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Abstract�� 
Recently, Deep Belief Networks (DBNs) have been proposed 
for phone recognition and were found to achieve highly 
competitive performance. In the original DBNs, only frame-
level information was used for training DBN weights while it 
has been known for long that sequential or full-sequence 
information can be helpful in improving speech recognition 
accuracy. In this paper we investigate approaches to 
optimizing the DBN weights, state-to-state transition 
parameters, and language model scores using the sequential 
discriminative training criterion. We describe and analyze the 
proposed training algorithm and strategy, and discuss practical 
issues and how they affect the final results. We show that the 
DBNs learned using the sequence-based training criterion 
outperform those with frame-based criterion using both three-
layer and six-layer models, but the optimization procedure for 
the deeper DBN is more difficult for the former criterion.  

 
Index Terms: Deep Belief Networks, phone recognition, 
discriminative training, full-sequence optimization 

1. Introduction 
Research in speech recognition has explored layered 
architectures in the recognizer design for quite some time 
(e.g., [1][2][3][5][15][17][18][19][20]), motivated partly by 
the desire to capitalize on some analogous properties in the 
human speech generation and perception systems. In these 
studies, learning of model parameters has been one of the most 
prominent and difficult problems and has thus received much 
attention. In parallel with the development in speech 
recognition research, a recent progress in learning methods 
from neural network research has renewed the interest in 
further exploring deep structured models. One major advance 
is the development of highly effective learning techniques for 
the deep belief networks (DBNs), which are densely 
connected, directed belief nets with many hidden layers [8][9].  

Although deep networks typically have higher modeling 
power than their shallow counterparts, learning in the deep 
networks is significantly harder because it is difficult to infer 
the posterior distribution over the hidden variables when given 
a data vector and because the simple back-propagation 
algorithm does not perform effectively due to the significantly 
increased chance of trapping into a local optimum. The 
recently proposed learning strategy -- generative pre-training 
using restricted Boltzmann machines (RBMs) and contrastive 
divergence followed by discriminative fine-tuning – is a 
significant advance in learning DBNs. This strategy has 
proved to be effective in a number of applications including 
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coding and classification for speech, audio, and image 
[6][8][9][12][13][14]. 

In a nut-shell, DBNs can be considered as a highly 
complex nonlinear feature extractor where each layer of the 
hidden units learns to represent features that capture higher 
order correlations in the original input data. DBNs have been 
recently proposed for phone recognition and were found to 
achieve very competitive performance [13]. In these DBNs, 
only frame-level information was used for training DBN 
weights; the transition parameters and language model (LM) 
scores were obtained from an HMM-like approach and were 
trained independently of the DBNs. However, speech 
recognition is a sequential or full-sequence learning problem 
and it has been well known that discriminative information at 
the sequence level contributes to improving recognition 
accuracy (e.g., [7]). Using neural networks to discriminate 
between sequences has indeed been proposed in the past (e.g., 
[4][10][11][16], but it was done in shallow architectures and 
not in an integrative manner. In this paper, we investigate 
approaches to optimizing the DBN weights, transition 
parameters, and language model (LM) scores jointly using a 
discriminative training criterion at the sequence level designed 
specifically for DBNs. 

The rest of the paper is organized as follows. In Section 2 
we introduce the DBN, with the RBMs as its constituents, and 
the general learning strategy for the DBN. In Section 3 we 
describe and analyze the sequential learning algorithm we 
developed for the DBN and discuss the practical issues and 
training procedures. We present the experimental results on 
the TIMIT phonetic recognition task as our initial exploration 
in Section 4, and conclude the paper in Section 5. 

2. Deep Belief Network Basics 
DBNs are densely connected, directed belief nets with many 
hidden layers for which learning is a difficult problem. In this 
section we introduce an effective training algorithm that learns 
each layer greedily by treating each pair of layers as an RBM 
before doing a joint optimization of all the layers. 

2.1. Restricted Boltzmann Machines 

An RBM is a particular type of Markov random field (MRF) 
that has one layer of (typically Bernoulli) stochastic hidden 
units and one layer of (typically Bernoulli or Gaussian) 
stochastic visible units. RBMs can be represented as bipartite 
graphs since all visible units are connected to all hidden units, 
but there are no visible-visible or hidden-hidden connections. 

