Inductive Principles for Restricted Boltzmann Machine Learning

Benjamin Marlin, Kevin Swersky, Bo Chen and Nando de Freitas

Inductive Principles for Restricted Boltzmann Machine Learning

Benjamin Marlin
Department of Computer Science
University of British Columbia

Joint work with Kevin Swersky, Bo Chen and Nando de Freitas
Introduction: Maximum Likelihood

- Maximum Likelihood Estimation is statistically consistent and efficient but is not computationally tractable for many models of interest like RBM’s, MRF’s, CRF’s due to the partition function.
Introduction: Alternative Estimators

- Recent work has seen the proposal of many new estimators that trade consistency/efficiency for computational tractability including RM, SM, GSM, MPF, NCE, NLCE.
Introduction: Alternative Estimators

- Our main interest is uncovering the relationships between these estimators and studying their theoretical and empirical properties.
Outline:

- Boltzmann Machines and RBMs
- Inductive Principles
 - Maximum Likelihood
 - Contrastive Divergence
 - Pseudo-Likelihood
 - Ratio Matching
 - Generalized Score Matching
 - Minimum Probability Flow
- Experiments
- Demo
Introduction: Restricted Boltzmann Machines

- A Restricted Boltzmann Machine (RBM) is a Boltzmann Machine with a bipartite graph structure.

- Typically one layer of nodes are fully observed variables (the visible layer), while the other consists of latent variables (the hidden layer).
Introduction: Restricted Boltzmann Machines

- The joint probability of the visible and hidden variables is defined through a bilinear energy function.

\[
E_\theta(x, h) = -(x^TWh + x^Tb + h^Tc)
\]

\[
P_\theta(x, h) = \frac{1}{\mathcal{Z}} \exp \left(-E_\theta(x, h) \right)
\]

\[
\mathcal{Z} = \sum_{x' \in \mathcal{X}} \sum_{h' \in \mathcal{H}} \exp \left(-E_\theta(x', h') \right)
\]
Introduction: Restricted Boltzmann Machines

• The bipartite graph structure gives the RBM a special property: the visible variables are conditionally independent given the hidden variables and vice versa.

\[P_\theta(x_d = 1|h) = \frac{1}{1 + \exp\left(-\left(\sum_{k=1}^{K} W_{dk} h_k + x_d b_d\right)\right)} \]

\[P_\theta(h_k = 1|x) = \frac{1}{1 + \exp\left(-\left(\sum_{d=1}^{D} W_{dk} x_d + h_k c_k\right)\right)} \]
Introduction: Restricted Boltzmann Machines

- The marginal probability of the visible vector is obtained by summing out over all joint states of the hidden variables.

\[
P_\theta(x) = \frac{1}{Z} \sum_{h \in \mathcal{H}} \exp(-E_\theta(x, h))
\]

\[
P_\theta(x) = \frac{1}{Z} \exp(-F_\theta(x))
\]

\[
F_\theta(x) = -\left(x^T b + \sum_{k=1}^{K} \log\left(1 + \exp\left(x^T W_k + c_k\right)\right)\right)
\]
Introduction: Restricted Boltzmann Machines

• This construction eliminates the latent, hidden variables, leaving a distribution defined in terms of the visible variables.

• However, computing the normalizing constant (partition function) still has exponential complexity in D.

\[Z = \sum_{\mathbf{x}' \in \mathcal{X}} \exp \left(-F_\theta(\mathbf{x}') \right) \]
Outline:

- Boltzmann Machines and RBMs
- Inductive Principles
 - Maximum Likelihood
 - Contrastive Divergence
 - Pseudo-Likelihood
 - Ratio Matching
 - Generalized Score Matching
- Experiments
- Demo
Stochastic Maximum Likelihood

- Exact maximum likelihood learning is intractable in an RBM. Stochastic ML estimation can instead be applied, usually using a simple block Gibbs sampler.

\[
 f^{ML}(\theta) = \sum_{x \in \mathcal{X}} P_e(x) \log P_\theta(x)
\]
Stochastic Maximum Likelihood

- Exact maximum likelihood learning is intractable in an RBM. Stochastic ML estimation can instead be applied, usually using a simple block Gibbs sampler.

Contrastive Divergence

- The contrastive divergence principle results in a gradient that looks identical to stochastic maximum likelihood. The difference is that CD samples from the T-step Gibbs distribution.

\[f^{CD}(\theta) = \sum_{\mathbf{x} \in \mathcal{X}} P_e(\mathbf{x}) \log \left(\frac{P_e(\mathbf{x})}{P_\theta(\mathbf{x})} \right) - Q^t_\theta(\mathbf{x}) \log \left(\frac{Q^t_\theta(\mathbf{x})}{P_\theta(\mathbf{x})} \right) \]
Contrastive Divergence

- The contrastive divergence principle results in a gradient that looks identical to stochastic maximum likelihood. The difference is that CD samples from the T-step Gibbs distribution.

\[\tilde{h}_n \]

\[x_n \]

\[\tilde{x}_n \]

Update Weights & Reset Chain to Data
Pseudo-Likelihood

- The principle of maximum pseudo-likelihood is based on optimizing a product of one-dimensional conditional densities under a log loss.

