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Logistics
A1 out next week



Today
1) Building up our network vocabulary

2) Measuring networks; basic properties

3) Random graph model: Gnp


4) Strong and weak ties (time willing)



Network Representations

How do we represent graphs as mathematical objects?


What are our choices when we’re translating real-world 
networks into a graph representation?




How to Store?
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Edge List
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 (1,4),

 (2,4),

 (3,4)]

[(1,2),

 (1,4),

 (4,2),
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Adjacency List
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{1: [2,4],

 2: [1,4],

 3: [4],

 4: [1,2,3]}

{1: [2,4],

 4: [2,3]}

Total length of lists?



Adjacency Matrix

Aij = 1   if there is a link from node i to node j

Aij = 0   otherwise
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Note that for a directed graph (right) the matrix is not symmetric.   

4

1
2 3

4

1
2 3

1

0



Undirected vs. Directed Networks

Undirected graphs

■Links: undirected 

(symmetrical, 

reciprocal relations)


■Undirected links:
▪ Collaborations
▪ Friendship on Facebook

Directed graphs

■Links: directed  

(asymmetrical relations)


■Directed links:

▪ Phone calls

▪ Following on Twitter
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Weighted Graphs

Unweighted 
(undirected)

Weighted  
(undirected)
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Examples: Friendship, Hyperlink Examples: Collaboration, Internet, Roads



More Types of Graphs:
Graphs with self-edges  
(undirected)

Multigraph 
(undirected)
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Examples: Proteins, Hyperlinks Examples: Communication, Collaboration



Bipartite Graph
Bipartite graph is a graph whose nodes 
can be divided into two disjoint sets U and V 
such that every link connects a node in U to one 
in V; that is, U and V are independent sets


Examples:

–Authors-to-papers (they authored)
–Actors-to-Movies (they appeared in)
–Users-to-Movies (they rated)

“Folded” networks:

–Author collaboration networks
–Movie co-rating networks
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Folded version of the 
graph above



Most real-world networks are sparse
E <<  Emax  (or k << N-1)

WWW (Stanford-Berkeley): N=319,717 〈k〉=9.65
Social networks (LinkedIn): N=6,946,668 〈k〉=8.87
Communication (MSN IM): N=242,720,596 〈k〉=11.1
Coauthorships (DBLP): N=317,080 〈k〉=6.62
Internet (AS-Skitter): N=1,719,037 〈k〉=14.91
Roads (California): N=1,957,027 〈k〉=2.82
Proteins (S. Cerevisiae): N=1,870 〈k〉=2.39 

(Source: Leskovec et al., Internet Mathematics, 2009)

Consequence: Adjacency matrix is filled with zeros!
(Density of the matrix (E/N2): WWW=1.51×10-5, MSN IM = 2.27×10-8) 

Networks are Sparse Graphs



Network Representations

WWW >


Facebook friendships >


Citation networks >


Collaboration networks >


Mobile phone calls >


Protein Interactions >


> directed multigraph with self-edges


> undirected, unweighted


> unweighted, directed, acyclic


> undirected multigraph or weighted graph


> directed, (weighted?) multigraph


> undirected, unweighted with self-interactions




Network Representations

WWW >


Facebook friendships >


Citation networks >


Collaboration networks >


Mobile phone calls >


Protein Interactions >


> directed multigraph with self-edges


> undirected, unweighted


> unweighted, directed, acyclic


> undirected multigraph or weighted graph


> directed, (weighted?) multigraph


> undirected, unweighted with self-interactions




How do we measure properties in the 
graph representation of a network?


Focus on connectivity and distance

Network Properties: 
How to Characterize/Measure a Network?



Connectivity: Node Degrees
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Node degree, ki: the number  
of edges adjacent to node i
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In directed networks we define an in-degree 
and out-degree.    
The (total) degree of a node is the sum of 
in- and out-degrees.

2=in
Ck 1=out

Ck 3=Ck

outin kk =

Avg. degree:

Source: Node with kin = 0 
Sink: Node with kout = 0

k̄ = hki = 1
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ki =
2E

N
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e.g. kA = 4



Connectivity: How Connected Are Nodes?

How many neighbours do nodes tend to have in your graph?
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Connectivity: Degree Distribution
Degree distribution P(k): Probability that a randomly 
chosen node has degree k 

Nk = # nodes with degree k

k

P(k)

1 2 3 4

0.1
0.2
0.3
0.4
0.5
0.6

Normalized histogram: 
P(k) = Nk / N     ➔   plot

➔



Are the nodes “clustered" in the graph? Do nodes 
with common neighbours tend to know each other?

Connectivity: Local Clustering



Connectivity: Clustering Coefficient

What’s the probability that a random pair of your 
friends are connected?

