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Logistics

A1 out this week, due Thursday, Oct 9 on MarkUs


Tutorials have begun



Strong and weak ties
Modeling relationships of varying strength




Networks & Communities
We often think of networks “looking” like this:

What can lead to such a conceptual picture?



Networks: Flow of Information
■How does information flow through networks?

What structurally distinct roles do nodes play?

What roles do different links (short vs. long) play?
■How people find out about new jobs?

Mark Granovetter, part of his PhD in 1960s

People find the information through personal contacts
■But: Contacts were often acquaintances  

rather than close friends

This is surprising: One would expect your friends to help 
you out more than casual acquaintances

Why is it that acquaintances are most helpful?



Granovetter’s Answer

Two perspectives on friendships:

Interpersonal: Friendship between two people vary in 
strength, you can be close or not so close to someone

Structural: Friendships span different parts of the network

The two highlighted edges are 
structurally different: one spans two 
different “communities” and the 
other is inside a community



a

b c

Which edge is more likely: 
a–b or a–c?

How do new edges form?



Triadic closure
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(b) After B-C edge forms.

Figure 3.1: The formation of the edge between B and C illustrates the e↵ects of triadic
closure, since they have a common neighbor A.

seeking, and o↵ers a way of thinking about the architecture of social networks more generally.

To get at this broader view, we first develop some general principles about social networks

and their evolution, and then return to Granovetter’s question.

3.1 Triadic Closure

In Chapter 2, our discussions of networks treated them largely as static structures — we take

a snapshot of the nodes and edges at a particular moment in time, and then ask about paths,

components, distances, and so forth. While this style of analysis forms the basic foundation

for thinking about networks — and indeed, many datasets are inherently static, o↵ering us

only a single snapshot of a network — it is also useful to think about how a network evolves

over time. In particular, what are the mechanisms by which nodes arrive and depart, and

by which edges form and vanish?

The precise answer will of course vary depending on the type of network we’re considering,

but one of the most basic principles is the following:

If two people in a social network have a friend in common, then there is an

increased likelihood that they will become friends themselves at some point in the

future [347].

We refer to this principle as triadic closure, and it is illustrated in Figure 3.1: if nodes B and

C have a friend A in common, then the formation of an edge between B and C produces

a situation in which all three nodes A, B, and C have edges connecting each other — a

structure we refer to as a triangle in the network. The term “triadic closure” comes from

Informally: If two people in a social network have a friend in 
common, then there is an increased likelihood that they will 
become friends themselves at some point in the future.



Triadic Closure

CA

B

Triadic closure == High clustering coefficient

Reasons for triadic closure:
If B and C have a friend A in common:

– B is more likely to meet C
(both spend time with A)

– B and C trust each other more
(they have a friend in common)

– A has an incentive to bring B and C together
(easier for A to maintain two disjoint relationships)



Granovetter’s Explanation

■First point: Structure
▪ Structurally embedded edges are also socially strong
▪ Long-range edges spanning different parts of the 

network are socially weak
■Second point: Information
▪ Long-range edges allow you to gather information from 

different parts of the network and get a job
▪ Structurally embedded edges are  

heavily redundant in terms of  
information access a b

S

Weak
S

S

W
Strong

S

Granovetter makes a connection between the 
social and structural roles of an edge



Network Vocabulary: Span and Bridges

Define: Bridge edge
If removed, it disconnects the graph

a b

Bridge

a b

Local bridge

Define: Local bridge
Edge of Span > 2  
(any edge that doesn’t close a triangle)

Idea: Local bridges with long span are like real bridges

Define: Span 
 The Span of an edge is the distance of the  
edge endpoints if the edge is deleted.

Span of a bridge edge = ∞



Granovetter’s Explanation

Model: Two types of edges:
Strong (friend), Weak (acquaintance)

Model: Strong Triadic Closure property:
Two strong ties imply a third edge
If node A has strong ties to both nodes B and C, then there 
must be an edge (strong or weak) between B and C

Fact: If strong triadic closure is  
satisfied then local bridges  
are weak ties!

