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Abstract
In this paper, we suggest the use of general acoustic and lan-
guage models to deal with the mismatch between the training
and testing data of a reading tutor for children. The testing data
consist of isolated real and non-existing (pseudo) words, while
the training data consist of continuous readings of Dutch sen-
tences. General acoustic (e.g. context independent) and lan-
guage models (e.g. bigram phone language models) are pro-
posed as they implicitly better model the hesitant nature of
the testing data. Discriminative model combination (DMC) is
modified to provide different weights for different phones and
was utilized to combine the new models into the baseline sys-
tem. Combination of general acoustic and language models into
the baseline system using DMC significantly lowers the system
phone error rate, by 3.5% relative to the baseline system for the
non-existing (pseudo) words.
Index Terms: reading assessment, ASR for children, Discrim-
inative Model Combination (DMC)

1. Introduction
Automatic speech recognition (ASR) technology is utilized for
building reading tutors and interactive language learning appli-
cations [1] [2]. The SPACE project1 aims at utilizing ASR tech-
nology to provide schools, teachers and parents in Flanders with
a reading tutor that targets children aged 6 to 10 years.

One of the challenges that face reading tutors targeting this
age range is the hesitant nature of the speech, which results
in producing unpredictable pauses and mispronunciations. Be-
cause the ultimate goal of such applications is to detect reading
errors, analyze them and give corrective feedback, normal lex-
ical trees that are used in the state-of-the-art LVCSR systems
cannot be used anymore without modifications. One proposed
solution [2] for such problem is to use subword units (e.g. syl-
lables) in the decoding step.

In SPACE, a two pass system architecture is utilized [3] in
which a phone lattice is generated during the first pass of the
decoder (the task independent part) using general acoustic and
phone language models only. Then the task-specific informa-
tion is added during the second pass of the decoder in the form
of a finite state transducer (FST) containing the correct phonetic
transcription of the words along with garbage loops and garbage
paths to account for pronunciations other than the correct one.

To assess the children reading proficiency level, three dif-
ferent categories of tasks are used: real words tasks, non-
existing (or ’pseudo’) words tasks and story reading tasks. This

1SPeech Algorithms for Clinical and Educational applications.
Home page: http://www.esat.kuleuven.be/psi/spraak/projects/SPACE.

paper focuses on word reading tasks (both using real words and
pseudo words). Using pseudo words in evaluating reading pro-
ficiency adds another challenge for the recognizer because they
are not Dutch words (although they are constructed to resem-
ble the real Dutch words). The pseudo words tasks contain new
phone sequences which are different from those appearing in
real Dutch words. In this work, we propose using context in-
dependent (CI) acoustic models along with context dependent
(CD) ones because some triphones (from disfluent speech or
pseudo words) could be poorly trained or could be combined
with other acoustically different triphones in the decision tree
classification process, which was trained on fluent utterances of
real words.

Discriminative model Combination (DMC) [4] is used to
combine the CI and CD acoustic models. The minimum word
error criterion is utilized to estimate the model weights. DMC is
extended to provide different weights for different phones. This
gives better results than combining both models using only one
weight vector.

On the language modeling side, the hesitant speech and the
pseudo words don’t follow the Dutch language phonotactic con-
straints. This suggests decreasing the depth of the n-gram phone
language model used in the first pass of the decoder to bet-
ter model reading disfluencies and new phone sequences. For
phone recognition task, the bigram phone language model pro-
vides lower error rates compared to the trigram phone language
model for pseudo words. By combining all knowledge sources,
a significantly lower phone error rate is presented.

The following sections are organized as follows. Descrip-
tions of training and testing speech databases are given in the
next section. Section 3 contains a review of the DMC technique
and the way we have used it in this paper. Experiments for dif-
ferent acoustic and language models are presented in section 4.
Finally, in section 5, conclusions and ideas for future work are
given.

2. Description of databases
2.1. Acoustic model training database

Acoustic models used in this work (both CD and CI) are trained
on a read speech database in Dutch, recorded at 16 kHz sam-
pling rate. Children aged between 5 and 11 years read different
sentences. The database consists of 22 hours of speech in total
from 400 children, distributed equally by age2.

2One exception: there are only few 5 year old children as in Flan-
ders, most children learn to read at age 6.
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Figure 1: The oracle phone error rate for CD and CI models vs.
phone graph size.

2.2. Language model training database

All phone language models used in this work are trained on a
read speech corpus for Dutch news containing 65000 words.
Forced alignment was performed on the corpus to select only
one pronunciation in cases where there are multiple pronuncia-
tions for a word in the pronunciation dictionary.

2.3. Testing database

The CHOREC database [5] is used in all the experiments done
in this paper. It contains read speech of 400 Dutch speaking el-
ementary school children (6-12 years old) with or without read-
ing difficulties.

