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Abstract
The fair Max-Min diversification problem for arbitrary metric spaces and Euclidean spaces has
been previously studied in Moumoulidou et al. [ICDT 2021] and Addanki et al. [ICDT 2022]. The
problem arises from the need to downsize a dataset while maintaining a diverse and representative
(fair) subset. In this paper, we extend the problem to the setting of extended metric spaces.
Given n points in a extended metric space (U , d) — where the triangle inequality is generalized to
c · d(x, y) ≤ d(x, z) + d(y, z) for c ∈ (0, 2] — and each point belongs to a group i ∈ [m]. Our task is
to select ki points from each group i, with the goal of maximizing the minimum distance between
the selected points. By ensuring ki points selection for each group i, fairness is preserved, while
maximizing the minimum distance between any two points guarantees diversity in the sample set.

In this paper, we present an algorithm for the refined metric space(i.e. extended metric space
with distortion factor c ∈ (1, 2]), which achieves a cm+c−2

(c−1)cm -approximation, analogous to the m + 1
approximation algorithm for regular metric spaces(i.e. c = 1) introduced by Addanki et al. [ICDT
2022]. Furthermore, we examine the case of both refined(c ∈ (1, 2]) and relaxed(c ∈ (0, 1)) metric
spaces with m = 2. By leveraging the 4-approximation algorithm for regular metric spaces proposed
by Moumoulidou et al. [ICDT 2021], we demonstrate that a 4

c2 -approximation can be achieved in
the context of extended metrics where c ∈ (0, 2].

A potential application of our work lies in its ability to handle high-dimensional datasets.
For regular metric spaces, Moumoulidou et al. [ICDT 2021] demonstrated that achieving an
approximation ratio better than 2 is infeasible unless P = NP . Notably, when c > 1.5, our algorithm
achieves an approximation ratio better than 2 in such refined metric space.
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1 Introduction

In the contemporary era, data is used in diverse fields, including but not limited to machine
learning, commerce, data mining, and healthcare. The datasets grow exponentially as the
hardware evolves, and how we can utilize such datasets effectively becomes a challenge. This
requires distilling the datasets into small, manageable, and high-quality datasets for practical
applications. There are various ways to define high-quality subsets. In this paper, we adopt
the setting from the work of [8, 2], define the high-quality sub-dataset in two aspects; in
addition to maximizing the dissimilarity of the data that we choose, we may also need to
ensure that each group in the original datasets is well represented. As [8] mentions, the
concepts of fair and diverse are practical in the real-life scenario for the dataset selection.
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For example, [6] mentions that the absence of fair representation in public media can lead to
polarized opinions, while the loss of diversity in the media gives people homogeneous content.

As a simple example, similar to the Nobel laureates example demonstrated in [8], consider
that the university plans to select a limited number of professors to give a series of public
talks. Among hundreds of professors, only a few can be chosen. It is important to choose the
set of professors carefully. To make the chosen set representative, the professors in the set
should come from a broad range of faculties or disciplines, thereby ensuring diversity across
academic domains; i.e., there should not be any two professors from the same discipline.
Concurrently, it’s important to avoid gender imbalance; the aim is to have almost the same
number of representatives from different genders, which guarantees the fairness property of
the chosen set.

The Fair Max-Min Diversification problem is defined as follows: Consider a metric space
(U , d), where U is a universe of n elements divided into m non-overlapping groups, and d is a
metric distance function. Given fairness constraints k1, k2, . . . , km for each group, we aim to
select a total of k =

∑
i∈[m]

ki points to form a subset S from the n points. Specifically, for

each group i, we include ki points in our solution set S. The objective is to maximize the
minimum distance between the points in S. The problem for arbitrary metric spaces and
particularly Euclidean space has been extensively studied by [8, 2, 7].

In this paper, we focus on the Fair Max-Min Diversification problem within refined and
relaxed metric spaces, where the triangle inequality is modified to c ·d(x, y) ≤ d(x, z)+d(y, z)
for c ∈ (1, 2] and c ∈ (0, 1) separately. To the best of our knowledge, this is the first work that
discusses the Fair Max-Min Diversification problem in the context of refined metric or relaxed
metric spaces. One of the applications for the refined framework is handling high-dimensional
data, where the curse of dimensionality causes distances between points to become relatively
uniform[3]. By assuming a refined triangle inequality for such high-dimensional data, our
proposed Algorithm 1 provides an approximation ratio bounded by a constant, compared to
existing m + 1-approximation algorithms when applied to these datasets.

We propose an improved version(Algorithm 1) of the FairGreedyFlow algorithm from [2],
achieving a better cm+c−2

(c−1)cm -approximation1 in refined metric spaces compared to the previous
m + 1 approximation result in standard metric spaces. As long as c > 1, the approximation
ratio cm+c−2

(c−1)cm is bounded by a constant, and the bounded constant decreases(i.e. achieves
a better approximation ratio) as c increases. This leads to significantly better results in
the refined metric, reducing the bound from m + 1 to a constant. In addition to the
previous algorithm and results for arbitrary m, we also explore the special case of m = 2.
Specifically, we extend the FairSwap algorithm(Algorithm 3), originally introduced in [8]
for m = 2, to extended metric spaces(i.e. refined and relaxed metrics, while c ∈ (0, 2]) and
prove that the algorithm achieves a 4

c2 -approximation in extended metric space, offering a
better approximation ratio than the original 4 in refined metrics(c ∈ (1, 2]), but a worse
approximation ratio in relaxed metrics(c ∈ (0, 1)).

1 To be precise, here we are stating our approximation bound and that of [2] under the assumption that the
value of the optimal diversity l∗ under the fairness constraint is known. A standard divide-and-conquer
approach can be used to achieve an approximation of

(
cm+c−2
(c−1)cm

)
(1 + ϵ) when l∗ is not known. The

result in [2] also needs the binary search idea to achieve their (m + 1)(1 + ϵ) approximation when l∗ is
not known.
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2 Background and Preliminaries

2.1 Problem Definition
Approximation Ratio and Diversity

A standard measure of the quality of the approximation algorithm is the worst-case approx-
imation ratio. In this framework, let us denote the value of an approximation algorithm
as ALG and the value of an optimal solution as OPT . Typically, the approximation ratio
is defined as α = ALG/OPT . However, in the context of this paper, we focus on the
max-min diversification problem, a maximization problem where OPT is always greater
than or equal to ALG. To align better with the intuitive understanding obtained from other
problems, we use a modified definition for the approximation ratio: α = OPT/ALG. This
adjustment ensures that the ratio is always greater than or equal to 1, providing a more
standardized metric for comparison and analysis. A ratio greater than 1 indicates how close
the approximation (ALG) is to the optimal (OPT ) and a ratio of 1 means the solution is
exactly optimal.