S S

Edge: 
W or S

a b
S

W
S

S

W
S

S



Local Bridges and Weak ties

A
B

C
S

S

A
S S

Claim: if node A satisfies Strong Triadic Closure and has two strong 
ties, then any local bridge adjacent to A must be a weak tie

Proof: By contradiction:
■ Assume A satisfies Strong Triadic Closure 
and has two strong ties
■ Let A–B be a local bridge, and assume it is a 
strong tie (to try to derive a contradiction)
■ Then B–C must exist because of Strong 
Triadic Closure
■ But then A–B is not a local bridge, because 
its span is 2 (without A–B, A–C–B is the shortest 
path)



Conceptual Picture of Networks

Granovetter’s theory leads to the following 
conceptual picture of networks

Strong ties

Weak ties



Granovetter’s Explanation

Weak ties have access to different parts of 
the network! Access to other sources and other 
kinds of information

Strong ties have redundant information



Tie strength in real data

For many years Granovetter’s theory was 
not tested

But, today we have large who-talks-to-whom graphs:
Email, Messenger, Cell phones, Facebook

Onnela et al. 2007: 
Cell-phone network of 20% of country’s population
Edge strength: # phone calls



Neighborhood Overlap

Define: Edge overlap as 
the number of shared 
neighbours divided by the 
union of neighbours:

Oij =
N(i) \N(j)

N(i) [N(j)
<latexit sha1_base64="mr3HphmXcdJKCtbzyTnvN9Tbbls=">AAACF3icbVDLSsNAFJ34rPUVdelmsAjtJiRV0I1QdOOqVrAPaEKYTCfttJMHMxOhhPyFG3/FjQtF3OrOv3HaRtDWAwPnnnMvd+7xYkaFNM0vbWl5ZXVtvbBR3Nza3tnV9/ZbIko4Jk0csYh3PCQIoyFpSioZ6cScoMBjpO2NriZ++55wQaPwTo5j4gSoH1KfYiSV5OrGjZvSYQYvoO1zhNN6mVagjVEM6+VhJfupk7x29ZJpmFPARWLlpARyNFz90+5FOAlIKDFDQnQtM5ZOirikmJGsaCeCxAiPUJ90FQ1RQISTTu/K4LFSetCPuHqhhFP190SKAiHGgac6AyQHYt6biP953UT6505KwziRJMSzRX7CoIzgJCTYo5xgycaKIMyp+ivEA6TykSrKogrBmj95kbSqhnViVG9PS7XLPI4COARHoAwscAZq4Bo0QBNg8ACewAt41R61Z+1Ne5+1Lmn5zAH4A+3jG9BcnS8=</latexit>

(N(i) = set of neighbours of node i)

Oij = 0 when i–j is a local bridge

Oij = 1 when i and j have all 
neighbours in common



Phones: Edge Overlap vs. Strength
Let’s measure the empirical 
relationship between edge strength 
and overlap in a real network!

Data: cell phone network

Legend:
x-axis: edge strength (# calls 
between nodes)
y-axis: overlap (how much edge 
bridges different parts of the 
network)

What do you think it will look like?
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Phones: Edge Overlap vs. Strength
Legend:
True: The data
Permuted strengths: Keep  
the network structure  
but randomly reassign  
edge strengths

Observation:
Highly used links  
have high overlap!

Weak links have small overlap (bridges!)

Granovetter was right
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Real Network, Real Tie Strengths
Real edge strengths in mobile call graph
Strong ties are more embedded (have higher overlap), and 
occur mostly in clustered communities



Real Net, Permuted Tie Strengths
Same network, same set of edge strengths but now 
strengths are randomly shuffled
Now high overlap edges are much more likely to span different 
parts of the network (not what we see in real life)



Link Removal by Strength

An important, recurring concept in network analysis is network 
robustness: how quickly does the graph become disconnected 
as you remove links?

The faster the network falls apart, the more prone to failure it is

Test importance of edges by changing the order in which you 
remove them



Link Removal by Strength

In the mobile call graph, we will test the importance of strong/weak 
edges, as well as high/low overlap edges, by employing this strategy

Fraction of removed links
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Test your intuition: 
What will this curve look like?

