Tutorial 3: Decidability and Undecidability

CSC 463

February 7, 2020

1. Recall that Rice's theorem states that if P is a non-trivial set of Turing machine encodings $\langle M \rangle$ satisfying the condition that if M_1, M_2 are Turing machines with $L(M_1) = L(M_2)$, then $\langle M_1 \rangle \in P$ if and only if $\langle M_2 \rangle \in P^{-1}$, we can conclude that P is an undecidable set.

Prove Rice's Theorem using the following steps.

- (a) Explain why we can assume that P does not contain any Turing machine M with $L(M) = \emptyset$ and there is a Turing machine $M' \in P$ with $L(M') \neq \emptyset$. (Hint: Recall that if A is decidable, so is the complement \overline{A} .)
- (b) Construct a reduction $A_{TM} \leq_m P$ so that reduction maps instances $\langle M, w \rangle$ to Turing machines $\langle N \rangle \in P$, using M' from part (a), if and only if M accepts w.
- (c) Conclude Rice's Theorem from the reduction in part (b).
- (d) Let L be the set of Turing machine encodings $\langle M \rangle$ with less than 200 states. Show that L is decidable. Why does this **not** contradict Rice's theorem?
- 2. Let $T = \{ \langle M \rangle : M \text{ is a Turing machine with } |L(M)| = 3 \}$. Prove that T is not semidecidable.
- 3. Let G_1 and G_2 be context-free grammars. Show that the problem of testing whether or not $L(G_1) \subset L(G_2)$ is undecidable. You may assume that testing whether or not $L(G) = \Sigma^*$ for a context-free grammar G is undecidable.
- 4. Assume that $\Gamma = \{0, 1, \sqcup\}$ is the tape alphabet for all Turing machines in this problem. The **busy beaver function** $BB : \mathbb{N} \to \mathbb{N}$ is defined as follows. Let M_k be the set of k-state Turing machines that halt when started on a blank tape. Define BB(k) to be the maximum number of ones remaining on the tape when a machine $M \in M_k$ started on a blank tape halts.²

Show that BB is not a computable function (i.e. there is no Turing machine M which on input k in unary, outputs BB(k) in unary and halts). You may assume that BB is a strictly increasing function.³

¹In other words, whether or not $\langle M \rangle \in P$ depends on its language L(M) only

²Since M_k is a finite set, BB(k) exists.

³Blog post about *BB* for those interested: https://www.scottaaronson.com/blog/?p=2725. If we know *BB* for large enough k, we can solve major open problems in mathematics!