In the RBMs, the joint distribution p(�, �; θ)  over the 
visible units � and hidden units �, given the model parameters θ, is defined in terms of an energy function E(�, �; θ) of 

p(�, �; θ) = ����−E(�, �; θ)	
 , (1)
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where 
 = ∑ ∑ ����−E(�, �; θ)	�
  is a normalization factor 
or partition function, and the  marginal probability that the 
model assigns to a visible vector � is 

p(�; θ) = ∑ ����−E(�, �; θ)	� 
 . (2) 

For a Bernoulli (visible)-Bernoulli (hidden) RBM, the 
energy is  

E(�, �; θ) = − � � ���
�

��� ��ℎ�
�

��� − � ����
�

��� − � ��ℎ�
�

��� , (3) 

where ��� represents the symmetric interaction term between 
visible unit �� and hidden unit ℎ�, �� and ��  the bias terms, and �  and �  are the numbers of visible and hidden units. The 
conditional probabilities can be efficiently calculated as 

��ℎ� = 1|�; θ	 = � �� ���
�

��� �� + ���, (4) 

�(�� = 1|�; θ) = � !� ���
�

��� ℎ� + ��". (5) 

where �(�) = 1 �1 + ���(�)	⁄ . 
Similarly, for a Gaussian-Bernoulli RBM, the energy is  

E(�, �; θ) = − � � ���
�

��� ��ℎ�
�

���  

                                      + �# ∑ (�� − ��)#���� − ∑ ��ℎ����� ,  (6) 

The corresponding conditional probabilities become 

��ℎ� = 1|�; θ	 = � �� ���
�

��� �� + ���, (7) 

�(��|�; θ) = $ !� ���
�

��� ℎ� + ��, 1". (8) 

where �� takes real values and follows a Gaussian distribution 
with mean ∑ ������� ℎ� + ��  and variance one. Gaussian-
Bernoulli RBMs can be used to convert real-valued stochastic 
variables to binary stochastic variables which can then be 
further processed using the Bernoulli-Bernoulli RBMs 

Following the gradient of the log likelihood log �(�; θ) we 
obtain the update rule for the weights as [8]: ∆��� = 〈��ℎ�〉*-/- − 〈��ℎ�〉02*34, (9) 
where 〈��ℎ�〉*-/-  is the expectation observed in the training 
set and 〈��ℎ�〉02*34  is that same expectation under the 
distribution defined by the model.  Unfortunately, 〈��ℎ�〉02*34 
is extremely expensive to compute exactly so the contrastive 
divergence (CD) approximation to the gradient is used where 〈��ℎ�〉02*34  is replaced by running the Gibbs sampler 
initialized at the data for one full step [9].  

2.2. Deep Belief Networks 

From the decoding point of view, a DBN can be treated as a 
multi-layer perceptron with many layers. The input signal is 
processed layer by layer with Eq. (4) till the final layer, whose 
output is then transformed into a multinomial distribution 
using the softmax operation 

p(5 = 6|�; θ) = ����∑ 7�8ℎ����� + �8	
(�) , (10) 

where  5 = 6  denotes the input been classified into the 6 -th 
class, and 7�8 is the weight between hidden unit ℎ� at the last 
layer and class label 6.  

As the baseline system, we use the conventional frame-
level criterion to train the DBNs. Specifically, we adopt the 

strategy proposed in [13][8][9] for training DBN weights. That 
is, we first train a stack of RBMs in a generative manner and 
then fine-tune all the parameters jointly using back-
propagation algorithm by maximizing the frame-level cross-
entropy between the true and the predicted probability 
distributions over class labels.  

3. Full-Sequence Training of DBNs 
The standard discriminative back-propagation step as used in 
[8][9][13] optimizes the log posterior probability �(5/|�/) of 
class labels given the current input, both at time-frame 9 
(which may be a fixed local block of frames). We call this 
method of training DBNs a frame-based approach, because it 
uses the frame (or frame-block) only to predict the class labels. 
It does not explicitly use the fact that the neighboring frames 
(or frame-blocks) have smaller distances between the assigned 
probability distributions over class labels. To take this fact into 
account we model the probability of the whole sequence of 
labels given the whole utterance �(5�:<|��:<). 

The approach we take in this paper is to consider the top-
most layer of the DBN as a linear-chain conditional random 
field (CRF) with �/ as input features from the lower layer at 
time 9. This new model can be seen as a modification of the 
deep-structured CRF of [19][20] where the lower multiple 
layers of CRFs  are replaced by DBNs. The resulting 
architecture is shown in Fig. 1, which can be equivalently seen 
as shared DBNs unfolding over time.  

