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Logistics




1) Building up our network vocabulary
2) Measuring networks; basic properties
3) Random graph model: G,

4) Strong and weak ties (time willing)



How do we represent graphs as mathematical objects?

What are our choices when we’re translating real-world
networks into a graph representation?



How to Store?
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Adjacency List

& ‘ &
o~ [
{1:12,4], {1: 12,4],
2: [1,4], 4: [2,3]}
3: [4],
4:11,2,3]}

Total length of lists?



Adjacency Matrix

Aij = | if there is a link from node i to node j

Aij = () otherwise
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Undirected vs. Directed Networks

Undirected graphs Directed graphs

Links: undirected Links: directed
(symmetrical, (asymmetrical relations)

reciprocal relations)

Undirected links: Directed links:
Phone calls

Following on Twitter

Collaborations
Friendship on Facebook



Weighted Graphs

Unweighted
(undirected) a
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Examples: Collaboration, Internet, Roads



More Types of Graphs:

Graphs with self-edges Multigraph

(undirected) (undirected)

:
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Examples: Proteins, Hyperlinks Examples: Communication, Collaboration



Bipartite Graph

Bipartite graph is a graph whose nodes

can be divided into two disjoint sets U and V
such that every link connects a node in U to one
in V; that is, U and V are independent sets

—Authors-to-papers (they authored)
—Actors-to-Movies (they appeared in)
—Users-to-Movies (they rated)

—Author collaboration networks
—Movie co-rating networks

Folded version of the
graph above



Networks are Sparse Graphs

Most real-world networks are sparse
E << Eax (Or k<< N-1)

WWW (Stanford-Berkeley): N=319,717 (k) =9.65
Social networks (LinkedIn): N=6,946,668 (k) =8.87
Communication (MSN IM): N=242,720,596 (k) =11.1
Coauthorships (DBLP): N=317,080 (k) =6.62
Internet (AS-Skitter): N=1,719,037 (k) =14.9]

Roads (California): N=1,957,027 (k) =2.82
Proteins (S. Cerevisiae): N=1,870 (k) =2.39

(Source: Leskovec et al., Internet Mathematics, 2009)

Consequence: Adjacency matrix is filled with zeros!
(Density of the matrix (E/N2):WWW=|.51x10->,MSN IM = 2.27x%10-8)



Network Representations

WWW >

Facebook friendships >
Citation networks >
Collaboration networks >
Mobile phone calls >

Protein Interactions >



Network Representations

WWW > directed multigraph with self-edges
Facebook friendships = undirected, unweighted
Citation networks > unweighted, directed, acyclic
Collaboration networks > undirected multigraph or weighted graph
Mobile phone calls > directed, (weighted?) multigraph

Protein Interactions » undirected, unweighted with self-interactions



How do we measure properties in the
graph representation of a network?

Focus on and



Undirected

Directed

Connectivity: Node Degrees

Q\Q\Q

F

Source: Node with kin=0
Sink: Node with kout=(

Node degree, k;: the number
of edges adjacent to node |

eg. ka=4

N
— 1 2k
Avg.degree: k = (k) = — E ko = ——
N — N

In directed networks we define an in-degree
and out-degree.

The (total) degree of a node is the sum of
in- and out-degrees.

k=2 k2 =1 k. =3

kin _ kout



Connectivity: How Connected Are Nodes?

How many neighbours do nodes tend to have in your graph?




Connectivity: Degree Distribution

Degree distribution P(k): Probability that a randomly
chosen node has degree k

N, = # nodes with degree k

Normalized histogram:
P(k) =N, /N = plot

P(k

0.6
0.5
— 0.4
0.3
0.2
0.1



Connectivity: Local Clustering

Are the nodes “clustered” in the graph? Do nodes
with common neighbours tend to know each other?



Connectivity: Clustering Coefficient

What's the probability that a random pair of your
friends are connected!




Connectivity: Clustering Coefficient

What's the probability that a random pair of your
friends are connected!