▶ Definition 1 (Approximation Ratio). For any possible input I, let OPT (I) represent the
optimal solution’s value and ALG(I) denote the value achieved by the approximation algorithm.
The algorithm achieves an approximation ratio α if for all inputs I:

α ·ALG(I) ≥ OPT (I).

▶ Definition 2 (Diversity). Throughout this paper, we refer to the diversity of a set S as

div(S) = min
u,v∈S,u ̸=v

d(u, v).

That is, diversity is defined as the minimum distance between two points in a given set. The
objective is to maximize diversity while ensuring fairness.

Extended Metric Space

In regular metric spaces, the standard triangle inequality is used, which can be either relaxed
or strengthened. We introduce a distortion factor c into the triangle inequality to adjust the
metrics and name it extended metric space. This parameterized triangle inequality setting
for a similar diversity problem, the so-called Max Sum Diversification problem, is discussed
in [10]. According to [10], the distortion factor c ranges from (0, 2] instead of all positive reals.
We prove why the metric space does not make sense for c > 2 in Appendix B. Specifically,
when c = 1, the metric space is the regular metric space with no distortion. When c = 2,
the metric space becomes an identical metric space, meaning the distance between any two
points is the same. In this paper, we refer to the extended metric space with a distortion
factor c ∈ (0, 1) as the relaxed metric space, and with c ∈ (1, 2] as the refined metric space.

▶ Definition 3 (Extended Metric Space). (U , d) is an extended metric space with a factor
c ∈ (0, 2] if ∀u, v, w ∈ U , the following are satisfied:
1. (identity) d(u, v) = 0 ⇐⇒ u = v

2. (symmetry) d(u, v) = d(v, u)
3. (positive) d(u, v) ≥ 0
4. (triangle) c · d(u, w) ≤ d(u, v) + d(v, w)

With the necessary context established, we can now formally define the problem:

CVIT 2016
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▶ Definition 4 (Fair Max-Min Diversification Problem with Extended Metric Space). Let (U , d)
be an extended metric space with c ∈ (0, 2] where U =

⋃m
i=1 Ui is a universe of n elements

partitioned into m non-overlapping groups and d : U ×U → R+
0 is a metric distance function.

Further, let k1, k2, · · · , km be non-negatice integers with ki ≤ |Ui| , ∀i ∈ [m], and k =
m∑

i=1
ki.

The problem is defined as follows:

max
S⊆U

min
u,v∈S,u ̸=v

d(u, v),

or equivalently

max
S⊆U

div(S).

subject to |S ∩ Ui| = ki, ∀i ∈ [m] (fairness constraints)

2.2 Related Work
The diversification problem has been widely studied with various objective functions, with
distance-based objectives being one of the major focuses. For instance, the unconstrained
Max-Sum Diversification problem is explored in [4], where the objective is to maximize the
summation of pairwise distances. The unconstrained Max-Min Diversification problem is
examined in [9], where the authors provide a 2-approximation algorithm. They also prove
that for the unconstrained Max-Min Diversification problem, if the triangle inequality does
not hold, no polynomial-time relative approximation algorithm exists unless P = NP . The
Max-Average Diversification problem is also discussed in the same work [9], with the authors
presenting a 4-approximation algorithm.

Constrained versions of the diversification problem, such as those involving matroid
constraints, are introduced in [4, 5, 1]. The Fair Max-Min Diversification problem was first
proposed by [8] and later improved upon by [2]. These works primarily focus on metric and
Euclidean spaces. Specifically, [2] provides an m+1-approximation algorithm for the problem
in metric spaces and introduces relaxed fairness algorithms, such as a 2-approximation
algorithm for expected fairness and a 6-approximation algorithm for (1 − ϵ) fairness. [8]
introduces a 4-approximation algorithm for the only 2 groups setting. In addition, the
overlapping cases are studied in [8], with a 4-approximation ratio result for the 2 groups
setting and a

(
3
(

m
⌊m/2⌋

)
− 1
)

-approximation ratio for arbitrary m groups.
In the context of Euclidean spaces, [2] demonstrate that the problem can be solved exactly

when dimension D = 1, and they propose a (1 + ϵ)-approximation algorithm for constant
dimensions and groups. Further improvements for constant-dimensional spaces are made
in [7], where the authors present a constant-factor approximation algorithm that runs in
near-linear time, contrasting with previous algorithms that required super-linear running
time.

3 cm+c−2
(c−1)cm -Approximation Algorithm for Arbitrary m

▶ Theorem 5. FairGreedyFlow for Refined Metric Space (Algorithm 1) using an approxim-
ation γ for the optimal value is a

(
cm+c−2
(c−1)cm

)
(1 + ϵ)-approximation algorithm with perfect

fairness for the Fair Max-Min Diversification problem with extended metric factor c ∈ (1, 2]
that runs in a time of O(nkm3ϵ−1 log n).
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Algorithm 1 FairGreedyFlow for Refined Metric Space

Input: U1, . . . ,Um: Universe of available elements
k1, . . . , km ∈ Z+

γ ∈ R+: A guess of the optimum fair diversity
Output: ki points in Ui for i ∈ [m]

1: R ← U ▷ Remaining elements
2: C ← ∅ ▷ Subsets collection (also called clusters collection)
3: P ← ∅ ▷ Points collection of the subsets in C
4: i← 0 ▷ Index of clusters
5: while |R| > 0 and |P| ≤ km do
6: i← i + 1
7: Di ← ∅ ▷ Current cluster
8: Di,index ← ∅ ▷ Index of groups that already have a point in current cluster Di

