neighbor’s age

- Facebook friendship network, 2011



- Facebook friendship network, 2011



Homophily: Friend count

md Degree 10
© ] Degree 50
© Degree 100
Degree 500
o - Random edge
SS9~
5 o
O
LL
D
o
S —
o
o
© | | | | |
1 5 50 500 5000
Neighbor’s degree

- Facebook friendship network, 2011



Homophily

- Connections don’t form uniformly at random
- Null model: what if they were forming at random?

- Measuring homophily: are there fewer connections
between nodes across traits than you’d expect at
random?

- Homophily test: If the fraction of cross-gender edges
is significantly less than at random, then
there is evidence of homophily.




Homophily
p = Probability that a node is white
g = Probability that a node is red

Prob an edge is between two white nodes?
Prob an edge is between two red nodes?
Prob an edge is between 1 red, 1 white?

Homophily test:




Homophily
D = Probability that a node is white  6/9=2/3
q = Probability that a node is red 3/9=1/3

Prob an edge is between two white nodes?
Prob an edge is between two red nodes?
Prob an edge is between 1 red, 1 white?

Homophily test:

2pq =4/9 = 8/18

Observed: 5/18



The Friendship Paradox



Friendship paradox

Your friends probably have more friends than you do



Friendship paradox

Average degree <= Average friend degree



Friendship paradox

Facebook friend graph (2012):

/20M people, 70B edges

Average Facebook user number of friends: 190
Average friend’s number of friends: 635

User’s friend count was lower than the average of
their friends’ friend counts 93% of the time
22?



Friendship paradox

Consider an example:

Two buses to school
One one with 90 students
One one with 10 students

Average bus size = 50
This is misleading...



Friendship paradox

Consider an example:
Two buses to school

One one with 90 students
One one with 10 students

Average bus size = 50

What about average bus-rider experience?



Friendship paradox

From students’ point of view:

How packed is your bus?
90 students say 90
10 students say 10

Average bus-rider experience =
[(90%90)+(10*10)]/100 = 82



Friendship paradox

. ' ’th,\
- Friend counts: 1, 3, 2, 2. ,}g);
- Average friend count: BT
- Average friend count of a friend: '@A




Friendship paradox

- Friend counts: 1, 3, 2, 2.
- Average friend count: 8/4=2

- Average friend count of a friend:

A:3,avg =3

B:1, 2, 2, avg =5/3
C:3,2,avg =2.5
D: 3, 2,avg = 2.5

Avg friend of friends = 2.4166 > 2

B mentioned 3 times, A only 1

“Average friend-experience” vs. average friends



“Friendship paradox”

- Avg friend count person < Avg friend count of friend

- Avg # on a train < Avg # on “train experience”

2 | GoTant
Go Train 1
@

(U



“Friendship paradox”

- Avg friend count person < Avg friend count of friend

- Avg # on a train < Avg # on “train experience”

O Irain {1/

C A
(U

- Basic principle: weighted averages



“Friendship paradox”

- Friend average = Weighted average

- Friend average

Average

Average + Variance
Average




Friendship paradox on FB
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Corollary paradoxes

»+ “Your friends log in more than you” (and more)
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Friendship paradox

Not a social fact!
It’s a mathematical fact
Applies to virtually any network
But it has social implications...
Web pages you link to probably have more links

People you high-five probably high-five more
people than you

Etc etc



Friendship paradox

Application: Disease outbreak

Many diseases spread via social networks

Model: immunize random friends of random people
instead of random people

With random people: need to immunize 80-90% of
population

With random friends of random people: only
immunize 20-40% of population

we’'ll study contagion in later weeks



