Social and Information Networks

CSCC46H, Fall 2025 Lecture 2

Prof. Ashton Anderson ashton@cs.toronto.edu

Logistics

A1 out next week

Today

- 1) Building up our network vocabulary
- 2) Measuring networks; basic properties
- 3) Random graph model: Gnp
- 4) Strong and weak ties (time willing)

Network Representations

How do we represent graphs as mathematical objects?

What are our choices when we're translating real-world networks into a graph representation?

How to Store?

Edge List

[(1,2),	
(1,4),	
(2,4),	
(3,4)]	

Adjacency List

{1: [2,4], 2: [1,4], 3: [4], 4: [1,2,3]} {1: [2,4], 4: [2,3]}

Total length of lists?

Adjacency Matrix

 $A_{ij} = 1$ if there is a link from node *i* to node *j*

 $A_{ij} = 0$ otherwise

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \qquad A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

Note that for a directed graph (right) the matrix is not symmetric.

Undirected vs. Directed Networks

Undirected graphs

Links: undirected (symmetrical, reciprocal relations)

- Undirected links:
 - Collaborations
- Friendship on Facebook

Directed graphs

Links: directed (asymmetrical relations)

- Directed links:
 - Phone calls
- Following on Twitter

Weighted Graphs

Unweighted

$$A_{ij} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$A_{ii} = 0$$
 $A_{ij} = A_{ji}$

$$E = \frac{1}{2} \sum_{i, j=1}^{N} A_{ij} \qquad \overline{k} = \frac{2E}{N}$$

Weighted

(undirected)

$$A_{ij} = \begin{pmatrix} 0 & 2 & 0.5 & 0 \\ 2 & 0 & 1 & 4 \\ 0.5 & 1 & 0 & 0 \\ 0 & 4 & 0 & 0 \end{pmatrix}$$

$$A_{ii} = 0 A_{ij} = A_{ji}$$

$$E = \frac{1}{2} \sum_{i,j=1}^{N} nonzero(A_{ij}) \overline{k} = \frac{2E}{N}$$

Examples: Friendship, Hyperlink

Examples: Collaboration, Internet, Roads

More Types of Graphs:

Graphs with self-edges

$$A_{ij} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$A_{ii} \neq 0 \qquad A_{ij} = A_{ji}$$

$$E = \frac{1}{2} \sum_{i, j=1, i \neq j}^{N} A_{ij} + \sum_{i=1}^{N} A_{ii}$$

Examples: Proteins, Hyperlinks

Multigraph

(undirected)

$$A_{ij} = \begin{pmatrix} 0 & 2 & 1 & 0 \\ 2 & 0 & 1 & 3 \\ 1 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \end{pmatrix}$$

$$A_{ii} = 0 A_{ij} = A_{ji}$$

$$E = \frac{1}{2} \sum_{i,j=1}^{N} nonzero(A_{ij}) \overline{k} = \frac{2E}{N}$$

Examples: Communication, Collaboration

Bipartite Graph

Bipartite graph is a graph whose nodes can be divided into two disjoint sets U and V such that every link connects a node in U to one in V; that is, U and V are **independent sets**

Examples:

- -Authors-to-papers (they authored)
- -Actors-to-Movies (they appeared in)
- –Users-to-Movies (they rated)

"Folded" networks:

- -Author collaboration networks
- –Movie co-rating networks

Networks are Sparse Graphs

Most real-world networks are sparse

$$E \ll E_{max}$$
 (or $\overline{k} \ll N-1$)

```
\langle k \rangle = 9.65
WWW (Stanford-Berkeley):
                                       N=319,717
                                                                                \langle k \rangle = 8.87
Social networks (LinkedIn):
                                      N=6,946,668
                                                                                \langle k \rangle = | | | |
Communication (MSN IM):
                                      N=242,720,596
                                                                                \langle k \rangle = 6.62
Coauthorships (DBLP):
                                       N=317,080
                                                                   \langle k \rangle = 14.91
Internet (AS-Skitter): N=1,719,037
                                                                                \langle k \rangle = 2.82
                                     N=1,957,027
Roads (California):
                                                                                 \langle k \rangle = 2.39
Proteins (S. Cerevisiae):
                                       N=1,870
```

Consequence: Adjacency matrix is filled with zeros!