9: while an element p ∈ R ∩ Uj for some j ∈ {1, 2, . . . , m} \Di,index exists do
10: if |Di| = 0 or d(p, x) < (c−1)cm

cm+c−2 γ for some x ∈ Di then
11: Di ← Di ∪ {p} ▷ Add point p to cluster D

12: Di,index ← Di,index ∪ {j}
13: end if
14: end while
15: R ← R \

⋃
p∈Di

B(p, (c−1)cm

cm+c−2 γ)
16: P ← P ∪Di

17: C ← C ∪ {Di}
18: for all j ∈ [m] do
19: if |{D | D ∈ C and D ∩ Uj ̸= ∅}| ≥ k} then
20: R ← R \ Uj

21: end if
22: end for
23: end while

24: Let t← |C| ▷ t is the number of the clusters
25: Construct directed graph G = (V, E) where ▷ Construct flow graph
26: V = {a, u1, . . . , um, v1, . . . , vt, b}
27: E = {(a, ui) with capacity ki : i ∈ [m]}
28: ∪{(vj , b) with capacity 1 : j ∈ [t]}
29: ∪{(ui, vj) with capacity 1 : |Ui ∩Dj | ≥ 1}
30: S ← ∅ ▷ Initialization of the Solution Set S
31: Compute maximum a-b flow in G

32: if flow size < k =
∑

ki then
33: return ∅ ▷ Abort
34: else ▷ Max flow is k

35: for all (ui, vj) with flow equal to 1 do
36: add the point in Dj with group i to S
37: end for
38: end if
39: return S

CVIT 2016
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In this section, we present the result that a slightly modified version of the FairGreedyFlow
algorithm, as proposed in [2], can achieve a α(c, m) = cm+c−2

(c−1)cm result in the context of refined
metrics. It is notable that in the context of refined metric spaces, the approximation ratio
converges to a constant α(c,∞) as m (i.e., the number of fairness groups) increases. Moreover,
as the distortion factor c of the metric space approaches 2, the approximation ratio “constant”
improves. For instance, if c = 1.001, the approximation ratio is bounded by 1000 as m tends
to infinity. However, if c = 1.5, we can achieve an approximation bounded by 2 for even
arbitrary large m.

The main idea of the algorithm is to form group points that are relatively close to each
other into clusters, and select at most one point from each cluster to ensure the distances
between the selected points are sufficiently large. To determine the “relative close” threshold
for the given metrics, we give a guess γ of the optimal diversity l∗ under the fairness
constraints using binary search. We can find an ϵ ≥ 0 and define l∗

(1+ϵ) < γ ≤ l∗. If the
distance between two points is less than (c−1)cm

cm+c−2 γ, we consider them to be close and put
them in the same group. Compared to the previous FairGreedyFlow algorithm in [2], the
decision bound is changed from 1

m+1 γ to (c−1)cm

cm+c−2 γ in the refined metric context. Note that
by L’Hôpital’s rule, lim

c→1
(c−1)cm

cm+c−2 γ = 1
m+1 γ, which aligns with the approximation ratio for the

standard metric.
Finding an appropriate γ is not difficult, as there are at most

(
n
2
)

possible values for γ.
A suitable γ can be efficiently determined using binary search. If γ < l∗, the algorithm will
fail and return the empty set. Therefore, we can adjust the value of γ until an optimal point
is reached.

When forming a cluster D, we impose the condition that |D ∩ Ui| ≤ 1 for each i ∈ [m].
This means that each cluster can contain at most one point from each fairness group i. If
there are additional points from Ui near cluster D, but we have already selected a point
p ∈ (D∩Ui), the remaining points from Ui nearby will be excluded from further consideration
when forming clusters.

Once a sufficient number of clusters is obtained using this approach, we utilize the
resulting clusters to construct a network flow graph. Consider the fairness groups denoted
as u1, u2, . . . , um and clusters represented as v1, v2, . . . vt. We designate a as the source
and b as the sink. Initially, we establish connections from the source a to each group ui,
assigning a weight ki to each edge, where i ∈ [m]. Subsequently, we create edges between
each corresponding pair of ui and vj with a weight of 1. Similarly, we connect each cluster
vj to the sink b with edges also weighted at 1. We give a concrete example in Figure 1.

A natural question regarding this algorithm is how we ensure that there are enough points
from each fairness group within the clusters to form a valid solution set, by choosing at most
one point from each cluster. In the proof(Appendix A), we demonstrate that for every point
in the optimal solution set, either the point itself or its substitute will be contained within a
cluster. Additionally, each cluster can contain at most one such point. Consequently, we can
find a valid solution set by applying the network flow algorithm to the algorithm-constructed
graph.

In the proof, we first utilize γ to establish the approximation bound and then incorporate
the (1 + ϵ) factor into our analysis. The proof involves some technical details, which are
elaborated in Appendix A, where Claim 8, Claim 11, and Lemma 12 are proven thoroughly.
We will provide a high-level overview of the proof as follows.

To establish the approximation bound, denoted as cm+c−2
(c−1)cm , we first prove that for all
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1
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Figure 1 Network Flow Graph Example

p1, p2 in a cluster D formed by the algorithm, the following inequality holds:

d(p1, p2) <
c2(cm−2 + c− 2)

cm + c− 2 γ,

i.e., for any set of points in the refined metric, the upper bound of the distance between any
two points is c2(cm−2+c−2)

cm+c−2 γ. The detailed proof of Claim 8 appears in Appendix A. Next, we
prove Claim 11, which describes the trapezoid relationship for any four points p1, p2, p3, p4
in the refined metric space:

d(p1, p2) ≤ 1
c

d(p1, p3) + 1
c2 d(p2, p4) + 1

c2 d(p3, p4).

Using these two claims, we conclude Lemma 12, which states that∣∣∣∣∣∣
⋃

p∈D

B(p,
(c− 1)cm

cm + c− 2γ) ∩ f(S∗) ≤ 1

∣∣∣∣∣∣
for every cluster D ∈ C. The function f(S∗) is a representative set for the points in the
optimal solution set S∗. This lemma essentially means that for all points in a cluster D

formed by our algorithm, at most one point from f(S∗) can exist near the cluster. In other
words, integrating the previous two claims ensures that no more than one point from f(S∗)
is close to the same cluster. This allows us to construct our solution set S to be f(S∗)
by running the network flow algorithm on the flow graph, thereby achieving the desired
approximation ratio.