<<

Ci:O Ci: 1 /3 Cizl

. . I O
Average clustering coefficient: ( = ﬁz C.



Connectivity: Clustering Coefficient

kB:?, QB:?, CB:?: 7

kD:?, eD=?, CD:?: 7




Connectivity: Clustering Coefficient

kBZZ, QB:], CBZZ/Z = ]
kp=4, ep=2, Cp=(2%2)/(4*3) = 4/12 = 1/3



Distance: Paths in a Graph

A path is a sequence of nodes in which each
node Is linked to the next one

P ={i,l,0,,....0 y P =(1,0){L,L,)(L,05)e LI 5l )}

Path can intersect itself
and pass through the
same edge multiple times

E.g.: ACBDCDEG

In a directed graph a path
can only follow the direction
of the “arrow”




Distance: Number of Paths

Length h=1:If there is a link between u and v, A, =1 else
A,=0

Length h=2:If there is a path of length two between u
and v then A, A= else A, A,=0

N

H? =N 4,4, =[4],
Length h: If there s a %}th of length h between u and v
then A, ...A =l else A ....A.,=0
S0, the no. of paths of length h between u and v is

Y =[4"],,

(holds for both directed and undirected graphs)



Distance: Number of Paths

O AN O
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Distance: definition

Distance (shortest path, geodesic)
between a pair of nodes is defined as
the number of edges along the shortest

path connecting the nodes

*If the two nodes are disconnected, the distance is
usually defined as infinite

In directed graphs paths need to follow
the direction of the arrows

Consequence: Distance is
not symmetric: i, # hc 4




Distance: Graph-level measures

Diameter: the maximum (shortest path)
distance between any pair of nodes in a
graph

Average path length for a connected graph
(component) or a strongly connected
(component of a) directed graph

— 1

h — E hl] where h;; is the distance from node i to node j,
ZEmaX l',j;éi And Emax is the maximum number of edges (=n*(n-1)/2)

Many times we compute the average only over the

connected pairs of nodes (that is, we ignore “infinite”

length paths)



Key Network Properties

P(k)
Clustering coefficients: C
Path lengths: L

Diameter: D



Finding Shortest Paths

Breadth First Search:

Start with node u, mark it to be at distance 4,(1)=0, add u
to the queue

While the queue not empty:

Take node v off the queue, put its unmarked
neighbors w into the queue and mark 4,(w)=h,(v)+1




Let’s measure these properties
In a real network!




Key Network Properties

P(k)

Clustering coefficient: C
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MSN Messenger

MSN Messenger activity in
June 2006:

245 million users logged In

180 million users engaged In
conversations

More than 30 billion
conversations

More than 255 billion
exchanged messages



Messaging as a simple graph

Messaging as an undirected
graph
 Edge (u,v)ifusers uand v

exchanged at least 1 msg
 N=180 million people
 E=1.3 billion edges




MSN Network: Connectivity
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Count, P(k)*n

MSN: Degree Distribution
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MSN: Log-Log Degree Distribution
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MSN: Clustering
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MSN: Recap

Degree distribution:

N U N DR

Clustering coefficient: 0./]




Is this behaviour expected
or surprising?



Let’s compare with simple models



Complete Graph

The in
an undirected graph on N nodes is

£ - (N) _N(N-1)
, 2

An undirected graph with the number of edges E
=E, .. is called a

Every node has degree
Every node has clustering coefficient



Complete Graph

The in
an undirected graph on N nodes is

£ - (N) _N(N-1)
, 2

An undirected graph with the number of edges E
=E, .. is called a

Every node has degree
Every node has clustering coefficient



Is MSN Network like a “chain”?

AR

Degree distribution: P(k) = §(k — 4)

1 /1 2 1
Clustering: C = N (§<N_4)+2+2§> > ; as N — oo

Constant degree,
high average clustering coefficient



Is MSN Network like a “grid”?