(Source: Leskovec et al., Internet Mathematics, 2009)

(Density of the matrix (E/N^2) :WWW=1.51×10-5, MSN IM = 2.27×10^{-8})

Network Representations

- WWW >
- Facebook friendships >
 - Citation networks >
- Collaboration networks >
 - Mobile phone calls >
 - Protein Interactions >

Network Representations

- WWW ➤ directed multigraph with self-edges
- Facebook friendships > undirected, unweighted
 - Citation networks ➤ unweighted, directed, acyclic
- Collaboration networks > undirected multigraph or weighted graph
 - Mobile phone calls > directed, (weighted?) multigraph
 - Protein Interactions > undirected, unweighted with self-interactions

Network Properties: How to Characterize/Measure a Network?

How do we measure properties in the graph representation of a network?

Focus on connectivity and distance

Connectivity: Node Degrees

Undirected

Node degree, k_i : the number of edges adjacent to node i

e.g.
$$k_A = 4$$

Avg. degree:
$$\bar{k} = \langle k \rangle = \frac{1}{N} \sum_{i=1}^{N} k_i = \frac{2E}{N}$$

Directed

In directed networks we define an in-degree and out-degree.

The (total) degree of a node is the sum of in- and out-degrees.

$$k_C^{in} = 2 \quad k_C^{out} = 1 \quad k_C = 3$$

$$\overline{k^{in}} = \overline{k^{out}}$$

Source: Node with $k^{in} = 0$ **Sink:** Node with $k^{out} = 0$

Connectivity: How Connected Are Nodes?

How many neighbours do nodes tend to have in your graph?

Connectivity: Degree Distribution

Degree distribution P(k): Probability that a randomly chosen node has degree k

 $N_k = \#$ nodes with degree k

Normalized histogram:

$$P(k) = N_k / N \rightarrow plot$$

Connectivity: Local Clustering

Are the nodes "clustered" in the graph? Do nodes with common neighbours tend to know each other?

What's the probability that a random pair of your friends are connected?

$$C_i \in [0, 1]$$

$$C_i = \frac{e_i}{\binom{k_i}{2}} = \frac{e_i}{k_i(k_i-1)/2} = \frac{2e_i}{k_i(k_i-1)} \quad \text{between the neighbours of node i}$$

where e_i is the number of edges

What's the probability that a random pair of your friends are connected?

$$C_i \in [0, 1]$$

$$C_i = \frac{e_i}{\binom{k_i}{2}} = \frac{e_i}{k_i(k_i-1)/2} = \frac{2e_i}{k_i(k_i-1)} \quad \text{where \mathbf{e}_i is the number of edges between the neighbors of node I and \mathbf{k}_i is the degree of node I$$

Average clustering coefficient: $C = \frac{1}{N} \sum_{i=1}^{N} C_{i}$

$$C = \frac{1}{N} \sum_{i}^{N} C_{i}$$

$$k_B = ?$$
, $e_B = ?$, $C_B = ? = ?$

$$k_D = ?$$
, $e_D = ?$, $C_D = ? = ?$

$$k_B=2$$
, $e_B=1$, $C_B=2/2=1$

$$k_D=4$$
, $e_D=2$, $C_D=(2*2)/(4*3)=4/12=1/3$

Distance: Paths in a Graph

A path is a sequence of nodes in which each node is linked to the next one

$$P_n = \{i_0, i_1, i_2, ..., i_n\}$$
 $P_n = \{(i_0, i_1), (i_1, i_2), (i_2, i_3), ..., (i_{n-1}, i_n)\}$

- Path can intersect itself and pass through the same edge multiple times
 - E.g.: ACBDCDEG
 - In a directed graph a path can only follow the direction of the "arrow"

Distance: Number of Paths

Number of paths between nodes u and v:

Length h=1: If there is a link between u and v, $A_{uv}=1$ else $A_{\mu\nu}=0$

Length h=2: If there is a path of length two between uand v then $A_{ijk}A_{kv}=I$ else $A_{ijk}A_{kv}=0$

$$H_{uv}^{(2)} = \sum_{uv}^{N} A_{uk} A_{kv} = [A^2]_{uv}$$

 $H_{uv}^{(2)} = \sum_{uv}^{N} A_{uk} A_{kv} = [A^{2}]_{uv}$ Length h: If there is a path of length h between u and vthen A_{uk} $A_{kv}=I$ else A_{uk} $A_{kv}=0$