With this lemma, we prove that FairGreedyFlow for Refined Metric Space is a
(

cm+c−2
(c−1)cm

)
(1 + ϵ)-

approximation algorithm in the refined metric space setting. The (1 + ϵ) factor comes from
the assumption l∗

1+ϵ < γ ≤ l∗.

4 4
c2 -Approximation Algorithm for m = 2

▶ Theorem 6. FairSwap is a 4
c2 -approximation algorithm for the Fair Max-Min Diversification

problem with extended metric factor c when m = 2 that runs in time O(kn)

CVIT 2016
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FairSwap, proposed in [8], is a 4-approximation algorithm for metric space that focuses
on groups of size two, with the time complexity O(kn). In this section, we show that the
FairSwap algorithm achieves a 4

c2 -approximation in the extended metric space with c ∈ (0, 2]
The algorithm is fundamentally greedy. It begins by applying the GMM algorithm [9] to

find an initial solution, treating all groups as identical. Let the intermediate set be S. The
solution is then adjusted for fairness by modifying group assignments as needed. Specifically,
one of the two groups contains fewer points than required, i.e., there exists an i ∈ {1, 2}
such that |S ∩ Ui| ≤ ki. We refer to this as the under-satisfied group, denoted by SU , where
U ∈ {1, 2}. The next step is to run the GMM algorithm again, but this time exclusively
on group U , selecting a set of points to add to the final solution to ensure that the fairness
constraint for U is satisfied. Finally, the over-satisfied group, O, is adjusted by removing the
points from SO that are closest to the points just added. The pseudo-code Algorithm 2 [9]
and Algorithm 3 [8] is provided to help understand the algorithm.

Algorithm 2 GMM Algorithm

Input: U : Universe of available elements
k ∈ Z+

I: An initial set of elements
Output: S ⊆ U of size k

1: S ← ∅
2: if I = ∅ then
3: S ← a randomly chosen point in U
4: end if
5: while |S| < k do
6: x← arg max

u∈U
min

s∈S∪I
d(u, s)

7: S ← S ∪ {x}
8: end while
9: return S

Algorithm 3 Fair-Swap

Input: U1,U2: Set of points of group 1 and 2
k1, k2 ∈ Z+

Output: ki points in Ui for i ∈ {1, 2}
1: Color-Blind Phase:
2: S ← GMM(U , k, ∅)
3: Si ← S ∩ Ui for i ∈ {1, 2}
4: Balancing Phase:
5: U ← arg mini(|Si| − ki) ▷ Under-satisfied set
6: O ← 3− U ▷ Over-satisfied set
7: Compute:
8: E ← GMM(UU ,SU , kU − |SU |)

9: R←
{

arg min
e∈SO

d(x, e) : e ∈ E

}
10: return (SU ∪ E) ∪ (SO \R)
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Running Time Analysis.

The analysis of the running time follows the proof in [8], resulting in a time complexity of
O(kn).

Approximation-Factor Analysis.

The notations used in this section slightly differ from those of the previous section. In the
previous section, we used S∗ to represent the optimal solution under fairness constraints,
whereas in this section, we use F∗ for the same purpose. Here, S∗ denotes the optimal
solution without any fairness constraints (i.e., the groupless optimal solution). Similarly,
while l∗ was previously used to denote the optimal diversity with fairness, in this section, l∗

refers to the optimal diversity in the groupless setting (i.e., l∗ = div(S∗)), and l∗
fair represents

the optimal diversity under fairness constraints. For clarity, the definitions of the variables
used in this proof are provided below.
S∗: The set of k points in U that maximize the diversity when there are no fairness
constraints, which means that we assume all the points in the same group and don’t care
fairness anymore.
l∗: The diversity of the set S∗, which is: l∗ = div(S∗)
F∗ = F∗

1 ∪ F∗
2 : Where F∗ is the optimal solution for the Fair Max-Min diversification,

and
F∗

1 = F∗ ∩ U1, F∗
2 = F∗ ∩ U2

l∗
fair: The diversity of the set F∗, which is: l∗

fair = div(F∗)
S,S1,S2,SU ,SO, E, R, U, O: Adopt the same meaning that defined in the Algorithm 3.

In detail, S is the intermediate output of the algorithm with no fairness constraints(output
for the Color-Blind Phase).
S1 is the points that both in S and group 1, while S2 is the points that both in S and
group 2.
SU is one of the S1 or S2 which under satisfy the constraint for the group (which
means that we need to add more points from SU to satisfy the fairness constraint),
while SO is the other set which over-satisfied.
E is the intermediate output of the GMM algorithm. This algorithm randomly and
greedily chooses the points that could be added to SU and returns the adding set. R

is the set of the points that would be removed from SO, where the points are greedily
selected by traversing all the possibilities.
U is the index number for the unsatisfied group, and O is the index for the satisfied
group.

We claim that the output set (SU ∪ E) ∪ (SO \R) is a c2

4 -approximation solution for the
Max-Min Fair Diversification.

Proof. First, note that
l∗ ≥ l∗

fair.

Since the l∗ is the diversity of the solution in the groupless setting, then by applying more
constraints, the div of the solution F∗ would be worse, in other words, l∗

fair is smaller or
equal than l∗.

Then note that
∀i ∈ S,

∣∣∣∣{p ∈ S∗ | d(p, i) <
cl∗

2 }
∣∣∣∣ ≤ 1.

CVIT 2016
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This means that for each point i in S, there’s at most one point p in S∗ that satisfies:
d(p, i) < cl∗

2 , in other word, there’s only one point in S∗, such that distance < cl∗

2 from each
point of S. We can prove this by contradiction. Assume that there exist at least two points
satisfy (2), then we have ∃i ∈ S, ∃p, q ∈ S∗, s.t. d(p, i) < cl∗

2 and d(q, i) < cl∗

2 .
Then from triangle inequality and the previous two inequalities, which are

c · d(p, q) ≤ d(p, i) + d(q, i),

d(p, i) <
cl∗

2 , d(q, i) <
cl∗

2 .

We have
c · d(p, q) ≤ d(p, i) + d(q, i) <

cl∗

2 + cl∗

2 = cl∗ =⇒ d(p, q) < l∗.