Ci=?

where ei is the number of edges  
between the neighbours of node i
and ki is the degree of node i
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Connectivity: Clustering Coefficient

What’s the probability that a random pair of your 
friends are connected?

Ci=0 Ci=1/3 Ci=1

where ei is the number of edges  
between the neighbors of node I
and ki is the degree of node I
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Average clustering coefficient: 

Ci 2 [0, 1]
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Connectivity: Clustering Coefficient
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kD=?,  eD=?,  CD=? = ?
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kB=2,  eB=1,  CB=2/2 = 1


kD=4,  eD=2,  CD=(2*2)/(4*3) = 4/12 = 1/3

Connectivity: Clustering Coefficient



Distance: Paths in a Graph

■A path is a sequence of nodes in which each 
node is linked to the next one

■Path can intersect itself  
and pass through the  
same edge multiple times
▪ E.g.: ACBDCDEG
▪ In a directed graph a path  

can only follow the direction  
of the “arrow”
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Pn = {i0,i1,i2,...,in}

€ 

Pn = {(i0 ,i1),(i1,i2 ),( i2 ,i3 ),...,( in−1,in )}
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Distance: Number of Paths

Number of paths between nodes u and v:
Length h=1: If there is a link between u and v, Auv=1 else 
Auv=0

Length h=2: If there is a path of length two between u 
and v then Auk Akv=1 else Auk Akv=0

Length h: If there is a path of length h between u and v 
then Auk .... Akv=1 else Auk .... Akv=0 
So, the no. of paths of length h between u and v is 
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(holds for both directed and undirected graphs)



Distance: Number of Paths
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Distance: definition

Distance (shortest path, geodesic) 
between a pair of nodes is defined as 
the number of edges along the shortest 
path connecting the nodes


*If the two nodes are disconnected, the distance is 
usually defined as infinite

In directed graphs paths need to follow 
the direction of the arrows
Consequence: Distance is  
not symmetric: hA,C ≠ hC, A
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hB,D = 2

hB,C = 1, hC,B = 2



Distance: Graph-level measures
■Diameter: the maximum (shortest path) 

distance between any pair of nodes in a 
graph


■Average path length for a connected graph 
(component) or a strongly connected 
(component of a) directed graph 


▪Many times we compute the average only over the 
connected pairs of nodes (that is, we ignore “infinite”  
length paths)
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where hij is the distance from node i to node j,

And Emax is the maximum number of edges (=n*(n-1)/2)



Key Network Properties

Degree distribution:        P(k)


Clustering coefficients:     C


Path lengths:                     L


Diameter:                           D



Finding Shortest Paths
■Breadth First Search:

▪ Start with node u, mark it to be at distance hu(u)=0, add u 

to the queue
▪ While the queue not empty:
▪ Take node v off the queue, put its unmarked  

neighbors w into the queue and mark hu(w)=hu(v)+1
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Let’s measure these properties 
in a real network!



Key Network Properties

Degree distribution:        P(k)


Clustering coefficient: 	    C


(we’ll look at distance later in the course)



MSN Messenger

■MSN Messenger activity in 
June 2006:

▪ 245 million users logged in
▪ 180 million users engaged in 

conversations
▪ More than 30 billion 

conversations
▪ More than 255 billion 

exchanged messages



Messaging as a simple graph

Messaging as an undirected 
graph

• Edge (u,v) if users u and v  

exchanged at least 1 msg

• N=180 million people

• E=1.3 billion edges



MSN Network: Connectivity



MSN: Degree Distribution



Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

MSN: Log-Log Degree Distribution

9/25/2014

Note:  We plotted the 
same data as on the 
previous slide, just the 
axes are now logarithmic.



MSN: Clustering
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Ck:  average Ci of nodes i 
of degree k:

Avg. clustering coefficient of the MSN graph:

C = 0.1140



MSN: Recap

Degree distribution: 	 	 


Clustering coefficient:   0.11       



Is this behaviour expected 
or surprising?



Let’s compare with simple models



Complete Graph
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The maximum number of edges in  
an undirected graph on N nodes is

An undirected graph with the number of edges E 
= Emax is called a complete graph  

Every node has degree ?

Every node has clustering coefficient ?



Complete Graph
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The maximum number of edges in  
an undirected graph on N nodes is

An undirected graph with the number of edges E 
= Emax is called a complete graph  

Every node has degree n-1

Every node has clustering coefficient 1



Is MSN Network like a “chain”?

Note about calculations:  
We are interested in quantities as 
graphs get large (N→∞)

We will use big-O:
f(x) = O(g(x))  as  x→∞
if f(x) < g(x)*c for all x > x0 and 
some constant c.

P (k) = �(k � 4)
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Degree distribution:

Clustering: C =
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Constant degree, 
high average clustering coefficient



Is MSN Network like a “grid”?