Must start here

Must end here



Link Removal by Strength
Removing links by strength (#calls) 
▪ Low to high
▪ High to low

Fraction of removed links
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Conceptual picture  
of network structure

Low 
disconnects 
the network 

sooner



Link Removal by Overlap

Removing links based on overlap
▪ Low to high
▪ High to low

Fraction of removed links
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Conceptual picture  
of network structure

Low disconnects 
the network 

much sooner



Network Communities

Granovetter’s strength of weak ties 
theory suggests that networks are 
composed of tightly connected sets 
of nodes

Network communities:
Sets of nodes with lots of connections inside 
and few to outside (the rest of the network)



Social Network Data
Zachary’s Karate club network:
Observe social ties and rivalries in a university karate club

34: president

1: instructor



Social Network Data
Zachary’s Karate club network:
Observe social ties and rivalries in a university karate club
During his observation, conflicts led the group to split
Split could be explained by a minimum cut in the network

34: president

1: instructor



NCAA Football Network

Nodes: Teams
Edges: Games played

Can we identify node groups?
(communities, modules, 

clusters)



Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

NCAA Football Network

NCAA conferences

Nodes:  Teams
Edges: Games played



Facebook Ego-network

Nodes: Users
Edges: Friendships

Can we identify social 
communities?



Facebook Ego-network

High school Company

Toronto (Squash)

Toronto (Basketball)

Social communities
Nodes: Users
Edges: Friendships



Micro-Markets in Sponsored Search

Find micro-markets by partitioning the 
“query x advertiser” graph:

advertiser

qu
er

y



Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Protein-Protein Interactions

Nodes: Proteins
Edges: Interactions

Can we identify 
functional modules?



Protein-Protein Interactions

Functional modules

Nodes: Proteins
Edges: Interactions



Community Structure on Reddit



Community Structure
Many real-world networks exhibit community structure that is 

“obvious” to the naked eye

But what about finding communities from data?

What are the communities now? Do this with 1B edges…



Finding Network Communities
How to automatically find such densely connected 
groups of nodes?

Ideally such automatically detected clusters would 
then correspond to real groups

For example:

Note: We will work with undirected (unweighted) graphs



Graph Partitioning
Two general approaches:
1. Start with every node in the same cluster and break apart at 
“weak links” (“divisive clustering”) 

2. Start with every node in its own “community” and join 
communities that are close together (“agglomerative 
clustering”)



Graph Partitioning
We’ll do the first: start with the whole graph as a community 
and recursively split it up into smaller communities

Where would you make the first cut?

Consider the following graph:



Graph Partitioning

And now?

We’ll do the first: start with the whole graph as a 
community and recursively split it up

Consider the following graph:



Graph Partitioning
We’ll do the first: start with the whole graph as a 
community and recursively split it up

Consider the following graph:



Graph Partitioning

Tightly-knit regions

We’ll do the first: start with the whole graph as a 
community and recursively split it up

Consider the following graph:



Graph Partitioning
This naturally produces nested communities

Nested  
structure!

This is familiar from everyday life:
– Countries, provinces, cities…
– Sports, Arts, Business then teams, art forms, sectors



Graph Partitioning
A number of both agglomerative and divisive clustering 
methods will find this partitioning
–Divisive will delete 7-8 first, etc.
–Agglomerative would add 7-8 last, etc.

Nested  
structure!



Graph Partitioning
Back to divisive clustering: Why is 7-8 a good candidate 
for the first cut?

Recall that a weak tie is defined as an edge that separates weakly-connected regions

It is a bridge



Graph Partitioning

Divisive clustering algorithm: Recursively remove bridges?

3-7, 6-7, 8-9, 8-12 are also bridges!

Right idea, but not strong enough: There are other 
bridges too (which ones?)