Since l∗ = div(S∗), which is the Min distance between points in S∗, but now we have
points p, q with d(p, q) < l∗, which contradicts to the Minimum distance l∗. Then we’ve
proved that for each point in S, there’s at most one point in S∗ such that d(p, i) < cl∗

2 .
Therefore, while GMM has picked less than k elements, in the worst case, each point in

S has 1 corresponding point in S∗ such that the distance between them < cl∗

2 (and different
points in S may correspond to the same point in S∗ as well), then we can create a bijective
mapping between the points in S and the points in S∗. By the Pigeon Hole Principle, since
|S| < |S∗| = k, there must exist a good point (in S∗, but we can also choose the point that
not in S∗ if it is considered as a better option to current setting) that can be greedily selected
and added to S, with distance ≥ cl∗

2 from all the points already selected. Also with the
fact that the algorithm greedily picks the next point, which is the point farthest away, we
guarantee that the good point that we mentioned would be chosen if there’s no other better
option. Then we naturally have

div(S) ≥ cl∗

2 ≥
cl∗

fair
2 .

Since SU is a subset of S, which has less point. We observe that

div(SU ) ≥ div(S) ≥ cl∗
fair
2 .

Then we look at set E, which is the set that includes the points that would be added
to SU later. Similar to previous reasoning, when we are running GMM with parameter
(UU ,SU , kU − |SU |), there is at most one point in F∗

U that is distance <
cl∗

fair
2 from each point

in SU ∪ E. Formally,

∀i ∈ SU ∪ E,

∣∣∣∣{p ∈ F∗
U | d(p, i) <

cl∗

2 }
∣∣∣∣ ≤ 1.

Similarly, when GMM has picked less than k − |SU | elements, there exists at least one
element that can be selected with a distance greater or equal to cl∗

fair
2 from the points already

selected. Since the algorithm picks the next point farthest away from the points already
chosen, the next point is at least cl∗

fair
2 from the existing points. We naturally have

div(SU ∪ E) ≥ cl∗
fair
2 .

Our output is (SU ∪E)∪ (SO \R), from the div(S) ≥ cl∗

2 ≥
cl∗

fair
2 and div(SU ∪E) ≥ cl∗

fair
2 ,

we already proved that div(S) and div(SU ∪ E) are greater or equal to cl∗
fair
2 , the only thing
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that left for our proof is div(E ∪ SO). For this case, by the algorithm’s logic, we remove
the closest point in SO from E. Note that by application of the triangle inequality and the
fact that div(SO) ≥ cl∗

fair
2 , for each x ∈ E there can be at most one point y ∈ SO such that

d(x, y) <
c2l∗

fair
4 , and it is obvious that the size of E and R are the same. Hence, after the

removal of the closest points the distance between all pairs is as required and we have the
Theorem 6. ◀

5 Conclusion

In this paper, we introduced approaches to solving the Fair Max-Min Diversification problem
in refined and relaxed metric spaces, extending the existing work on traditional metric spaces.
Our primary contribution is a cm+c−2

(c−1)cm -approximation algorithm for refined metrics, which
improves on the standard m + 1 approximation by leveraging the strengthened triangle
inequality. Additionally, for the special case of m = 2, we presented a 4

c2 -approximation
algorithm in extended metric spaces. These results demonstrate that refining the metric
space leads to better approximation ratios.

Future Work

In this paper, we employ the Max-Min function to measure diversity, but exploring alternative
diversity definitions(e.g. Max-Sum) in the extended metric space could also be an interesting
direction. Another promising direction involves enhancing results for relaxed metrics (i.e.,
when c < 1). This could be achieved by adopting existing algorithms for regular metrics or
inventing novel ones. For both refined and relaxed metrics, improving bounds where specific
algorithm results are not yet tight is also a possible avenue for future work. Furthermore,
while [8, 2] demonstrated a negative result for regular Fair Max-Min Diversification, showing
that no approximation algorithm can achieve better than a factor of 2 unless P=NP, a possible
future direction would be to investigate whether refined metrics lead to weaker negative
results due to more restricted choices, or if relaxed metrics result in stronger negative results
as the freedom is given. Motivated by our results that relaxing metric space leads to worse
ratios and c could be arbitrary small, we conjecture that, without the metric assumption,
there’s no constant approximation ratio for the Fair Max-Min Diversification problem unless
P = NP . Finally, while our current work focuses on disjoint groups, exploring extended
metrics when groups overlap as in [8] opens another area for future research.
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approximation, with the assumption that our guess of γ ≤ l∗

1+ϵ . Then we will show that the
running time of the algorithm is O(nkm3ϵ−1 log n).

Approximation-Factor Analysis.

The input, output and variables for the network flow are as defined in Algorithm 1.
Definition of f(yi): Let S∗ = {y1, . . . , yk} be the optimal solution set for the given input.

For i ∈ [k], if yi is “removed” by the algorithm after forming the cluster D, define f(yi) ∈ D

to be a point in the cluster D that is in the same group as yi. If yi is not “removed”, but
in the cluster D, then f(yi) = yi. In addition, We will prove in Lemma 12 that it is not
possible to have f(yi), f(yj) (i ̸= j) in the same cluster D, then for all i ∈ [m], we can pick
corresponding f(yi) from different clusters to form a solution set with perfect fairness.

We will utilize Lemma 12 to establish Theorem 5. To prove Lemma 12, it is necessary to
demonstrate Claim 8 and Claim 11 first.

The assumption on γ is l∗

1+ϵ < γ ≤ l∗. In the following, we will disregard the (1 + ϵ)
factor for l∗ and focus on γ to demonstrate the approximation factor, and the (1 + ϵ) term
will be reintroduced at the end of the analysis.

▶ Remark 7. For the cluster D ∈ {D1, . . . , Dt} formed by the algorithm, it has the following
properties:

D contains at most m points, m is the number of group given in input.
For any points p in the cluster D, let p′ denotes the closest point from p in D other than
p itself, d(p, p′) < (c−1)cm

cm+c−2 γ.
For simplicity, let us use x = (c−1)cm

cm+c−2 γ in the rest of the section.

▷ Claim 8. For such cluster D with the properties in Remark 7, the distance between any
two points in D is less than(

m−2∑
i=1

1
ci

+ 1
cm−2

)
x = c2(cm−2 + c− 2)

cm + c− 2 γ

in the extended metric space with extended factor c ∈ (1, 2].