The conditional probability of the full-sequence labels 
given the full-sequence input features in this sequential model 
is �(5�:<|��:<) = �(5�:<|��:<) 

= ����∑ >��?��(5/@�, 5/)</�� + ∑ ∑ 74A*ℎ/*B*��</�� 	
(��:<) , (11)

where the transition feature is 

?��(5/@�, 5/) = C1 if 5/@� = D and 5/ = F0 otherwise,  (12)>�� is the parameter associated with this transition feature, ℎ/* 
is the H-th dimension of the hidden unit value at the 9-th frame 
at the last layer �/, I is the dimension of (or number of units) 
at that hidden layer.  

 
Fig. 1: Architecture of the DBN developed and evaluated 

in this work. 
 

To optimize the log conditional probability �(5�:<J |��:<J ) of 
the K-th utterance, we take the gradient over the activation 
parameters 78* , transition parameters >�� , and L -th-layer 
weights ���(M) as  
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N log �(5�:<J |��:<J )N78* = ��O(5/J = 6) − �(5/J = 6|��:<J )	<
/��

ℎ/*(M),J (13) 

N log �(5�:<J |��:<J )N>�� = ��O(5/@�J = D, 5/J = F)<
/��− �(5/@�J = D, 5/J = F|��:<J )	 

(14) 

N log �(5�:<J |��:<J )NwPQ(R) = � �74A* − � �(5/J = 6|��:<J )78*
S

8��
�<

/��
 

                        ∙ ℎ/*(M),J�1 − ℎ/*(M),J	ℎ/�(M@�),J 
(15) 

Note that the gradient N log �(5�:<J |��:<J ) N�DF(U)V  can be 
considered as back-propagating the error O(5/J = 6) −�(5/J = 6|��:<J )  vs. O(5/J = 6) − �(5/J = 6|�WJ)  in the frame-
based training algorithm. 

While the basic optimization algorithm with gradient 
descent can be succinctly described by Eqs. (13), (14), and 
(15), which compute the gradients in analytical forms, there 
are many practical issues to consider in the algorithm 
implementation.  

First, the top-layer CRF’s state transition parameters can 
form a transition matrix, which is different from that of the 
HMM. In fact, it is a combination of the transition matrix and 
the bi-phone LM scores. Without proper constraints, the 
transition matrix may have low likelihoods of being 
transitioning between states that are prohibited in the left-to-
right three-state HMMs even though the training data does not 
support such transitions. To prevent this from happening so 
that a sharper model may be built, we enforce this constraint in 
the training by setting transition weights that are prohibited in 
the HMMs to have a very large negative value. 

Second, since the weights in the DBNs are jointly 
optimized together with CRF’s transition parameters, the 
optimization problem is no longer convex. For this reason, 
good initialization is crucial. The DBN weights can be 
initialized using the frame-based discriminative training. The 
transition parameters can be initialized from the combination 
of the HMM transition matrices and the LM scores, and can be 
further optimized by tuning the transition features while fixing 
the DBN weights before the joint optimization. 

Third, there are two ways of doing decoding using the 
DBNs trained above. The simpler approach is to feed the log 
marginal probability log �(5/|��:<) as the activation scores to 
the conventional HMM decoder and use the HMM transition 
matrices and LM scores in the normal way. This approach may 
work when the full-sequence training can improve the quality 
of log �(5/|��:<).  This approach is not optimal since it does 
not closely match the criterion we are optimizing for. A more 
effective approach is to generate the state sequence first and 
then to map the state sequence to the phoneme sequence. The 
decoding result may be further improved if we allow for 
insertion penalties, which can be easily integrated into the 
decoder by modifying the transition parameters by >X�� = Y>�� + Z (16) 
if state D is the final state of a phone and state F is the first state 
of a phone, where  Z  is the insertion penalty, and Y  is the 
scaling factor. 

4. Experiments and Results 

4.1. Experimental Setup 

Phone recognition experiments were performed on the TIMIT 
corpus. The standard training set consisting of 462 speakers 
was used for training DBNs, with all SA removed. The 
standard development set of 50 speakers was used for model 

tuning. Results are reported using the standard 24-speaker core 
test set consisting of 192 sentences with 7,333 phone tokens.  
The speech was analyzed using a 25-ms Hamming window 
with a 10-ms fixed frame rate. In all the experiments, we 
represented the speech using first- to 12th-order Mel 
frequency cepstral coefficients (MFCCs) and energy, along 
with their first and second temporal derivatives. The data were 
normalized to have zero mean and unit variance. All 
experiments used a context window or block of 11 frames as 
the visible states.  We used 183 target class labels (i.e., three 
states for each of the 61 phones).  After decoding, the 61 
phone classes were mapped to a standard set of 39 classes for 
scoring using the HResults tool in HTK, in the same way as 
other standard TIMIT experiments (e.g., [5]).  