Graph Partitioning

Also, sometimes there are no bridges (or even no local 
bridges) but “natural” communities still exist



Graph Partitioning
Recall definition of a bridge: an edge that, if you remove it, 
disconnects its endpoints

Thus it is an edge that carries a shortest path 
(obviously the shortest, since it’s also the only path)

Need a more nuanced definition to distinguish bridges and 
“bridge-like” edges from highly embedded edges



Graph Partitioning
Definition: the betweenness of an edge is how many 
(fractional) shortest paths travel through it

–For every pair of nodes A,B say there is one unit of “flow” along 
the edges from A to B
–Flow between A to B divides evenly among all shortest paths 
from A to B
–If k shortest paths, 1/k flow on each path



Graph Partitioning

A

One unit of flow from A to B
Betweenness(A–B) = 1

B



Graph Partitioning

A

C

B

D

One unit of flow from A to B
Two shortest paths from A to B, split evenly among them

So edges  a–c, c–b, a–d, d–b get 1/2 flow each from the (A,B) pair

…and repeat for one unit of flow between every other pair of nodes: 
(A,C), (A,D), (B,C), (B,D), (C,D)



Girvan-Newman algorithm
Divisive hierarchical clustering based on the notion of edge 
betweenness (Number of shortest paths passing through an edge)

Girvan-Newman Algorithm (on undirected unweighted 
networks):
Repeat until no edges are left:

–(Re)calculate betweenness of every edge
–Remove edges with highest betweenness (if ties, remove all edges 
tied for highest)
–Connected components are communities

Gives a hierarchical decomposition of the network



Girvan-Newman: Example

Consider edge 7-8:
–Each node A on left and node B on right has shortest path passing 
through 7-8
–No flow passing between nodes on same side passes through 7-8
–Betweenness(7-8) = 7x7 = 49



Girvan-Newman: Example

By symmetry, we know 
betweenness for all other 
nodes as well in this graph

Other edges:
3-7 carries full flow from 1,2,3 to 4-14: 3x11=33
1-3 carries all flow from 1 to everyone else except 2: 1x12 
= 12
1-2 only carries flow from 1 to 2: 1x1 = 1



Girvan-Newman: Example

Girvan-Newman method: Remove edge of highest 
betweenness (or multiple if there is a tie)

By symmetry, we know 
betweenness for all other 
nodes as well in this graph



Girvan-Newman: Example
Step 1: Step 2:

Step 3: Hierarchical network decomposition:

Need to re-compute 
betweenness at every step



Girvan-Newman: Example
Step 1: Step 2:

Step 3: Step 4:

25 units that used to be on 5-7  
get shifted to 5-6 and 6-7

Need to re-compute 
betweenness at every step



Zachary Karate Club

Actual

Girvan-Newman



Dendrogram
Graphical depiction of the hierarchical clustering splits done at 
every step

Visualizing Hierarchical Clusters

“First AB/CDEF, then C/DEF, then D/EF, then A/B, then E/F”



Zachary Karate Club
Dendrogram

Graphical depiction of the hierarchical clustering splits done at every step



Girvan-Newman: Results

Communities in physics collaborations 



We need to resolve a question

How to compute betweenness?
Counting all pairs of shortest paths for every 
edge is computationally challenging!

11/11/2014



How to Compute Betweenness?

0


1


2


3


4

Recall BFS goes layer-by-layer

Want to compute 
betweenness of paths 

starting at node A
BFS starting from A:



How to Compute Betweenness?

Work  
downwards

Count the number of shortest paths from A to 
all other nodes in the graph:



How to Compute Betweenness?
How much flow goes from A to other nodes?

1 flow for (A,K).

Split evenly

1+0.5 paths to J

Split 1:2

1+1 paths to H

Split evenly

 

Work 
upwards

Compute betweenness by working up the tree: If 
there are multiple paths count them fractionally



Girvan-Newman
–Repeat for each node in the graph, add up the edge scores 
that edges receive in these computations
–For each edge (u,v), must divide by 2 because we counted 
it once for u and once for v
–Works on moderately-sized graphs
–To scale to big data, still expensive, and requires 
approximations or related more efficient methods 



Homophily
“Birds of a Feather Flock Together”



Homophily

• US middle school + high school

• node color = self-identified race

4.1. HOMOPHILY 87

Figure 4.1: Homophily can produce a division of a social network into densely-connected, homogeneous
parts that are weakly connected to each other. In this social network from a town’s middle school and
high school, two such divisions in the network are apparent: one based on race (with students of di↵erent
races drawn as di↵erently colored circles), and the other based on friendships in the middle and high schools
respectively [304].

hypothesizing intrinsic mechanisms: when individuals B and C have a common friend A,

then there are increased opportunities and sources of trust on which to base their interactions,

and A will also have incentives to facilitate their friendship. However, social contexts also

provide natural bases for triadic closure: since we know that A-B and A-C friendships

already exist, the principle of homophily suggests that B and C are each likely to be similar

to A in a number of dimensions, and hence quite possibly similar to each other as well. As

a result, based purely on this similarity, there is an elevated chance that a B-C friendship

will form; and this is true even if neither of them is aware that the other one knows A.