So, the no. of paths of length h between u and v is

$$H_{uv}^{(h)} = [A^h]_{uv}$$

Distance: Number of Paths

$$H^{(1)} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$H^{(2)} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

Distance: definition

 $h_{B,D} = 2$

between a pair of nodes is defined as the number of edges along the shortest path connecting the nodes

*If the two nodes are disconnected, the distance is usually defined as infinite

 $h_{B,C} = 1, h_{C,B} = 2$

In directed graphs paths need to follow the direction of the arrows

Consequence: Distance is

not symmetric: $h_{A,C} \neq h_{C,A}$

Distance: Graph-level measures

- Diameter: the maximum (shortest path) distance between any pair of nodes in a graph
- Average path length for a connected graph (component) or a strongly connected (component of a) directed graph

$$\overline{h} = \frac{1}{2E_{\text{max}}} \sum_{i,j \neq i} h_{ij}$$
 where h_{ij} is the distance from node i to node j , And Emax is the maximum number of edges (=n*(n-1)/2)

 Many times we compute the average only over the connected pairs of nodes (that is, we ignore "infinite" length paths)

Key Network Properties

Degree distribution: P(k)

Clustering coefficients: C

Path lengths:

Diameter:

Finding Shortest Paths

Breadth First Search:

- Start with node u, mark it to be at distance $h_u(u)=0$, add u to the queue
- While the queue not empty:
 - Take node v off the queue, put its unmarked neighbors w into the queue and mark $h_u(w) = h_u(v) + 1$

Let's measure these properties in a real network!

Key Network Properties

Degree distribution: P(k)

Clustering coefficient: C

MSN Messenger

- MSN Messenger activity in June 2006:
 - 245 million users logged in
 - 180 million users engaged in conversations
 - More than 30 billion conversations
 - More than 255 billion exchanged messages

Messaging as a simple graph

MSN Network: Connectivity

MSN: Degree Distribution

MSN: Log-Log Degree Distribution

MSN: Clustering

 C_k : average C_i of nodes i of degree k:

$$C_k = \frac{1}{N_k} \sum_{i:k_i = k} C_i$$

Avg. clustering coefficient of the MSN graph: C = 0.1140

MSN: Recap

Degree distribution:

Clustering coefficient: 0.11

Is this behaviour expected or surprising?

Let's compare with simple models

Complete Graph

The maximum number of edges in an undirected graph on N nodes is

$$E_{\text{max}} = \binom{N}{2} = \frac{N(N-1)}{2}$$

An undirected graph with the number of edges $E = E_{max}$ is called a complete graph

Every node has degree?

Every node has clustering coefficient?

Complete Graph

The maximum number of edges in an undirected graph on N nodes is

$$E_{\text{max}} = \binom{N}{2} = \frac{N(N-1)}{2}$$

An undirected graph with the number of edges $E = E_{max}$ is called a complete graph

Every node has degree n-1

Every node has clustering coefficient 1

Is MSN Network like a "chain"?

Degree distribution: $P(k) = \delta(k-4)$

Clustering:
$$C = \frac{1}{N} \left(\frac{1}{2} (N - 4) + 2 + 2 \frac{2}{3} \right) \to \frac{1}{2} \text{ as } N \to \infty$$

Constant degree, high average clustering coefficient

Note about calculations:

We are interested in quantities as graphs get large $(N \rightarrow \infty)$

We will use big-O: f(x) = O(g(x)) as $x \to \infty$ if f(x) < g(x)*c for all $x > x_0$ and some constant c.

Is MSN Network like a "grid"?

- $P(k) = \delta(k-6)$
 - k = 6 for each inside node
- C = 6/15 for inside nodes
- Path length:

$$h_{\text{max}} = O(\sqrt{N})$$

- Average path-length is $h \approx N^{1/D_{\text{(D... lattice)}}}$
- Constant degree, constant clustering coefficient

MSN Network is neither a chain nor a grid

Need a model to compare:

Erdös-Renyi Random Graph Model

Simplest Model of Graphs

Erdös-Renyi Random Graphs [Erdös-Renyi, '60]

 $G_{n,p}$: undirected graph on n nodes and each edge (u,v) appears i.i.d. with probability p Simplest random model you can think of

What kinds of networks does such a model produce?