For every child, a reading test battery was administered
which contains real word reading tasks, pseudo word reading
tasks, and story reading tasks. Both the real words and the
pseudo words tasks contain three lists of respectively 40 1-
syllable, 40 2-syllable and 40 3- or 4-syllable real words or
pseudo words. Spoken utterances are provided along with their
reference phonetic transcription. The phonetic transcription of
utterances with errors, miscues, hesitations are manually veri-
fied.

In this work, only tasks with 2-syllable words (both real
words and pseudo words) tasks are used. Recordings for 59
children (2320 real words, 2240 pseudo words) are used to train
the DMC weights. While recordings for another group of 55
children (1680 real words, 1680 pseudo words) are used for
testing. The rest of the database is kept for future research.

All used recordings are from children attending regular
schools, i.e. pupils attending schools for children with reading
or learning disorders were not included. However,the reading
proficiency of our test children varies over a wide range.

3. Discriminative model combination
Discriminative model combination (DMC) [4] aims at integra-
tion of all given streams (or models) into one log-linear poste-
rior probability distribution. Training of combination weights is
done by minimizing the word error rate E(Λ). Where,

E(Λ) =
NX

n=1

X

k �=ko

L(k, ko)S(k, n, Λ) (1)

L(k, ko) is the edit distance between the kth hypothesis and
the correct one ko. S(k, n, Λ) is a smoothed indicator function

which is defined as,

S(k, n, Λ) =
PΛ(k | xn)η

P
k
′ PΛ(k′ | xn)η

(2)

where η is the smoothing constant and PΛ(k | xn) is the poste-
rior probability of the kth hypothesis given the weight vector Λ
for the feature vector xn of the nth training utterance.

To achieve the optimal weight vector Λ, the word error rate
E(Λ) is minimized using an iterative gradient descent algo-
rithm.

In our implementation of the DMC technique, a phone
graph is used, rather than an N-best list, so the rivals for the
correct hypothesis at a certain frame are those competing arcs
that have not been pruned out during the first pass of the de-
coder. Furthermore, a normalization over the number of frames
Fn in each utterance is performed. So E(Λ) will be,

E(Λ) =
NX

n=1

1

Fn

FnX

f=1

X

k �=ko

L(k, ko)S(k, f, Λ) (3)

where L(.) is either 1 or 0. Up till now, only one weight per
stream is estimated. To fully utilize the second stream, one
weight per phone could be estimated. So the indicator func-
tion was modified to enable weight vectors for all phones to be
jointly estimated. The S function was modified to be,

S(k, f, Λ) =
PΛk

(k | f)η

P
k
′ PΛ

k
′
(k′ | f)η

(4)

where Λ is a matrix that contains weight vectors Λk for each
phone k. The modified weights are normalized in every itera-
tion of the algorithm so as to sum to one.

4. Experiments
4.1. System performance metrics

Two performance metrics are used in this paper to assess the
system performance. The graph error rate (GER) is used to
check the percentage of phones that are deleted, substituted, or
inserted on a phone graph when searching for the best match for
the database reference phonetic transcription (which contains
errors, hesitations, etc...) of the spoken utterance. Each graph
contains the first pass decoding result of the child’s response for
only one word. All graphs that are presented in the experiments
are generated using the trigram phone language model during
the first pass of the decoder.

The graph density is determined by decoder parameters: the
beam width relative to the best hypothesis, and the maximum
allowable number of competing hypotheses at a certain frame.
We use the average number of distinct phones at a given frame
as a measure for graph size. High quality phone graphs are re-
quired during the first pass of the decoder as they are the inputs
to the second pass which cannot recover from errors made by
the first pass.

The second performance metric used is the isolated phone
recognition (PER). First, the utterance is aligned to its refer-
ence transcription using the Viterbi algorithm. A tight search
beam was imposed during the Viterbi search to remove utter-
ances that contain transcription errors. Segment recognition is
done by ranking hypotheses based on their segment scores: the
total segment likelihood in case of acoustic model assessment
or the combined acoustic and language model likelihoods in
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Figure 2: phone accuracy for CD and CI acoustic models in real words with error bars of one standard deviation.
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Figure 3: phone accuracy for CD and CI acoustic models in pseudo words with error bars of one standard deviation.

case of language model assessment. Combination of the acous-
tic model and the language model scores is done by using a
fixed weight (the same weight is used for all experiments) that
is tuned on a part of the training data. In cases where the seg-
ment context is needed to deduce the segment score, the correct
context is provided so as to limit the search to the maximum
number of monophones in the system.

Table 1: Segment PER for CI and CD models and the combined
systems.

Real words Pseudo words
CI 30.7% 32.3%
CD 27.8% 30.6%

single weight 28.2% 30.5%
weight per phone 27.9% 30.1%

oracle model per phone 27.3% 29.7%

4.2. Acoustic models experiments

Segment recognition, as described in the previous subsection,
is conducted on the real words and pseudo words tasks using
Context Independent (CI) and Context Dependent (CD) acous-
tic models only (on phone language model is used in this sub-
section). Table 1 shows that the CI model has higher PER than

the CD model for both the real words and pseudo words tasks.
But the performance gab between the CI and the CD models are
smaller in case of pseudo words task.