The point isn’t that any one basis for triadic closure is the “correct” one. Rather, as we

take into account more and more of the factors that drive the formation of links in a social



Homophily: Age

• Facebook friendship network, 2011
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Figure 8. The distribution p(t′|t) of ages t′ for the neighbors of users with age t. The solid
lines show the measured distributions against the age t described in the legend, and the red line shows
the distribution of ages found by following a randomly chosen edge in the network.

but then level out to a value that is nearly independent of the user’s age t (see for example the blue,
yellow and green lines). And from the figure we notice that as t increases the variance in the distribution
increases. Roughly speaking, younger individuals have most of their friends within a small age range
while older individuals have a much wider range. None of this behavior is evident when comparing to
the distribution of ages at the end of a randomly chosen edge, the red line, which is centered around 20.
So while it is obvious that age matters to our social relationships, the Facebook social network shows
non-trivial asymmetric patterns, consistent across user ages t.

Switching to gender, we compute the conditional probability p(g′|g) that a random neighbor of indi-
viduals with gender g has gender g′ where we denote male by M and female by F . For friends of male
users, we find that p(F |M) = 0.5131 and p(M |M) = 0.4869. For friends of female users, we find that
p(F |F ) = 0.5178 and p(M |F ) = 0.4822. In both cases, we see that a random neighbor is more likely to
be female.

In order to understand this result, we compare to the probability of following a randomly selected edge
and arriving at a particular gender. These probabilities are given by p(F ) = 0.5156 and p(M) = 0.4844
respectively. The probability is higher for females because the number of edge ends, called stubs in the
networks literature, connected to females is higher than for males. While there are roughly 30 million
fewer active female users on Facebook, the average female degree (198) is larger than the average male
degree (172), resulting in p(F ) > p(M).

Comparing these quantities, we see that p(F |M) < p(F ) < p(F |F ) and p(M |F ) < p(M) < p(M |M).
However, the magnitude of the difference between these probabilities is extremely small and only differs
in the thousandths place. So if there is a preference for same gender friendships on Facebook, the effect
appears minimal at most.

Lastly, we turn to country of origin, a categorical variable divided into 249 categories according to the
ISO 3166-1 country code standard. These labels are attributed to users based on the user’s most recent IP
address login source and known correspondences between IP addresses and geographic locations. While
imperfect, so-called geo-IP data is generally reliable on a national level.

Intuitively, we expect to have many more friends from our country of origin then from outside that



Homophily: Nationality

• Facebook friendship network, 2011
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Figure 9. Normalized country adjacency matrix. Matrix of edges between countries with > 1
million users and > 50% Facebook penetration shown on a log scale. To normalize, we divided each
element of the adjacency matrix by the product of the row country degree and column country degree.

country, and the data shows that 84.2% percent of edges are within countries. So the network divides fairly
cleanly along country lines into network clusters or communities. This mesoscopic-scale organization is
to be expected as Facebook captures social relationships divided by national borders. We can further
quantify this division using the modularity Q [37] which is the fraction of edges within communities
minus the expected fraction of edges within communities in a randomized version of the network that
preserves the degrees for each individual [38], but is otherwise random. In this case, the communities
are the countries. The computed value is Q = 0.7486 which is quite large [39] and indicates a strongly
modular network structure at the scale of countries. Especially considering that unlike numerous studies
using the modularity to detect communities, we in no way attempted to maximize it directly, and instead
merely utilized the given countries as community labels.

