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Consistent 

������������� Maximum Likelihood
• Maximum Likelihood Estimation is statistically consistent and 
efficient but is not computationally tractable for many models of 
interest like RBM’s, MRF’s, CRF’s due to the partition function.

Efficient Tractable
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������������� Alternative Estimators
• Recent work has seen the proposal of many new estimators 
that trade consistency/efficiency for computational tractability
including RM, SM, GSM, MPF, NCE, NLCE.  

Consistent 

Efficient Tractable
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������������� Alternative Estimators
• Our main interest is uncovering the relationships between 
these estimators and studying their theoretical and empirical 
properties.  

Consistent 

Efficient Tractable
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• Boltzmann Machines and RBMs  
• Inductive Principles 

• Maximum Likelihood
• Contrastive Divergence
• Pseudo-Likelihood
• Ratio Matching
• Generalized Score Matching
• Minimum Probability Flow

• Experiments
• Demo
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 Restricted Boltzmann Machines

H1 H2 H3 H4

X1 X2 X3

K Hidden Units

D Visible Units

• A Restricted Boltzmann 
Machine (RBM) is a 
Boltzmann Machine with a 
bipartite graph structure.  

• Typically one layer of nodes 
are fully observed variables 
(the visible layer), while the 
other consists of latent 
variables (the hidden layer).
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�������������
 Restricted Boltzmann Machines

• The joint probability of the visible and hidden variables is 
defined through a bilinear energy function.
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 Restricted Boltzmann Machines

• The bipartite graph structure gives the RBM a special 
property: the visible variables are conditionally independent 
given the hidden variables and vice versa. 
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������������� Restricted Boltzmann Machines

• The marginal probability of the visible vector is obtained by 
summing out over all joint states of the hidden variables.
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������������� Restricted Boltzmann Machines

• This construction eliminates the latent, hidden variables, 
leaving a distribution defined in terms of the visible variables.

• However, computing the normalizing constant (partition 
function) still has exponential complexity in D.
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• Exact maximum likelihood learning is intractable in an RBM. 
Stochastic ML estimation can instead be applied, usually using 
a simple block Gibbs sampler.
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• Exact maximum likelihood learning is intractable in an RBM. 
Stochastic ML estimation can instead be applied, usually using 
a simple block Gibbs sampler.

Update Weights Update Weights

•L. Younes. Parametric inference for imperfectly observed Gibbsian fields. Prob. Th. and Related Fields, 82(4):625–645, 1989.
•T. Tieleman. Training restricted Boltzmann machines using approximations to the likelihood gradient. ICML 25, 2008.
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• The contrastive divergence principle results in a gradient that
looks identical to stochastic maximum likelihood. The difference
is that CD samples from the T-step Gibbs distribution.
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• The contrastive divergence principle results in a gradient that
looks identical to stochastic maximum likelihood. The difference
is that CD samples from the T-step Gibbs distribution.

Update Weights & Reset Chain to Data
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• The principle of maximum pseudo-likelihood is based on 
optimizing a product of one-dimensional conditional densities 
under a log loss.
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• The principle of maximum pseudo-likelihood is based on 
optimizing a product of one-dimensional conditional densities 
under a log loss.
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• The ratio matching principle is very similar to pseudo-
likelihood, but is based on minimizing a squared difference 
between one dimensional conditional distributions.

Aapo Hyvarinen. Some extensions of score matching. Computational Statistics & Data Analysis, 51(5):2499–2512, 2007.
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• The generalized score matching principle is similar to ratio 
matching, except that the difference between inverse one 
dimensional conditional distributions is minimized.

Siwei Lyu. Interpretation and generalization of score matching. In Uncertainty in Artificial Intelligence 25, 2009.
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• Minimize the flow of probability from data states to non-data 
states (as we’ve just seen!).

Jascha Sohl-Dickstein, Peter Battaglino, Michael R. DeWeese. Minimum Probability Flow Learning. 
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 Weighting Functions
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 Weighting Functions

What about MPF?
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 A Manifold of Estimators?

Dimensions:
1. Neighborhood structure around data configurations. 

2. Form of loss function on the probability ratio.
• Smooth
• Monotonically decreasing 
• Bounded below
• Others?

Covers: PL, GLP, NLCE, RM, GSM, MPF

Limitations: No good for missing data/explicit latent variables.
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Data Sets:
• MNIST handwritten digits
• 20 News Groups
• CalTech 101 Silhouettes

Evaluation Criteria:
• Log likelihood (using AIS estimator)
• Classification error
• Reconstruction error
• De-noising
• Novelty detection
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 Log Likelihood
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 Classification Error
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 De-noising
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 Novelty Detection
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 Learned Weights on MNIST