■P(k) = δ(k-6)	 

▪ k =6 for each inside node

■C = 6/15 for inside nodes

■Path length:


■In general, for lattices:


▪ Average path-length is                         (D… lattice 

dimensionality)

▪ Constant degree, constant clustering coefficient

DNh /1≈

 hmax =O( N )



MSN Network is neither 
a chain nor a grid



Need a model to compare: 

Erdös-Renyi  
Random Graph Model



Simplest Model of Graphs
Erdös-Renyi Random Graphs [Erdös-Renyi, ‘60]
Gn,p: undirected graph on n nodes and each  
edge (u,v) appears i.i.d. with probability p
Simplest random model you can think of

What kinds of networks does 
such a model produce?



Random Graph Model
n and p do not uniquely determine the graph!

The graph is a result of a random process 

We can have many different realizations given the 
same n and p

n = 10 
p = 1/6



Random Graph Model: Edges

How likely is a graph with E edges?
P(E): the probability that a given Gnp generates a 
graph with exactly E edges:

where Emax=n(n-1)/2  is the maximum possible number of edges in an 
undirected graph of n nodes
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P(E) is exactly the
Binomial distribution    >>>
Number of successes in a sequence of Emax 
independent yes/no experiments



Node Degrees in a Random Graph
What is expected degree of a node?

Let Xv be a rnd. var. measuring the degree of node v


How to think about this?

• Prob. of node u linking to node v is p

• u can link (flips a coin) to all other (n-1) nodes

• Thus, the expected degree of node u is: p(n-1)

E[Xv] =
n�1X

u=1

E[Xvu] = (n� 1) · p
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j=0

jP (Xv = j)
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An easier way:

Recall linearity of expectation 

For any random variables Y1,Y2,…,Yk


If Y=Y1+Y2+…+Yk, then E[Y] = E[Y1+Y2+…+Yk] = ∑i E[Yi]


Decompose Xv to Xv= Xv,1+Xv,2+…+Xv,n-1

where Xv,u is a {0,1}-random variable  
which tells if edge (v,u) exists or not

We want to know:



Properties of Gnp

Degree distribution: 	 	 P(k)


Clustering coefficient: 	      C

What are values of these 
properties for Gnp?



Degree Distribution

Fact: Degree distribution of Gnp is Binomial.
Let P(k) denote a fraction of nodes with degree k:
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Select k nodes 
out of n-1

Probability of 
having k edges

Probability of 
missing the rest of the 
n-1-k edges 

P
(k

)

k

k̄ = p(n� 1)
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Clustering Coefficient of Gnp

Remember:

Edges in Gnp appear i.i.d. with prob. p

So:

Then:

And:

Clustering coefficient is very small (if you fix 
average degree, decreases with graph size)

Number of distinct pairs of 
neighbors of node i of degree ki

Each pair is connected  
with prob. p

Where ei is the number of 
edges between i’s neighboursCi =

2ei
ki(ki � 1)
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ei = p
ki(ki � 1)
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C =
p · ki(ki � 1)

ki(ki � 1)
= p
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k̄ = p(n� 1)
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SinceC = p =
k̄

n� 1
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Network Properties of Gnp

Degree distribution: 	 	 


Clustering coefficient:   C = p = k / n
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MSN vs. Gnp

Degree distribution: 	 	 


Clustering coefficient:   0.11        k / n
≈ 8·10-8

MSN          Gnp



Real Networks vs. Gnp

Are real networks like random graphs?


Clustering Coefficient: ☹


Degree Distribution: ☹

Problems with the random networks model:

Degree distribution differs from that of real networks
No local structure – clustering coefficient is too low

Most important: Are real networks random?

NOPE!



Real Networks vs. Gnp

If Gnp is wrong, why did we spend time on it?
—It will help us calculate many quantities that can then be 
compared to the real data 
—If the quantity you just calculated also shows up in Gnp, it’s 
probably not that interesting (“this also happens if you assume 
complete randomness”) 
—It is the reference model for the rest of the class.  

So, while Gnp is not realistic, 
it is extremely useful!

(Because if the phenomenon you observed also 
happens in Gnp, it’s probably not that interesting)



Strong and weak ties
Modeling relationships of varying strength




Networks & Communities
We often think of networks “looking”  
like this:


What can lead to such a conceptual picture?



Networks: Flow of Information
■How information flows through the network?

▪ What structurally distinct roles do nodes play?

▪ What roles do different links (short vs. long) play?

■How people find out about new jobs?

▪ Mark Granovetter, part of his PhD in 1960s
▪ People find the information through personal contacts
■But: Contacts were often acquaintances  

rather than close friends

▪ This is surprising: One would expect your friends to help 

you out more than casual acquaintances

■Why is it that acquaintances are most helpful?