P(k) = 8(k-6) |\|
k =6 for each inside node

C = 6/15 for inside nodes \ \|\|

Path length: \|\|\|
h,.,. = OWN)

In general, for lattices:

Average path-length is Z ~ N/ DO... attice

dimensionality)

Constant degree, constant clustering coefficient



MSN Network is neither
a chain nor a grid




Need a model to compare:

Erdos-Renyi
Random Graph Model




Simplest Model of Graphs

[Erdos-Renyi, ‘60]

G, »: undirected graph on n nodes and each
edge (u,v) appears i.i.d. with probability p
Simplest random model you can think of

What kinds of networks does

such a model produce?




Random Graph Model

n and p do not uniquely determine the graph!

The graph is a result of a random process

We can have many different realizations given the
same n and p

/)
S0



Random Graph Model: Edges

P(E): the probability that a given G,, generates a
graph with exactly E edges:

Emax E E - F
P<E>=( i, )p (1= p)Fo

where E,.,=n(n-1)/2 is the maximum possible number of edges in an
undirected graph of n nodes

P(E) is exactly the ,
Binomial distribution >>> -




Node Degrees in a Random Graph

What is expected degree of a node?
Let X, be a rnd. var. measuring the degree of node v

E[va] — z—:]P(XU :]>

An easier way:

Recall linearity of expectation
For any random variables Y, Y,,..., Y,
If Y=Y, +Y,+...+Y,, then E[Y] = E[Y,+Y,+..+Y,] =Y, E[Y}]

Decompose X, to X,= X, ;+X, ... X, ,.;

where X, , 1s a {0, }-random variable
which tells 1f edge (v,u) exists or not

E|X,| = E_:E[Xvu] =(n—1)-p



Properties of G,

Degree distribution: P(k)

Clustering coefficient: C

What are values of these

properties for G’




Degree Distribution

Fact: Degree distribution of G, is Binomial.
Let P(k) denote a fraction of nodes with degree k:

P(k)=( )

)p"(l -p)"

P(k)

.....
............................




Clustering Coefficient of G,,,

262'
ki(k; — 1)

Remember: C;, =

Edges in G,, appear i.i.d. with prob. p

ki(k; — 1)
2

Then: ~_ P kilki—1) _
¢ ki(ki — 1) P

k
And: C:p: %:p(n—l)

n —1

Clustering coefficient is very small (if you fix
average degree, decreases with graph size)



Network Properties of G,

Degree distribution: P<k>=( .

)p’“(l -p)"

Clustering coefficient: C=p=%k/n



MSN vs. G,

MSN

Degree distribution:

Clustering coefficient: 0.1/ k/n



Real Networks vs. G,

Clustering Coefficient: ®
Degree Distribution: ®

Problems with the random networks model:

Degree distribution differs from that of real networks

No local structure — clustering coefficient is too low

NOPE!



Real Networks vs. G,

If G,,, is wrong, why did we spend time on it?

—It will help us calculate many quantities that can then be
compared to the real data

—If the quantity you just calculated also shows up in Gpp, it’s
probably not that interesting (“this also happens if you assume
complete randomness”)

—It is the reference model for the rest of the class.

not realistic

(Because if the phenomenon you observed also
happens in Gnp, it’s probably not that interesting)



Modeling relationships of varying strength



Networks & Communities

We often think of networks “looking”
like this:

What can lead to such a conceptual picture?



Networks: Flow of Information

How information flows through the network?

What structurally distinct roles do nodes play?
What roles do different links (short vs. long) play?
How people find out about new jobs?

Mark Granovetter, part of his PhD in 1960s

People find the information through personal contacts
But: Contacts were often acquaintances
rather than close friends

This is surprising: One would expect your friends to help
you out more than casual acquaintances

Why is it that acquaintances are most helpful?