$$f^{PL}(\theta) = \sum_{\mathbf{x} \in \mathcal{X}} \sum_{d=1}^{D} P_e(\mathbf{x}) \log P_\theta(x_d | \mathbf{x} - d)$$

$$= \frac{1}{N} \sum_{n,d} g_{PL}(r_{dn})$$

$$g_{PL}(r) = -\log(1 + r^{-1})$$

$$r_{dn} = P_\theta(\mathbf{x}_n) / P_\theta(\mathbf{x}^d_n)$$
Pseudo-Likelihood

- The principle of maximum pseudo-likelihood is based on optimizing a product of one-dimensional conditional densities under a log loss.
Ratio Matching

- The ratio matching principle is very similar to pseudo-likelihood, but is based on minimizing a squared difference between one dimensional conditional distributions.

\[
f^{RM}(\theta) = \sum_{x \in \mathcal{X}} \sum_{d=1}^{D} \sum_{\xi \in \{0, 1\}} P_c(x) \left(P_\theta(X_d = \xi | x_{-d}) - P_c(X_d = \xi | x_{-d}) \right)^2
\]

\[
= \frac{1}{N} \sum_{n=1}^{N} \sum_{d=1}^{D} g_{RM}(r_{dn})
\]

\[
g_{RM}(r) = (1 + r)^{-2}
\]

Generalized Score Matching

The generalized score matching principle is similar to ratio matching, except that the difference between inverse one dimensional conditional distributions is minimized.

\[
f^{GSM}(\theta) = \sum_{\bm{x} \in \mathcal{X}} \sum_{d=1}^{D} P_{e}(\bm{x}) \left(\frac{1}{P_{\theta}(x_{d}|\bm{x}_{-d})} - \frac{1}{P_{e}(x_{d}|\bm{x}_{-d})} \right)^2
\]

\[
= \frac{1}{N} \sum_{n=1}^{N} \sum_{d=1}^{D} g_{GSM}(r_{dn})
\]

\[
g_{GSM}(r) = r^{-2} - 2r
\]

Minimum Probability Flow

• Minimize the flow of probability from data states to non-data states (as we’ve just seen!).

\[
f^{MPF}(\theta) = \sum_{\mathbf{x} \in \mathcal{X}} \sum_{d=1}^{D} P_e(\mathbf{x}) \log P^{(e)}(\mathbf{x})
\]

\[
\approx \frac{1}{N} \sum_{n=1}^{N} \sum_{d=1}^{D} I[P_e(\overline{x}_n^d) = 0] g_{MPF}(r_{dn})
\]

\[
g_{MPF}(r) = r^{-1/2}
\]

\[\nabla f^{ML} \approx - \left(\frac{1}{N} \sum_{n=1}^{N} \nabla F_{\theta}(\mathbf{x}_n) - \frac{1}{S} \sum_{s=1}^{S} \nabla F_{\theta}(\tilde{\mathbf{x}}_s) \right) \]

\[\nabla f^{CD} \approx - \frac{1}{N} \sum_{n=1}^{N} \left(\nabla F_{\theta}(\mathbf{x}_n) - \nabla F_{\theta}(\tilde{\mathbf{x}}_n) \right) \]

\[\nabla f^{PL} = \frac{-1}{N} \sum_{n,d} g'_{PL}(r_{dn}) r_{dn} \left(\nabla F_{\theta}(\mathbf{x}_n) - \nabla F_{\theta}(\tilde{\mathbf{x}}^d_n) \right) \]

\[\nabla f^{RM} = \frac{2}{N} \sum_{n=1}^{N} \sum_{d=1}^{D} g'_{RM}(r_{dn}) r_{dn} \left(\nabla F_{\theta}(\mathbf{x}_n) - \nabla F_{\theta}(\tilde{\mathbf{x}}^d_n) \right) \]

\[\nabla f^{GSM} = \frac{2}{N} \sum_{n=1}^{N} \sum_{d=1}^{D} g'_{GSM}(r_{dn}) r_{dn} \left(\nabla F_{\theta}(\mathbf{x}_n) - \nabla F_{\theta}(\tilde{\mathbf{x}}^d_n) \right) \]
Comparison: Weighting Functions

\[\frac{P_\theta(x_n)}{P_\theta(\bar{x}_n^d)} \]

\[\frac{P_\theta(x_n)}{P_\theta(\bar{x}_n^d)} \]
Comparison: Weighting Functions

What about MPF?

\[\frac{P_\theta(x_n)}{P_\theta(x^d_n)} \]
Comparison: A Manifold of Estimators?

Dimensions:
1. Neighborhood structure around data configurations.
2. Form of loss function on the probability ratio.
 - Smooth
 - Monotonically decreasing
 - Bounded below
 - Others?

Covers: PL, GLP, NLCE, RM, GSM, MPF

Limitations: No good for missing data/explicit latent variables.
Outline:

• Boltzmann Machines and RBMs
• Inductive Principles
 • Maximum Likelihood
 • Contrastive Divergence
 • Pseudo-Likelihood
 • Ratio Matching
 • Generalized Score Matching
• Experiments
• Demo
Experiments:

Data Sets:
- MNIST handwritten digits
- 20 News Groups
- CalTech 101 Silhouettes

Evaluation Criteria:
- Log likelihood (using AIS estimator)
- Classification error
- Reconstruction error
- De-noising
- Novelty detection
Experiments: Log Likelihood

(a) MNIST

(b) 20News

(c) CalTech
Experiments: Classification Error

(a) MNIST

(b) 20News

(c) CalTech
Experiments: De-noising

(a) MNIST

(b) 20News

(c) CalTech

MSE vs. % Noise for different datasets and methods.
Experiments: Novelty Detection

(a) MNIST (b) 20News (c) CalTech

Free Energy vs. % Noise for different datasets and noise levels.
Experiments: Learned Weights on MNIST