Random Graph Model

n and p do not uniquely determine the graph!

The graph is a result of a random process

We can have many different realizations given the same n and p

Random Graph Model: Edges

How likely is a graph with E edges?

P(E): the probability that a given G_{np} generates a graph with exactly E edges:

$$P(E) = {E_{\text{max}} \choose E} p^{E} (1-p)^{E_{\text{max}}-E}$$

where $E_{max}=n(n-1)/2$ is the maximum possible number of edges in an undirected graph of n nodes

P(E) is exactly the Binomial distribution >>>

Number of successes in a sequence of E_{max} independent yes/no experiments

Node Degrees in a Random Graph

What is expected degree of a node?

Let X_v be a rnd. var. measuring the degree of node v

We want to know:
$$E[X_v] = \sum_{j=0}^{n-1} j P(X_v = j)$$

An easier way:

Recall linearity of expectation

For any random variables $Y_1, Y_2, ..., Y_k$ If $Y = Y_1 + Y_2 + ... + Y_k$, then $E/Y_1 = E/Y_1 + Y_2 + ... + Y_k = \sum_i E/Y_i$

Decompose
$$X_v$$
 to $X_v = X_{v,1} + X_{v,2} + ... + X_{v,n-1}$

where $X_{v,u}$ is a $\{0,1\}$ -random variable which tells if edge (v,u) exists or not

$$E[X_v] = \sum_{u=1}^{n-1} E[X_{vu}] = (n-1) \cdot p$$

How to think about this?

- Prob. of node *u* linking to node *v* is *p*
- *u* can link (flips a coin) to all other (*n*-1) nodes
- Thus, the expected degree of node u is: p(n-1)

Properties of G_{np}

Degree distribution: P(k)

Clustering coefficient: C

What are values of these properties for G_{np} ?

Degree Distribution

Fact: Degree distribution of G_{np} is Binomial.

Let P(k) denote a fraction of nodes with degree k:

$$P(k) = \binom{n-1}{k} p^{k} (1-p)^{n-1-k}$$
Select k nodes out of n -1

Select k nodes out of n -1

Probability of missing the rest of the n -1- k edges

$$\bar{k} = p(n-1)$$

Clustering Coefficient of G_{np}

Remember:
$$C_i = \frac{2e_i}{k_i(k_i-1)}$$
 Where \mathbf{e}_i is the number of edges between i's neighbours

Edges in G_{np} appear i.i.d. with prob. p

So:
$$e_i = p \frac{k_i(k_i-1)}{2}$$

Each pair is connected with prob. p

Number of distinct pairs of neighbors of node i of degree k_i

Then:
$$C = \frac{p \cdot k_i(k_i - 1)}{k_i(k_i - 1)} = p$$

And:
$$C=p=\frac{\bar{k}}{n-1}$$
 Since $\bar{k}=p(n-1)$

Clustering coefficient is very small (if you fix average degree, decreases with graph size)

Network Properties of G_{np}

Degree distribution: $P(k) = \binom{n-1}{k} p^k (1-p)^{n-1-k}$

Clustering coefficient: C = p = k/n

MSN vs. G_{np}

Degree distribution:

Clustering coefficient: 0.11

$$k/n$$
 $\approx 8.10-8$

Real Networks vs. G_{np}

Are real networks like random graphs?

Clustering Coefficient: (3)

Degree Distribution: (3)

Problems with the random networks model:

Degree distribution differs from that of real networks

No local structure – clustering coefficient is too low

Most important: Are real networks random? NOPE!

Real Networks vs. G_{np}

If G_{np} is wrong, why did we spend time on it?

- —It will help us calculate many quantities that can then be compared to the real data
- —If the quantity you just calculated also shows up in G_{np} , it's probably not that interesting ("this also happens if you assume complete randomness")
- —It is the reference model for the rest of the class.

So, while G_{np} is not realistic, it is extremely useful!

(Because if the phenomenon you observed also happens in Gnp, it's probably not that interesting)

Strong and weak ties

Modeling relationships of varying strength

Networks & Communities

We often think of networks "looking"

like this:

What can lead to such a conceptual picture?