Granovetter’s Answer

Two perspectives on

Structural: Friendships span different parts of the network

The two highlighted edges are
structurally different: one spans two
different “communities” and the
other is inside a community

Interpersonal: Friendship between two people vary in
strength, you can be close or not so close to someone



Structural force: Triadic closure

Which edge is more likely:
a—b or a—c!



Triadic closure

If two people in a social network have a friend in
common, then there is an increased likelihood that they will
become friends themselves at some point in the future.



Triadic Closure

Triadic closure == High clustering coefficient
Reasons for triadic closure:

If B and C have a friend 4 in common, then:
B is more likely to meet C
(since they both spend time with A4)

B and C trust each other
(since they have a friend in common)

A has incentive to bring B and C together
(as it is hard for 4 to maintain two disjoint relationships)




Granovetter’s Explanation

Granovetter makes a connection between
social and structural role of an edge
First point: Structure

Structurally embedded edges are also socially strong

Long-range edges spanning different parts of the
network are socially weak
Second point: Information
Long-range edges allow you to gather information from
different parts of the network and get a job

Weak

Structurally embedded edges are - Strong
heavily redundant in terms of ‘W
information access N2



Network Vocabulary: Span and Bridges

. . Bridge
Define: Bridge edge \
If removed, it disconnects the graph
Define: Span
The Span of an edge is the distance of the
edge endpoints if the edge is deleted.
Local bridge

Define: Local bridge m
Edge of Span > 2

(any edge that doesn’t close a triangle)



Granovetter’s Explanation

Edge:
Wor$S

Model: Two types of edges:
Strong (friend), Weak (acquaintance)

Model: Strong Triadic Closure property:
Two strong ties imply a third edge

Fact: If strong triadic closure is
satisfied then local bridges

are weak ties! S »
(P &




Local Bridges and Weak ties

Claim: If node A satisfies Strong Triadic Closure
and is involved in at least two strong ties, then
any local bridge adjacent to A must be a weak tie.

Proof by contradiction:
Assume A satisfies Strong Triadic S S
Closure and has 2 strong ties

Let A — B be local bridge
and a strong tie

Then B — C must exist
because of Strong
Triadic Closure

But then A — B is not a bridge!

(since B-C must be connected due to Strong Triadic Closure property)

352

C




Granovetter’s Explanation

Weak ties have access to different parts of the
network! Access to other sources and other
kinds of information

Strong ties have redundant information



Conceptual Picture of Networks

Granovetter’s theory leads to the following
conceptual picture of networks

Strong ties

/Weak ties

N 4




Tie strength In real data

For many years Granovetter’s theory was
not tested

But, today we have large
who-talks-to-whom graphs:

Email, Messenger, Cell phones, Facebook

Onnela et al. 2007:

Cell-phone network of 20% of country’s population
Edge strength: # phone calls



Edge overlap:

0;;
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Neighborhood Overlap

N(i) ...aset
of neighbors
of node i

Overlap = 0

when an edge is

a local bridge
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Phones: Edge Overlap vs. Strength

Cell-phone network

Observation:

O
N
&

Highly used links
have high overlap!

Legend:
True: The data

Permuted
strengths

-
Ol
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—

Neighborhood overlap

Permuted strengths: Keep
the network structure
but randomly reassign

edge strengths

O
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06 038

Edge strength (#calls)

02 04



Real Network, Real Tie Strengths

Real edge strengths in mobile call graph
Strong ties are more embedded (have higher overlap)




Real Net, Permuted Tie Strengths

Same network, same set of edge strengths
but now strengths are randomly shuffled




Link Removal by Strength

Removing links by strength (#calls)
Low to high
High to low

Size of largest component

Fraction of removed links

Low
disconnects
the network

sooner

/

Conceptual picture
of network structure



Link Removal by Overlap

Removing links based on overlap
Low to high
High to low

Size of largest component

Fraction of removed links

Low
disconnects
the network

sooner

/

Conceptual picture
of network structure



Course progress

—PDue 2 weeks later

—Get started early!