Proof. First, we need to figure out that given a set of points, what the shape of the points
that the theoretical upper bound for the max distance between the farthest two points
reaches is. From the Definition 3, for any three point x, y, z in the metric space with factor c,

d(x, z) ≤ 1
c

(d(x, y) + d(y, z)) .

To determine the theoretical upper bound for d(x, z), we observe that the maximum
value is achieved when the inequality becomes equality. When c = 1, it means that the given
extended metric space is a regular metric space, and the way points are arranged to achieve
this maximum distance is a chain. We can consider the points in the extended metric space
to be in a “chain” shape as well. The critical feature that the points reach the theoretical
maximum distance bound is the equality d(x, z) = 1

c (d(x, y) + d(y, z)) is satisfied.
Second, because we are working on the extended metric space, the upper bound can be

different for the same points setting(shape), we need to figure out what is the tightest upper
bound for the max distance between the points in the set. For example, consider a set of 5
points in the extended metric space,
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−1 1 2 3

1

2

3

4

x

y y1 = 1
c (x + 1

c x + 2
c2 x)

y2 = 1
c

( 2
c x + 2

c x
)

Figure 2 Plot of the two upper bound functions for d(A, E) with c ∈ (1, 2)

A B C D E

x x x x

≤ 2
c x

≤ 1
c x + 2

c2 x

where d(A, B), d(B, C), d(C, D), d(D, E) are x. By applying the triangle inequality to points
A, B and C, d(A, C) ≤ 1

c (d(A, B)+d(B, C)) = 2
c x. Similarly, d(A, D) ≤ 1

c (d(A, C) + d(C, D)) =
1
c (x + 2

c x) = 1
c x + 2

c2 x. However, if we would like to find the maximum length for AE, there
are two upper bounds.

d(A, E) ≤ 1
c

(d(A, D) + d(D, E)) and d(A, E) ≤ 1
c

(d(A, C) + d(C, E)).

For simplicity, we ignore the case where d(A, E) ≤ 1
c (d(A, B) + d(B, E)), as it is merely a

symmetric case of d(A, E) ≤ 1
c (d(A, D) + d(D, E)).

We would like to find the tightest upper bound for d(A, E), we want

d(A, E) ≤ min
{

1
c

(d(A, D) + d(D, E)), 1
c

(d(A, C) + d(C, E))
}

,

which are
d(A, E) ≤ min

{
1
c

(
x + 1

c
x + 2

c2 x

)
,

1
c

(
2
c

x + 2
c

x

)}
.

In Figure 2, we plot y1 = 1
c

(
x + 1

c x + 2
c2 x
)

and y2 = 1
c

( 2
c x + 2

c x
)

for some c ∈ (1, 2).
From the figure, it is evident that y1 < y2, and thus the inequality can be simplified as
d(A, E) ≤ 1

c

(
x + 1

c x + 2
c2 x
)
. Note that in the special case when c = 2, y1 = y2; however,

this does not affect the validity of the result above.

▶ Definition 9. Define d̃(q) to be the tightest bound of the maximum distance for the given
set of q + 1 points.

The d̃(q) function is defined recursively. For q ≥ 2,
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d̃(q) =
{

x if q = 1, x = (c−1)cm

cm+c−2 γ

min
{
∀r ∈

[ ⌊
q
2
⌋ ]
| 1

c (d̃(r) + d̃(q − r))
}

if q ≥ 2

Note that we traverse all the r from 1 to
⌊

q
2
⌋

rather than 1 to q−1, because d̃(r)+d̃(q−r) =
d̃(q − r) + d̃(r).

For example, if we apply d̃ notation onto the set {A, B, C, D, E} as the previous example,

Function Expression

d̃(1) x

d̃(2) 1
c
(d̃(1) + d̃(1)) = 2

c
x

d̃(3) 1
c
(d̃(1) + d̃(2)) = 1

c
x + 2

c2 x

d̃(4) min
{

1
c
(d̃(1) + d̃(3)), 1

c
(d̃(2) + d̃(2))

}
= 1

c

(
x + 1

c
x + 2

c2 x
)

▶ Definition 10. Define d̃′(q) for cluster D with the properties in Remark 7 recursively:

d̃′(q) =
{

x if q = 1, x = (c−1)cm

cm+c−2 γ
1
c (d̃′(1) + d̃′(q − 1)) if q ≥ 2

We have introduced all definitions that are needed for the proof. In the following proof,
we will find the closed form for d̃′(q) by induction. Then prove that d̃(q) = d̃′(q) to get
the closed form for d̃(q). For the set D that satisfies the requirements in the Claim 8, the
distance between the farthest two points in D must be smaller to d̃(m− 1), because D has m

points. Since we already know the closed form of d̃(q), we can plug q = m− 1 into the closed
form, then we will get d̃(m− 1) =

(∑m−2
i=1

1
ci + 1

cm−2

)
x = c2(cm−2+c−2)

cm+c−2 γ. Consequently, our
Claim 8 follows directly.

We will find the closed form for d̃′(q) by induction.

Statement:

d̃′(q) =

x if q = 1, x = (c−1)cm

cm+c−2 γ(∑q−1
i=1

1
ci + 1

cq−1

)
x if q ≥ 2

Base Case:

d̃′(1) = x.

d̃′(2) =
(2−1∑

i=1

1
ci

+ 1
c2−1

)
x = 2

c
x.

The statement holds for q = 1 and q = 2.
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Inductive Step:

Inductive Hypothesis: Assume the statement holds for some arbitrary positive integer q ≥ 2,
i.e.,

d̃′(q) =
(

q−1∑
i=1

1
ci

+ 1
cq−1

)
x.

Next, prove that the statement holds for q + 1:

d̃′(q + 1) =
(

q∑
i=1

1
ci

+ 1
cq

)
x.

Using the inductive hypothesis, we have:

d̃′(q + 1) = 1
c

(
d̃′(1) + d̃′(q)

)
= 1

c

(
x +

(
q−1∑
i=1

1
ci

+ 1
cq−1

)
x

)

= 1
c

x +
(

q∑
i=2

1
ci

+ 1
cq

)
x

=
(

q∑
i=1

1
ci

+ 1
cq

)
x.