We visualize this highly modular structure in Fig. 9. The figure displays a heatmap of the number
of edges between the 54 countries where the active Facebook user population exceeds one million users
and is more than 50% of the internet-enabled population [40]. To be entirely accurate, the shown matrix
contains each edge twice, once in both directions, and therefore has twice the number of edges in diagonal
elements. The number of edges was normalized by dividing the ijth entry by the row and column sums,
equal to the product of the degrees of country i and j. The ordering of the countries was then determined
via complete linkage hierarchical clustering.



Homophily: Friend count

• Facebook friendship network, 2011



Homophily
• Connections don’t form uniformly at random 


• Null model: what if they were forming at random?


• Measuring homophily: are there fewer connections 
between nodes across traits than you’d expect at 
random?


• Homophily test: If the fraction of cross-gender edges 
is significantly less than at random, then  
there is evidence of homophily.

4.1. HOMOPHILY 87

Figure 4.1: Homophily can produce a division of a social network into densely-connected, homogeneous
parts that are weakly connected to each other. In this social network from a town’s middle school and
high school, two such divisions in the network are apparent: one based on race (with students of di↵erent
races drawn as di↵erently colored circles), and the other based on friendships in the middle and high schools
respectively [304].

hypothesizing intrinsic mechanisms: when individuals B and C have a common friend A,

then there are increased opportunities and sources of trust on which to base their interactions,

and A will also have incentives to facilitate their friendship. However, social contexts also

provide natural bases for triadic closure: since we know that A-B and A-C friendships

already exist, the principle of homophily suggests that B and C are each likely to be similar

to A in a number of dimensions, and hence quite possibly similar to each other as well. As

a result, based purely on this similarity, there is an elevated chance that a B-C friendship

will form; and this is true even if neither of them is aware that the other one knows A.

The point isn’t that any one basis for triadic closure is the “correct” one. Rather, as we

take into account more and more of the factors that drive the formation of links in a social



Homophily

88 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS

Figure 4.2: Using a numerical measure, one can determine whether small networks such as
this one (with nodes divided into two types) exhibit homophily.

network, it inevitably becomes di�cult to attribute any individual link to a single factor.

And ultimately, one expects most links to in fact arise from a combination of several factors

— partly due to the e↵ect of other nodes in the network, and partly due to the surrounding

contexts.

Measuring Homophily. When we see striking divisions within a network like the one in

Figure 4.1, it is important to ask whether they are “genuinely” present in the network itself,

and not simply an artifact of how it is drawn. To make this question concrete, we need to

formulate it more precisely: given a particular characteristic of interest (like race, or age),

is there a simple test we can apply to a network in order to estimate whether it exhibits

homophily according to this characteristic?

Since the example in Figure 4.1 is too large to inspect by hand, let’s consider this question

on a smaller example where we can develop some intuition. Let’s suppose in particular that

we have the friendship network of an elementary-school classroom, and we suspect that it

exhibits homophily by gender: boys tend to be friends with boys, and girls tend to be friends

with girls. For example, the graph in Figure 4.2 shows the friendship network of a (small)

hypothetical classroom in which the three shaded nodes are girls and the six unshaded nodes

are boys. If there were no cross-gender edges at all, then the question of homophily would

be easy to resolve: it would be present in an extreme sense. But we expect that homophily

should be a more subtle e↵ect that is visible mainly in aggregate — as it is, for example, in

the real data from Figure 4.1. Is the picture in Figure 4.2 consistent with homophily?

There is a natural numerical measure of homophily that we can use to address questions

p = Probability that a node is white

q = Probability that a node is red


Prob an edge is between two white nodes?

Prob an edge is between two red nodes?

Prob an edge is between 1 red, 1 white?


	 	 	 	 	 	 Homophily test:



Homophily

88 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS

Figure 4.2: Using a numerical measure, one can determine whether small networks such as
this one (with nodes divided into two types) exhibit homophily.

network, it inevitably becomes di�cult to attribute any individual link to a single factor.

And ultimately, one expects most links to in fact arise from a combination of several factors

— partly due to the e↵ect of other nodes in the network, and partly due to the surrounding

contexts.