Networks: Flow of Information

- How information flows through the network?
 - What structurally distinct roles do nodes play?
 - What roles do different links (short vs. long) play?
- How people find out about new jobs?
 - Mark Granovetter, part of his PhD in 1960s
 - People find the information through personal contacts
- But: Contacts were often acquaintances rather than close friends
 - This is surprising: One would expect your friends to help you out more than casual acquaintances
- Why is it that acquaintances are most helpful?

Granovetter's Answer

Two perspectives on friendships:

Structural: Friendships span different parts of the network

The two highlighted edges are structurally different: one spans two different "communities" and the other is inside a community

Interpersonal: Friendship between two people vary in strength, you can be close or not so close to someone

Structural force: Triadic closure

Which edge is more likely: a-b or a-c?

Triadic closure

Informally: If two people in a social network have a friend in common, then there is an increased likelihood that they will become friends themselves at some point in the future.

Triadic Closure

- Triadic closure == High clustering coefficient Reasons for triadic closure:
- If B and C have a friend A in common, then:
 - B is more likely to meet C
 - (since they both spend time with A)
 - B and C trust each other
 - (since they have a friend in common)
 - A has incentive to bring B and C together
 - \blacksquare (as it is hard for A to maintain two disjoint relationships)

Granovetter's Explanation

- Granovetter makes a connection between social and structural role of an edge
- First point: Structure
 - Structurally embedded edges are also socially strong
 - Long-range edges spanning different parts of the network are socially weak
- Second point: Information
 - Long-range edges allow you to gather information from different parts of the network and get a job
 - Structurally embedded edges are heavily redundant in terms of information access

Network Vocabulary: Span and Bridges

Define: Bridge edge

If removed, it disconnects the graph

Define: Span

The Span of an edge is the distance of the edge endpoints if the edge is deleted.

Define: Local bridge

Edge of Span > 2

(any edge that doesn't close a triangle)

Idea: Local bridges with long span are like real bridges

Granovetter's Explanation

Model: Two types of edges:

Strong (friend), Weak (acquaintance)

Model: Strong Triadic Closure property:

Two strong ties imply a third edge

Fact: If strong triadic closure is satisfied then local bridges are weak ties!

Local Bridges and Weak ties

Claim: If node A satisfies Strong Triadic Closure and is involved in at least two strong ties, then any local bridge adjacent to A must be a weak tie.

Proof by contradiction:

Assume A satisfies Strong Triadic
 Closure and has 2 strong ties

- Let A B be local bridge and a strong tie
- Then B C must exist because of Strong
 Triadic Closure

■ But then A - B is not a bridge! (since **B-C** must be connected due to Strong Triadic Closure property)

Granovetter's Explanation

Weak ties have access to different parts of the network! Access to other sources and other kinds of information

Strong ties have redundant information

Conceptual Picture of Networks

Granovetter's theory leads to the following conceptual picture of networks

Tie strength in real data

- For many years Granovetter's theory was not tested
- But, today we have large who-talks-to-whom graphs:
- Email, Messenger, Cell phones, Facebook
- Onnela et al. 2007:
 - Cell-phone network of 20% of country's population
 - Edge strength: # phone calls

Neighborhood Overlap

Edge overlap:

$$O_{ij} = \frac{N(i) \cap N(j)}{N(i) \cup N(j)}$$

- N(i) ... a set
 of neighbors
 of node i
- Overlap = 0
 when an edge is a local bridge

Phones: Edge Overlap vs. Strength

Cell-phone network

- Observation:
- Highly used links have high overlap!
- Legend:
 - True: The data
 - Permuted strengths: Keep the network structure but randomly reassign edge strengths

Real Network, Real Tie Strengths

Real edge strengths in mobile call graph

Strong ties are more embedded (have higher overlap)

Real Net, Permuted Tie Strengths

Same network, same set of edge strengths but now strengths are randomly shuffled

Link Removal by Strength

Removing links by strength (#calls)

- Low to high
- High to low

0.75
0.50
0.25
A
Fraction of removed links

Low disconnects the network sooner

Link Removal by Overlap

Removing links based on overlap

- Low to high
- High to low

Low disconnects the network sooner

Course progress

Assignment I out next week

- —Due 2 weeks later
- —Get started early!