Therefore,

d̃′(q + 1) =
(

q∑
i=1

1
ci

+ 1
cq

)
x.

By the principle of mathematical induction, the statement holds for all q ≥ 1.

Then we will prove d̃(q) = d̃′(q).

Statement:

d̃(q) = min
{
∀r ∈

[ ⌊q

2

⌋ ]
| 1

c
(d̃(r) + d̃(q − r))

}
= d̃′(q).

Base Case:

d̃(1) = d̃′(1).

d̃(2) = d̃′(2) = 2
c

x.

The statement holds for q = 1 and q = 2.
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Inductive Step:

Inductive Hypothesis 1: Assume the statement holds for all positive integer k such that
2 ≤ k ≤ q, i.e.,

d̃(k) = min
{
∀r ∈

[ ⌊
k

2

⌋ ]
| 1

c
(d̃(r) + d̃(k − r))

}
= d̃′(k).

Next, prove that the statement holds for q + 1:

d̃(q + 1) = min
{
∀r ∈

[ ⌊
q + 1

2

⌋ ]
| 1

c
(d̃(r) + d̃(q + 1− r))

}
= d̃′(q + 1).

To demonstrate that d̃(q+1) = d̃′(q+1), it is necessary to establish the following sequence
of inequalities:

d̃′(q + 1) = 1
c

(d̃(1) + d̃(q)) ≤ 1
c

(d̃(2) + d̃(q − 1))

≤ · · · ≤ 1
c

(d̃(r) + d̃(q + 1− r)) ≤ 1
c

(d̃(r + 1) + d̃(q − r))

≤ · · · ≤ 1
c

(
d̃

(⌊
q + 1

2

⌋)
+ d̃

(
q −

⌊
q + 1

2

⌋))
.

To prove this chain of inequalities, another induction must be employed.

The statement for this inner induction is that

1
c

(d̃(r) + d̃(q + 1− r)) ≤ 1
c

(d̃(r + 1) + d̃(q − r))

for r ∈
[⌊

q+1
2
⌋
− 1
]
.

The base case for this inner induction is when r = 1. i.e.

1
c

(d̃(1) + d̃(q)) ≤ 1
c

(d̃(2) + d̃(q − 1)).

From the Inductive Hypothesis 1, we know that it is true for all k ≤ q that d̃(k) = d̃′(k).
Therefore, d̃(q) = d̃′(q) and d̃(q− 1) = d̃′(q− 1). We can plug in the closed form of d̃′(q) and
d̃′(q − 1) to prove the base case.

(
q−1∑
i=1

1
ci

+ 1
cq−1

)
x.

CVIT 2016



23:18 Fair Max-Min Diversification in Refined and Relaxed Metric Spaces

Rearrange the base case inequality, we want to prove d̃(2) + d̃(q − 1)− d̃(1)− d̃(q) ≥ 0

d̃(2) + d̃(q − 1)− d̃(1)− d̃(q) = d̃′(2) + d̃′(q − 1)− d̃′(1)− d̃′(q)

= 2
c

x +
(

q−2∑
i=1

1
ci

+ 1
cq−2

)
x− x−

(
q−1∑
i=1

1
ci

+ 1
cq−1

)
x

=
(

2
c
− 1 +

q−2∑
i=1

1
ci

+ 1
cq−2 −

q−1∑
i=1

1
ci
− 1

cq−1

)
x

=
(

2
c
− 1 + 1

cq−2 −
2

cq−1

)
x

= 2cq−2 − cq−1 + c− 2
cq−1 x

= cq−2(2− c)− (2− c)
cq−1 x

= (cq−2 − 1)(2− c)
cq−1 x ≥ 0 , for c ∈ (1, 2].

Therefore, the base case for the inner induction is true.
Assume d̃(r) + d̃(q + 1− r) ≤ d̃(r + 1) + d̃(q − r) is true for some r ∈

[⌊
q+1

2
⌋
− 2
]
, then

we will show d̃(r + 1) + d̃(q − r) ≤ d̃(r + 2) + d̃(q − r − 1)
Rearrange the inequality, we want to show:

d̃(r + 2) + d̃(q − r − 1)− d̃(r + 1)− d̃(q − r) ≥ 0

Prove the above inequality:

Left Side = d̃(r + 2) + d̃(q − r − 1)− d̃(r + 1)− d̃(q − r)

=
(

r+1∑
i=1

1
ci

+ 1
cr+1

)
x +

(
q−r−2∑

i=1

1
ci

+ 1
cq−r−2

)
x−

(
r∑

i=1

1
ci

+ 1
cr

)
x−

(
q−r−1∑

i=1

1
ci

+ 1
cq−r−1

)
x

=
(

2
cr+1 −

1
cr
− 2

cq−r−1 + 1
cq−r−2

)
x

=
(

2− c

cr+1 −
2− c

cq−r−1

)
x

= (2− c)
(

1
cr+1 −

1
cq−r−1

)
x

= (2− c)(cq−2r−2 − 1)
cq−r−1 x. (Because r + 1 < r + 2 ≤ q − r − 1)

Since c ∈ (1, 2], (2−c)(cq−2r−2−1)
cq−r−1 x ≥ 0. Then we have proved that d̃(q) = d̃′(q). ◀

From the definition of D, we know that the distance between the farthest two points in
D is smaller than d̃(m− 1) as D has at most m points.

d̃(m− 1) =
(

m−2∑
i=1

1
ci

+ 1
cm−2

)
x (x = (c−1)cm

cm+c−2 γ)

▷ Claim 11. Given 4 points(A, B, C, D) in the extended metric space with factor c ∈ (1, 2].
Without loss of the generality,

d(A, B) ≤ 1
c

d(A, C) + 1
c2 d(B, D) + 1

c2 d(C, D).
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Proof.

c · d(A, B) ≤ d(A, C) + d(B, C) =⇒ d(A, B) ≤ 1
c

(d(A, C) + d(B, C))
(Divide c in the both side)

=⇒ d(A, B) ≤ 1
c

(d(A, C) + 1
c

(d(B, D) + d(C, D))).
(Replace d(B, C) by 1

c (d(B, D) + d(C, D)))

C

A

D

B

E

Note: The figure above illustrates one particular configuration of the four points discussed.
Please note that while this example helps in visualizing the proof, the arguments presented
are applicable to any generic arrangement of these points. Thus, the generality of the theorem
is not restricted to the scenario depicted here. ◀

▶ Lemma 12.
∣∣∣⋃p∈D B(p, (c−1)cm

cm+c−2 γ) ∩ f(S∗) ≤ 1
∣∣∣ for every cluster D ∈ C.