Granovetter’s Answer

Two perspectives on friendships:

Interpersonal: Friendship between two people vary in 
strength, you can be close or not so close to someone

Structural: Friendships span different parts of the network

The two highlighted edges are 
structurally different: one spans two 
different “communities” and the 
other is inside a community



a

b c

Which edge is more likely: 
a–b or a–c?

Structural force: Triadic closure



Triadic closure
48 CHAPTER 3. STRONG AND WEAK TIES

B
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(a) Before B-C edge forms.

B

A

C

G

F

E D

(b) After B-C edge forms.

Figure 3.1: The formation of the edge between B and C illustrates the e↵ects of triadic
closure, since they have a common neighbor A.

seeking, and o↵ers a way of thinking about the architecture of social networks more generally.

To get at this broader view, we first develop some general principles about social networks

and their evolution, and then return to Granovetter’s question.

3.1 Triadic Closure

In Chapter 2, our discussions of networks treated them largely as static structures — we take

a snapshot of the nodes and edges at a particular moment in time, and then ask about paths,

components, distances, and so forth. While this style of analysis forms the basic foundation

for thinking about networks — and indeed, many datasets are inherently static, o↵ering us

only a single snapshot of a network — it is also useful to think about how a network evolves

over time. In particular, what are the mechanisms by which nodes arrive and depart, and

by which edges form and vanish?

The precise answer will of course vary depending on the type of network we’re considering,

but one of the most basic principles is the following:

If two people in a social network have a friend in common, then there is an

increased likelihood that they will become friends themselves at some point in the

future [347].

We refer to this principle as triadic closure, and it is illustrated in Figure 3.1: if nodes B and

C have a friend A in common, then the formation of an edge between B and C produces

a situation in which all three nodes A, B, and C have edges connecting each other — a

structure we refer to as a triangle in the network. The term “triadic closure” comes from

Informally: If two people in a social network have a friend in 
common, then there is an increased likelihood that they will 
become friends themselves at some point in the future.



Triadic Closure

■ 

CA

B



Granovetter’s Explanation

■Granovetter makes a connection between  
social and structural role of an edge
■First point: Structure
▪ Structurally embedded edges are also socially strong
▪ Long-range edges spanning different parts of the 

network are socially weak
■Second point: Information
▪ Long-range edges allow you to gather information from 

different parts of the network and get a job
▪ Structurally embedded edges are  

heavily redundant in terms of  
information access

a b
S

Weak
S

S

W
Strong

S



Network Vocabulary: Span and Bridges

Define: Bridge edge
If removed, it disconnects the graph a b

Bridge

a b

Local bridge

Define: Local bridge
Edge of Span > 2  
(any edge that doesn’t close a triangle)

Idea: Local bridges with long span are like real bridges

Define: Span 
 The Span of an edge is the distance of the  
edge endpoints if the edge is deleted.



Granovetter’s Explanation

Model: Two types of edges:
Strong (friend), Weak (acquaintance)

Model: Strong Triadic Closure property:
Two strong ties imply a third edge

Fact: If strong triadic closure is  
satisfied then local bridges  
are weak ties!

S S

Edge: 
W or S

a b
S

W
S

S

W
S

S



Local Bridges and Weak ties

■ 

A
B

C
S

S

A
S S
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Granovetter’s Explanation

Weak ties have access to different parts of the 
network! Access to other sources and other 
kinds of information

Strong ties have redundant information



Conceptual Picture of Networks

Granovetter’s theory leads to the following 
conceptual picture of networks

Strong ties

Weak ties



Tie strength in real data

■For many years Granovetter’s theory was 
not tested

■But, today we have large  

who-talks-to-whom graphs:
▪ Email, Messenger, Cell phones, Facebook

■Onnela et al. 2007: 

▪ Cell-phone network of 20% of country’s population
▪ Edge strength: # phone calls



Neighborhood Overlap

■ 



Phones: Edge Overlap vs. Strength

■Cell-phone network

■Observation:

▪ Highly used links  

have high overlap!


■ Legend:

▪ True: The data

▪ Permuted strengths: Keep  

the network structure  
but randomly reassign  
edge strengths

True

Permuted 
strengths

Edge strength (#calls)
N
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Real Network, Real Tie Strengths
Real edge strengths in mobile call graph

Strong ties are more embedded (have higher overlap)



Real Net, Permuted Tie Strengths
Same network, same set of edge strengths 
but now strengths are randomly shuffled



Link Removal by Strength

Removing links by strength (#calls) 

▪ Low to high
▪ High to low

Fraction of removed links
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Conceptual picture  
of network structure

Low 
disconnects 
the network 

sooner



Link Removal by Overlap

Removing links based on overlap

▪ Low to high
▪ High to low

Fraction of removed links
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nt

Conceptual picture  
of network structure

Low 
disconnects 
the network 

sooner



Course progress

Assignment 1 out next week

—Due 2 weeks later
—Get started early!