Measuring Homophily. When we see striking divisions within a network like the one in

Figure 4.1, it is important to ask whether they are “genuinely” present in the network itself,

and not simply an artifact of how it is drawn. To make this question concrete, we need to

formulate it more precisely: given a particular characteristic of interest (like race, or age),

is there a simple test we can apply to a network in order to estimate whether it exhibits

homophily according to this characteristic?

Since the example in Figure 4.1 is too large to inspect by hand, let’s consider this question

on a smaller example where we can develop some intuition. Let’s suppose in particular that

we have the friendship network of an elementary-school classroom, and we suspect that it

exhibits homophily by gender: boys tend to be friends with boys, and girls tend to be friends

with girls. For example, the graph in Figure 4.2 shows the friendship network of a (small)

hypothetical classroom in which the three shaded nodes are girls and the six unshaded nodes

are boys. If there were no cross-gender edges at all, then the question of homophily would

be easy to resolve: it would be present in an extreme sense. But we expect that homophily

should be a more subtle e↵ect that is visible mainly in aggregate — as it is, for example, in

the real data from Figure 4.1. Is the picture in Figure 4.2 consistent with homophily?

There is a natural numerical measure of homophily that we can use to address questions

p = Probability that a node is white

q = Probability that a node is red


Prob an edge is between two white nodes? 

Prob an edge is between two red nodes?

Prob an edge is between 1 red, 1 white?


	 	 	 	 	 	 Homophily test:

6/9=2/3

3/9=1/3

p2

q2

2pq

2pq = 4/9 = 8/18

Observed: 5/18



The Friendship Paradox



Friendship paradox

Your friends probably have more friends than you do



Friendship paradox

Average degree <= Average friend degree



Friendship paradox
■Facebook friend graph (2012):

▪ 720M people, 70B edges

▪ Average Facebook user number of friends: 190

▪ Average friend’s number of friends: 635

▪ User’s friend count was lower than the average of 

their friends’ friend counts 93% of the time 

▪ ???



Friendship paradox
■Consider an example:

▪ Two buses to school

▪ One big one with 90 students

▪ One small one with 10 students


▪ Average bus size = 50

▪ This is misleading…



Friendship paradox
■Consider an example:

▪ Two buses to school

▪ One big one with 90 students

▪ One small one with 10 students


▪ Average bus size = 50


▪ What about average bus-rider experience?



Friendship paradox
■From students’ point of view:

▪ How packed is your bus?

▪ 90 students say 90

▪ 10 students say 10


Average bus-rider experience = 

[(90*90)+(10*10)]/100 = 82



Friendship paradox

• Friend counts: 1, 3, 2, 2.

• Average friend count:


• Average friend count of a friend:



Friendship paradox

• Friend counts: 1, 3, 2, 2.

• Average friend count:


• Average friend count of a friend:

8/4=2

A: 3, avg = 3 
B: 1, 2, 2, avg = 5/3 

C: 3, 2, avg = 2.5 
D: 3, 2, avg = 2.5 

Avg friend of friends = 2.4166 > 2 

B mentioned 3 times, A only 1 

“Average friend-experience” vs. average friends



“Friendship paradox”
• Avg friend count person  ≤  Avg friend count of friend


• Avg # on a train               ≤ Avg # on “train experience”


Go Train 1

Go Train 2

Go Train 3



“Friendship paradox”
• Avg friend count person  ≤  Avg friend count of friend


• Avg # on a train               ≤ Avg # on “train experience”


• Basic principle: weighted averages

Go Train 1

Go Train 2

Go Train 3



“Friendship paradox”
• Friend average = Weighted average

                                   Average


• Friend average  =   Average      +         Variance

                                                             Average



Friendship paradox on FB
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Figure 6. Degree correlations. (a) The average neighbor degree of an individual with degree k is
the solid line. The horizontal dashed line shows the expected value if there were no degree correlations
in the network

〈

k2
〉

/ 〈k〉, and the diagonal is shown as a dashed line. (b) The conditional probability
p(k′|k) that a randomly chosen neighbor of an individual with degree k has degree k′. The solid lines,
on the linear-log scale, show the measured values for four distinct degrees k shown in the caption. The

orange line shows the expected distribution, k′pk′

〈k〉 , if the degrees were uncorrelated.

shift to the right as k increases demonstrating the degree assortativity. Furthermore, barring any strange
non-smooth behavior between the sampled values of k, the median for p(k′|k) is greater than k up until
between 390 and 400 friends, confirming that the behavior of the mean in Fig. 6a was not misleading.
Another observation from the figure, and data for other values of k not shown, is that the modal degree
of friends is exactly equal to k until around k = 120. So while your friends are likely to have more friends
than you on average, the most likely number of your neighbor’s friends is the same as your degree for low
to moderate degree users.