Proof. Let’s prove it by contradiction. Without loss of generality, we can assume that there
exists f(y1) and f(y2), where y1, y2 ∈ S∗ and y1 ̸= y2, such that

f(y1), f(y2) ∈
⋃

p∈D

B

(
p,

(c− 1)cm

cm + c− 2γ

)
.

From the construction, we know that there exists at least one corresponding point for
f(y1) and f(y2) respectively in D, call them p1 and p2, such that d(f(y1), p1) < (c−1)cm

cm+c−2 γ

and d(f(y2), p2) < (c−1)cm

cm+c−2 γ.

Since two points from the same group are not allowed to be in the same cluster, and we
have m groups in total, from the algorithm design, we know that there are at most m points
in the cluster D. As we already get the upper bound for the maximum distance in D in the
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Claim 8, combined with the Claim 11, we can infer

d(y1, y2) ≤ 1
c

d(y1, p1) + 1
c2 d(y2, p2) + 1

c2 d(p1, p2)

(By definition, d(y1, p1), d(y2, p2) < x. By Claim 8, d(p1, p2) <
(∑m−2

i=1
1
ci + 1

cm−2

)
x)

<
1
c

x + 1
c2 x + 1

c2

(
m−2∑
i=1

1
ci

+ 1
cm−2

)
x

≤ (
m∑

i=1

1
ci

+ 1
cm

)x

≤ (
1
c (1− 1

cm )
1− 1

c

+ 1
cm

)x

≤ (
1
c (1− 1

cm )
1− 1

c

+ 1
cm

) · (c− 1)cm

cm + c− 2γ

≤ γ.

p1

y1

p2

y2

Then d(y1, y2) < γ. By definition, y1, y2 ∈ S∗, then d(y1, y2) ≥ γ, which leads to
the contradiction. We’ve proved that

∣∣∣⋃p∈D B(p, (c−1)cm

cm+c−2 γ) ∩ f(S∗) ≤ 1
∣∣∣ for every cluster

D ∈ C. ◀

Then we can use Lemma 12 to establish the Theorem 5.
It is quite obvious that the cm+c−2

(c−1)cm -approximation solution exists if and only if we can
find a valid flow with size k in the graph that we construct by Algorithm 1 (Figure 1).
Because the distance between clusters D1, D2, · · · , Dt are at least (c−1)cm

cm+c−2 γ, the solution S
given by the algorithm is a cm+c−2

(c−1)cm -approximation solution set. Then, the next step is to
show that there must exist a solution set S s.t.

|S ∩Di| ≤ 1 for every Di ∈ D1, · · · , Dt and |S ∩ Uj | = kj for j ∈ [m].

In other words, we need to show that it is possible to form a S that satisfies the fairness
constraints by selecting at most one point from each cluster Di.

Note that we have all points in f(S∗) in D1, D2, · · · , Dt formed by Algorithm 1. We
can justify this by considering two cases. First case, if yi in R (Remaining points set) and
we select it into the cluster Dj , then it is good. Otherwise, if yi is not in the R, it must
be removed by some f(yi) that would be in the same cluster as yi, which means that f(yi)
exists in a formed cluster. It is not possible that the point yi is removed by some point yj

or f(yj) or any points in the cluster of f(yj), because of Lemma 12. Therefore, any points
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in f(S∗) each belongs to a distinct cluster, which means that we can form a solution set
S = f(S∗) by selecting at most one point from each cluster.

By our assumption that l∗ ≤ γ ≤ l∗

1+ϵ , we know that ∀x, y ∈ S, d(x, y) ≥ (c−1)cm

cm+c−2 γ=
(c−1)cm

(cm+c−2)
l∗

(1+ϵ) .
Then we’ve proved FairGreedyFlow for Refined Metric Space(Algorithm 1) is a cm+c−2

(c−1)cm (1+
ϵ)-approximation algorithm with perfect fairness for the Fair Max-Min Diversification problem
with extended metric factor c ∈ (1, 2].

Running Time Analysis.

The running time for this extended metric space version algorithm doesn’t change the time
complexity from the original version of the algorithm proposed by [2] in metric space, then the
running time for FairGreedyFlow for Refined Metric Space algorithm is O(nkm3ϵ−1 log n).

B The Range of Distortion Factor c

We cannot have c > 2 for the factor of extended metric space. In addition, if c = 2, it enforces
that all non-zero distances in such metric to become identical. Notice that the problem of
interest would be trivial if the distances are identical. We will give proof for c’s range first
and then show that the distances are identical when c = 2.

The range of c is (0, 2].

Proof. Let c ∈ R+

From the definition, we have

x + y ≥ c · z, y + z ≥ c · x, x + z ≥ c · y
=⇒ x + y ≥ c · (c · x− y)
=⇒ x + y ≥ c2x− c · y
=⇒ (1 + c)y ≥ (c2 − 1)x.

By symmetry, (1 + c)x ≥ (c2 − 1)y.

Rearrange the above inequalities: (
1 + c

c2 − 1x

)
≥ y,(

1 + c

c2 − 1y

)
≥ x.

We need to have 1+c
c2−1 ≥ 1 to make both possible, regardless of the value of x, y. Then

1 + c ≥ c2 − 1 =⇒ c ≤ 2.

Then we reach our conclusion where 2 is the maximum value for the c. ◀

Identical distance metric sapce when c = 2.

Proof. Assume that c = 2, the distances between three points are x, y, z.
From this setup, we have x + y ≥ 2z, x + z ≥ 2y, y + z ≥ 2x.
Then x + y ≥ 2z ≥ 2(2y − x) =⇒ x + y ≥ (4y − 2x) =⇒ 3x ≥ 3y.

Similarly, we get 3y ≥ 3x, then we have x = y. By symmetry, x = y = z. The distances
in this metric are identical. ◀
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