4.2. DBN Training  

All of our experiments used a bigram language model over 
phones, which was jointly estimated with all DBN parameters 
using the training set. The decoder parameters were tuned to 
optimize performance on the development set for each run 
using grid search. Training of the DBNs was accelerated by 
exploiting a graphics processor. A single pass over the entire 
training set during pre-training took about 3-4 minutes per 
layer. An epoch of fine-tuning with back-propagation took 
around 10 and 25 minutes with frame-based, and sequence-
based criteria, respectively. 

 

 
Fig. 2: Log conditional likelihood values in fine tuning 
 

Fig. 3: Cross-entropy values observed in fine tuning 
 
The behavior of the training process is carefully examined. 

As an example, we plot in Fig. 2 the training objective -- the 
log conditional likelihood -- as a function of fine-tuning 
epochs in the training, development, and test sets, respectively. 
The same plot for cross entropy is shown in Fig. 3.  

4.3. Phonetic Recognition Results 

Table 1 shows TIMIT phone recognition accuracy using 
frame-based and sequence-based training criteria with three-
layer DBNs (i.e., one hidden layer). The new full-sequence 
training improves phone recognition accuracy for both dev and 
test sets, although more for the dev set. A relatively small 
amount of tuning is required to achieve such improvement. 
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Table 1. Comparative TIMIT phone recognition 
accuracy with three-layer DBNs 

Three-layer DBN Dev Core Test 
Frame-based 75.60% 73.87% 
Sequence-based 76.82% 74.10% 

 
When the DBN goes deeper to six layers, the recognizer’s 

accuracy is sharply increased to over 77% for the frame-based 
system, as shown in the first row of Table 2, consistently with 
the finding in [13].  Without careful tuning of the training 
parameters, the full-sequence training was not able to improve 
recognition accuracy in the initial set of experiments. Careful 
adjustment of a set of parameters based on the dev set gives 
rise to higher accuracy. One of the parameters is the mini-
batch size (i.e. the number of sentences in each mini batch) 
used in the gradient descent training of the DBN weights and 
integrated CRF/LM transition weights. With adjustment of the 
corresponding learning rate, use of increasing mini-batch sizes 
improves the accuracy to 77.81% on the core test set, as shown 
in Table 2. We also observed the importance of constraining 
the transition parameters. Without such a constraint, the 
accuracy drops to 76.22%. 

Further optimization of the pre-training and fine-tuning 
steps [13] for frame-based training is able to improve the core-
set accuracy to 77.77%. A rather different kind of optimization 
on the training procedure enables the sequence-based training 
to improve the core-set accuracy to 78.25% in our initial 
exploration. One step in this new training procedure is to use 
the DBN weights learned from sequence-based training to 
replace the randomization in the pre-training. 

Table 2. Comparative TIMIT phone recognition 
accuracy with six-layer DBNs. 

Six-layer DBN Dev Core Test 
Frame-based 78.89% 77.15% 

Sequence-based 

MB Size=1  78.61% 76.42% 
MB Size=5 79.30% 77.31% 

MB Size=150 79.01% 77.62% 
MB Size=800 78.79% 77.81% 

5. Conclusions 
This paper presents our recent work on extending the DBN 
method of [13] from frame-based training to sequence-based 
training. Specifically, we develop and present a full-sequence 
discriminative learning approach to jointly optimizing the 
DBN weights, state-to-state transition parameters, and 
language model scores.  

  Setting up the full-sequence discriminative criterion to 
train the DBN weights gives rise to an architecture that can be 
considered as a modification of the deep-structured CRF 
described in of [19][20]. The top layer’s linear-chain CRF 
remains the same but the lower layers of deep CRFs that are 
fully discriminative have now become largely generative 
during the pre-training stage with bi-directionally connected 
DBNs. Not only does this change overcome the difficulty for 
unsupervised learning in the intermediate layers of deep CRFs, 
but it also allows the use of longer windows in the input data. 
Further, DBNs appear to apportion the power of discriminative 
and generative modeling in a more balanced way than deep 
CRF. Further improvement includes using the most likely 
label sequences that are consistent with the reference during 
optimization rather than sticking to a single alignment as the 
reference label sequence. We are currently also exploring 
other successful techniques in speech recognition in the DBN 
framework, such as the use of object functions better 

correlating with errors than MMI [7], use of context 
dependency [1][2], and conditioning the DBN weights on 
specific auxiliary factors that control the variability in the 
speech data [21][22].  
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