1. Show that a language L is decidable iff there is some enumerator E that prints the strings of L in lexicographic order.

Solution: Assume L is infinite, otherwise if L is finite, L is decidable and the equivalence is straightforward. Suppose L is decidable and let M be a Turing machine that decides M. Then one can construct an enumerator for E by iterating through strings s_i in lexicographic order, running M on each string, and printing s_i iff M accepts s_i. Every string in the language L will be listed at some point since M terminates and by construction E prints the strings in lexicographic order.

Suppose that there is enumerator E that prints L in lexicographic order. Then one can test whether or not any string x is in the language L or not in finite time by running E, accepting x if x is printed by E, or rejecting x once a string greater than x in lexicographic order is printed.

2. Let A and B be decidable languages. Show that the union $A \cup B$, the intersection $A \cap B$, the concatenation $AB = \{uv \mid u \in A, v \in B\}$, and the complement \overline{A} are also decidable.

Which of the above properties remain true when decidable is replaced by semi-decidable?

Solution: Let M_1 be a decider for A and M_2 be a decider for B. Let M be a Turing machine that when given an input x firstly runs M_1 on x and then M_2 on x. If M accepts iff both M_1, M_2 accepts, then $L(M) = A \cap B$. Otherwise if M accepts iff either M_1, M_2 accept, then $L(M) = A \cup B$. A Turing machine for AB can be designed by firstly guessing a decomposition of the input string x into x_1x_2 and then checking if $x_1 \in A$ and $x_2 \in B$. Finally, by switching the accepting and rejecting states of M_1, we obtain a Turing machine M'_1 whose language is the complement \overline{A}.

When A and B are semi-decidable, the union, concatenation, and intersection are also semi-decidable. However, the construction above may not work for the union since it is possible for $x \in L_2$ but M_1 could loop on x. A more complicated construction that runs M_1 and M_2 in parallel is a Turing machine that recognizes the union $A \cup B$. Furthermore, if A is semi-decidable, the complement may not be semi-decidable. An example of a semi-decidable language whose complement is not semi-decidable is the language A_{TM}.

3. Show that A is semi-decidable if and only if there is a mapping reduction $A \leq_m A_{TM}$. Recall that A_{TM} is the language

$$A_{TM} = \{ \langle M, w \rangle : M \text{ is a Turing machine that accepts } w \}.$$

This exercise, combined with the fact that A_{TM} is semidecidable, shows that A_{TM} is complete for the class of semi-decidable problems.
Solution: Suppose A is semi-decidable. Then there is a Turing machine M_A whose language $L(M_A) = A$. Then one can construct a reduction between A and A_{TM} by mapping strings $w \in \Sigma^*$ to the pair $\langle M_A, w \rangle$. By definition, $w \in A$ if and only if M_A accepts w.

Conversely, suppose a reduction $A \leq_m A_{TM}$ exists. Let f be the function that computes the reduction. Then A is semi-decidable since the Turing machine that when given $x \in \Sigma^*$, runs the universal Turing machine U on $f(x)$ and then accepts if U accepts is a Turing machine whose language is A. So A is semi-decidable.

4. Show that if A is semi-decidable and there is a mapping reduction $A \leq_m \overline{A}$, then A is decidable.

Solution: Since there is a reduction $A \leq_m \overline{A}$ then there is also a reduction $\overline{A} \leq_m A$ by taking complements of both sides. Hence \overline{A} is semi-decidable since A is semi-decidable. If A and \overline{A} are both semi-decidable, then A is decidable.