Site engagement correlation. Besides for degree correlations, we also examined correlations
amongst traits of individuals and network structure [36]. We now repeat our correlation calculations
using the number of days users logged in during the 28-day window of the study, instead of degree, seen
in Fig. 7a. Again, we provide the average value at the end of a randomly selected edge and the diagonal
line for comparison.

Unlike the degree case, here there is an ambiguity in defining a random neighbor and hence the
average number of neighbor logins. Our definition of random neighbor of vertices with trait x is to first
select a vertex with trait x in proportion to their degree and then select an edge connected to that vertex
uniformly at random. In other words, we give each edge connected to vertices with trait x equal weight.
So a vertex who is connected to 5 vertices with trait x is given 5 times as much weight in the average as
a vertex who connects to a single vertex with trait x.

Like the degree, your neighbor’s site engagement is correlated with your site engagement, but the
average number of neighbor logins is better represented by the horizontal random expectation than what
was seen in the degree case. The more interesting observation, though, is that the solid value is far larger
than the diagonal value over most of the range from logging in 0 to 20 times in the past 28 days. So by



Corollary paradoxes
• “Your friends log in more than you” (and more) 10
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Figure 7. Login correlations. (a) Neighbor’s logins versus user’s logins to Facebook over a period of
28 days. The solid line shows the actual mean values and the horizontal line shows the average login
value found by following a randomly chosen edge. The dashed line shows the diagonal. (b) A user’s
degree versus the number of days a user logged into Facebook in the 28 day period. The solid line shows
the mean user degree, the dashed lines the 25/75 percentiles, and the dotted lines the 5/95th percentiles.

the same line of reasoning for the degree case, up until you log in around 70 percent of days in a month,
on average, your friends log into Facebook more than you do.

We can understand this phenomena by examining the correlation between an individual’s degree
and logging into Facebook. A Facebook user provides and receives content through status updates, links,
videos, and photos, etc. to and from their friends in the social network, and hence may be more motivated
to log in if they have more friends. Such a positive correlation does exist between degree and logins, and
we show that in Fig. 7b. A user who logs in more generally has more friends on Facebook and vice versa.
So since your friends have more friends than you do, they also login to Facebook more than you do.

Other mixing patterns. There are many other user traits besides logging into Facebook that can
be compared to the network structure. We focus on three other such quantities with essentially complete
coverage for Facebook’s users; age, gender, and country of origin, and characterize their homophily [36]
and mixing patterns [32].

We start by considering friendship patterns amongst individuals with different ages, and compute the
conditional probability p(t′|t) of selecting a random neighbor of individuals with age t who has age t′.
Again, random neighbor means that each edge connected to a vertex with age t is given equal probability of
being followed. We display this function for a wide range of t values in Fig. 8. The resulting distributions
are not merely a function of the magnitude of the age difference |t − t′| as might naively be expected,
and instead are asymmetric about a maximum value of t′ = t. Unsurprisingly, a random neighbor is
most likely to be the same age as you. Less obviously, the probability of friendship with older individuals
falls off rapidly, nearly exponentially, from the mode. Below the mode, the distributions also fall off,



Friendship paradox
■Not a social fact!

▪ It’s a mathematical fact

▪ Applies to virtually any network

▪ But it has social implications…

▪ Web pages you link to probably have more links

▪ People you high-five probably high-five more 

people than you

▪ Etc etc



Friendship paradox
■Application: Disease outbreak

▪ Many diseases spread via social networks

▪ Model: immunize random friends of random people 

instead of random people

▪ With random people: need to immunize 80-90% of 

population

▪ With random friends of random people: only 

immunize 20-40% of population

▪ We’ll study contagion in later weeks