The pseudo words task differs from the training database
because the pseudo words are not real Dutch words, although
they are formed to resemble the real Dutch words. So it is ex-
pected to find triphones in the testing data that are not existing
in the training data, which is not the case of the real words task.

The previous result is also supported by figure 1 which
present graph error rates (GER) versus average graph size for
the real words task and the pseudo words tasks. The CI model
demonstrates higher capability of producing graphs with low er-
ror rates compared to the CD model in case of the pseudo words
task, so combining both models to improve the system accuracy
is worth exploring. Discriminative model combination (DMC)
come to the play as a tool that is capable of estimating combi-
nation weights of multiple streams, in our case the CI and the
CD acoustic models. The combined system, using one weight
for each model, performs almost the same as the CD models
in case of the pseudo words task and worse in case of the real
words task. To combine the CI and the CD models in a more
effective way, different weights per phone are estimated using
the DMC. The new system is better than the CD models case by
0.5% absolute. These results are presented in Table 1.

The best acoustic model for a phone (either the CI or the
CDmodel) is the one which gives lower PER for this phone. We
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define the oracle model as the one which picks the best acoustic
model for each phone. Figure 2 and figure 3 show phone error
rates per phone for the real words and the pseudo words tasks
on the testing database. It is clear that the number of phones
that tend to have better PER using the CI models in case of the
pseudo words task is higher than the case of the real words task.
Unfortunately, the phones that have better CI PER in case of CI
models do not form a clear phonetically inspired class.

It is shown in table 1 that in case of the pseudo words task,
the PER of the combined system, which uses both CD and CI
acoustic model with different weights per phone, lays in the
middle between the PER of the CD model (the baseline) and the
PER of the oracle model. The oracle PER cannot be achieved
in practice because if the CI model is better for a given phone,
this assumes that all other competitors are modeled by the CI
model. Likewise, for another phone, the CD model is better
assuming that all other phones are modeled by the CD model.
This assumption is not true when processing a phone lattice, as
different phones have different model weights.

Table 2: PER results using different phone language models for
real words task.

0-gram 1-gram 2-gram 3-gram
CI 30.7% 29.3% 28.0% 28.0%
CD 27.8% 27.2% 25.0% 25.2%

Table 3: PER results using different phone language models for
pseudo words task.

0-gram 1-gram 2-gram 3-gram
CI 32.3% 30.5% 29.8% 30.4%
CD 30.6% 29.0% 28.3% 29.0%

Table 4: Perplexity of the 2-syllables real words and pseudo
words tasks using different phone language models.

1-gram 2-gram 3-gram
real words task 34.8 25.7 25.6
pseudo words task 36.2 29.9 39.8

4.3. Language models experiments

Much like the general acoustic model better models the pseudo
words, general language models also provide better modeling
of pseudo words. Tables 2 and 3 show the recognition results
when using 0-gram, 1-gram, 2-gram, and 3-gram phone lan-
guage models combined with different acoustic models for the
real and the pseudo words tasks respectively. The bigram phone
language model has the lowest error rates. For the real words
task the 3-gram phone language model has comparable perfor-
mance.

By reducing the depth of the n-gram, the language model
becomes more powerful in modelling unexpected phone se-
quences both in the pseudo words and those introduced by the
children’s hesitations. Unpredicted pauses during reading and
mispronunciations introduce new phone sequences which are
unseen in the training data. Table 4 supports these PER results
for different depths of n-gram by showing the perplexities of

Table 5: PER results using the combined system with different
language models.

0-gram 1-gram 2-gram 3-gram
comb real 27.9% 27.0% 25.6% 25.7%
comb pseudo 30.1% 28.6% 28.0% 28.4%

the 2-syllables real words and pseudo words tasks using these
language models. The bi-gram phone language model gets the
lowest perplexity in case of the pseudo words task.

4.4. Combined acoustic and language models

By combining all the knowledge sources together, Table 5
shows that the combined system, for the pseudo words task,
using bi-gram language models (shown in bold in table 5) has a
lower PER than the baseline system (shown in bold in table 3)
by 1% absolute (3.5% relative). The difference between these
two classifiers is statistically significant at the 5% level. No im-
provement is found in case of the real words tasks. One thing to
note is that the differences in accuracy between different phone
language models and the 0-gram case is small, which suggests
further refinement of the phone language models.

5. Conclusions
We have combined general acoustic and language models into
the phone recognition task of children’s read speech. Discrimi-
native model combination (DMC) was extended to provide dif-
ferent weights per phone and used to estimate the combination
weights for the Context Independent (CI) and the Context De-
pendent (CD) acoustic models. The bigram phone language
model was tested versus the trigram. Significantly lower phone
error rate (3.5% relative to the baseline) was found, in case of
the pseudo words by using the combined CI and CD models
along with the bigram phone language model. Applying the
best system configuration into the first pass of the decoder and
further refinement of the phone language model are in our future
work.
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