Tutorial 3: Decidability and Undecidability

CSC 463

February 7, 2020

1. Recall that Rice’s theorem states that if \(P \) is a non-trivial set of Turing machine encodings \(\langle M \rangle \) satisfying the condition that if \(M_1, M_2 \) are Turing machines with \(L(M_1) = L(M_2) \), then \(\langle M_1 \rangle \in P \) if and only if \(\langle M_2 \rangle \in P \). ¹, we can conclude that \(P \) is an undecidable set.

Prove Rice’s Theorem using the following steps.

(a) Explain why we can assume that \(P \) does not contain any Turing machine \(M \) with \(L(M) = \emptyset \) and there is a Turing machine \(M' \in P \) with \(L(M') \neq \emptyset \). (Hint: Recall that if \(A \) is decidable, so is the complement \(\bar{A} \).)

Solution: If \(P \) does contain a Turing machine with \(L(M) = \emptyset \), we know that by the conditions given that the complement \(\bar{P} \) is non-empty and does not contain any Turing machine with \(L(M) = \emptyset \). So replace \(P \) by \(\bar{P} \) in this case, and undecidability of \(\bar{P} \) implies undecidability of \(P \).

(b) Construct a reduction \(A_{TM} \leq_m P \) so that reduction maps instances \(\langle M, w \rangle \) to Turing machines \(\langle N \rangle \in P \), using \(M' \) from part (a), if and only if \(M \) accepts \(w \).

Solution: Let \(\langle M, w \rangle \) be an encoding of a Turing machine and a string \(w \in \Sigma^* \). By part (a), we also know that there is a Turing machine \(\langle M' \rangle \in P \) with \(L(M') \neq \emptyset \) and \(P \) does not contain any Turing machine with an empty language. Given a pair \(\langle M, w \rangle \), we can construct a Turing machine \(N \) with the following description:

i. On input \(x \), firstly simulate \(M \) on input \(w \).
ii. If \(M \) accepts, simulate \(M' \) on input \(x \) and accept \(x \) if \(M' \) accepts.
iii. If \(M \) rejects, reject \(x \).

Note that if \(M \) accepts \(w \), we have \(L(N) = L(M') \) and the assumption that \(\langle M' \rangle \in P \) implies that \(\langle N \rangle \in P \). Otherwise, if \(M \) rejects or loops on \(w \), we have \(L(N) = \emptyset \) and part (a) implies that \(\langle N \rangle \notin P \). Hence we have constructed a reduction from \(A_{TM} \) to \(P \).

(c) Conclude Rice’s Theorem from the reduction in part (b).

Solution: Since \(A_{TM} \) is undecidable, so is \(P \).

(d) Let \(L \) be the set of Turing machine encodings \(\langle M \rangle \) with less than 200 states. Show that \(L \) is decidable. Why does this not contradict Rice’s theorem?

Solution: We can design a Turing machine to read the encoding \(\langle M \rangle \) and count the number of states it has from the encoding, so \(L \) is decidable. This result does not contradict Rice’s theorem since even though \(L \) is non-trivial language consisting of Turing machine encodings, the second condition of Rice’s theorem does not apply and so we cannot use it to conclude anything about the decidability of \(L \). There are Turing machines \(M_1, M_2 \) deciding the same language, with \(M_1 \) having more than 200 states and \(M_2 \) having less than 200 states.

¹In other words, whether or not \(\langle M \rangle \in P \) depends on its language \(L(M) \) only
2. Let $T = \{ \langle M \rangle : M$ is a Turing machine with $|L(M)| = 3 \}$. Prove that T is not semidecidable.

Solution: We construct a reduction from A_{TM} to T to show that T is not semidecidable. Given a pair $\langle M, w \rangle$, let M' be the Turing machine with the following description:

(a) On input x, if $x \in \{\epsilon, 0, 1\}$ accept.
(b) Otherwise, run M on input w. Accept x if M accepts and reject x if M rejects.

If M accepts w, then $L(M') = \Sigma^*$. Otherwise, $L(M') = \{\epsilon, 0, 1\}$. So $\langle M, w \rangle \in A_{TM}$ if and only if $\langle M' \rangle \notin T$. We have constructed a reduction $\overline{A_{TM}} \leq_m T$, so this shows that T is not semidecidable since $\overline{A_{TM}}$ is not semidecidable.

3. Let G_1 and G_2 be context-free grammars. Show that the problem of testing whether or not $L(G_1) \subset L(G_2)$ is undecidable. You may assume that testing whether or not $L(G) = \Sigma^*$ for a context-free grammar G is undecidable.

Solution: We give a reduction from $\text{ALL}_{CFG} = \{ \langle G \rangle : G$ is a CFG with $L(G) = \Sigma^* \}$ to $\text{S}_{CFG} = \{ \langle G_1, G_2 \rangle : G_1, G_2$ are CFGs and $L(G_1) \subset L(G_2) \}$. We map every encoding of a context-free grammar G to $\langle A, G \rangle$ where A is the context-free grammar with a single variable S and rules $S \rightarrow a_i S$ for all $a_i \in \Sigma$, and $S \rightarrow \epsilon$. Note that $L(A) = \Sigma^*$, so if $L(A) \subset L(G)$, then $L(G) = \Sigma^*$. Hence, S_{CFG} is undecidable as we have shown a reduction $\text{ALL}_{CFG} \leq_m \text{S}_{CFG}$.

4. Assume that $\Gamma = \{0, 1, \sqcup\}$ is the tape alphabet for all Turing machines in this problem. The **busy beaver function** $BB : \mathbb{N} \rightarrow \mathbb{N}$ is defined as follows. Let M_k be the set of k-state Turing machines that halt when started on a blank tape. Define $BB(k)$ to be the maximum number of ones remaining on the tape when a machine $M \in M_k$ started on a blank tape halts.

Show that BB is not a computable function (i.e. there is no Turing machine M which on input k in unary, outputs $BB(k)$ in unary and halts). You may assume that BB is a strictly increasing function.

Solution: Assume that there is a Turing machine M that computes BB. Then there is a Turing machine M' that starting from a blank tape:

(a) Writes k in unary.
(b) Doubles the number on its tape to obtain $2k$ in unary.
(c) Simulates M to compute $BB(2k)$

By our assumption about M, M' is a well-defined Turing machine that has $\leq k + c$ states for some constant c (from Steps (b) - (c)) and a constant k that we can choose (from Step (a)). Furthermore, the output produced has $BB(2k)$ ones. Since M' halts starting from a blank tape and has $k + c$ states, by definition of BB, we have $BB(2k) \leq BB(k + c)$. But this is a contradiction choosing $k = c + 1$, since BB is a strictly increasing function. So BB cannot be a computable function.