Benjamin Marlin, Kevin Swersky, Bo Chen and Nando de Freitas

Inductive Principles for Restricted Boltzmann Machine Learning

Benjamin Marlin

Department of Computer Science University of British Columbia

Joint work with Kevin Swersky, Bo Chen and Nando de Freitas

Introduction: Maximum Likelihood

• Maximum Likelihood Estimation is statistically consistent and efficient but is not computationally tractable for many models of interest like RBM's, MRF's, CRF's due to the partition function.

Introduction: Alternative Estimators

• Recent work has seen the proposal of many new estimators that trade consistency/efficiency for computational tractability including RM, SM, GSM, MPF, NCE, NLCE.

Introduction: Alternative Estimators

 Our main interest is uncovering the relationships between these estimators and studying their theoretical and empirical properties.

Benjamin Marlin, Kevin Swersky, Bo Chen and Nando de Freitas

Outline:

- Boltzmann Machines and RBMs
- Inductive Principles
 - Maximum Likelihood
 - Contrastive Divergence
 - Pseudo-Likelihood
 - Ratio Matching
 - Generalized Score Matching
 - Minimum Probability Flow
- Experiments
- Demo

Introduction: Restricted Boltzmann Machines

K Hidden Units

D Visible Units

- A Restricted Boltzmann Machine (RBM) is a Boltzmann Machine with a bipartite graph structure.
- Typically one layer of nodes are fully observed variables (the visible layer), while the other consists of latent variables (the hidden layer).

Introduction: Restricted Boltzmann Machines

 The joint probability of the visible and hidden variables is defined through a bilinear energy function.

$$E_{\theta}(x, h) = -(x^{T}Wh + x^{T}b + h^{T}c)$$

$$P_{\theta}(x, h) = \frac{1}{\mathcal{Z}} \exp(-E_{\theta}(x, h))$$

$$\mathcal{Z} = \sum_{x' \in \mathcal{X}} \sum_{h' \in \mathcal{H}} \exp(-E_{\theta}(x', h'))$$

Introduction: Restricted Boltzmann Machines

• The bipartite graph structure gives the RBM a special property: the visible variables are conditionally independent given the hidden variables and vice versa.

$$P_{\theta}(x_d = 1|h) = \frac{1}{1 + \exp(-(\sum_{k=1}^{K} W_{dk} h_k + x_d b_d))}$$

$$P_{\theta}(h_k = 1|x) = \frac{1}{1 + \exp(-(\sum_{d=1}^{D} W_{dk} x_d + h_k c_k))}$$

Benjamin Marlin, Kevin Swersky, Bo Chen and Nando de Freitas

Introduction: Restricted Boltzmann Machines

 The marginal probability of the visible vector is obtained by summing out over all joint states of the hidden variables.

$$P_{\theta}(x) = \frac{1}{\mathcal{Z}} \sum_{h \in \mathcal{H}} \exp(-E_{\theta}(x, h))$$

$$P_{\theta}(x) = \frac{1}{\mathcal{Z}} \exp\left(-F_{\theta}(x)\right)$$

$$F_{\theta}(x) = -\left(x^T b + \sum_{k=1}^K \log\left(1 + \exp\left(x^T W_k + c_k\right)\right)\right)$$

Introduction: Restricted Boltzmann Machines

- This construction eliminates the latent, hidden variables, leaving a distribution defined in terms of the visible variables.
- However, computing the normalizing constant (partition function) still has exponential complexity in D.

$$\mathcal{Z} = \sum_{\boldsymbol{x}' \in \mathcal{X}} \exp\left(-F_{\theta}(\boldsymbol{x}')\right)$$

Benjamin Marlin, Kevin Swersky, Bo Chen and Nando de Freitas

Outline:

- Boltzmann Machines and RBMs
- Inductive Principles
 - Maximum Likelihood
 - Contrastive Divergence
 - Pseudo-Likelihood
 - Ratio Matching
 - Generalized Score Matching
- Experiments
- Demo

Stochastic Maximum Likelihood

• Exact maximum likelihood learning is intractable in an RBM. Stochastic ML estimation can instead be applied, usually using a simple block Gibbs sampler.

$$f^{ML}(\theta) = \sum_{\boldsymbol{x} \in \mathcal{X}} P_e(\boldsymbol{x}) \log P_{\theta}(\boldsymbol{x})$$

Stochastic Maximum Likelihood

Exact maximum likelihood learning is intractable in an RBM.
 Stochastic ML estimation can instead be applied, usually using a simple block Gibbs sampler.

[•]L. Younes. Parametric inference for imperfectly observed Gibbsian fields. Prob. Th. and Related Fields, 82(4):625–645, 1989.

[•]T. Tieleman. Training restricted Boltzmann machines using approximations to the likelihood gradient. ICML 25, 2008.

Benjamin Marlin, Kevin Swersky, Bo Chen and Nando de Freitas

Contrastive Divergence

• The contrastive divergence principle results in a gradient that looks identical to stochastic maximum likelihood. The difference is that CD samples from the T-step Gibbs distribution.

$$f^{CD}(\theta) = \sum_{\boldsymbol{x} \in \mathcal{X}} P_e(\boldsymbol{x}) \log \left(\frac{P_e(\boldsymbol{x})}{P_{\theta}(\boldsymbol{x})} \right) - Q_{\theta}^t(\boldsymbol{x}) \log \left(\frac{Q_{\theta}^t(\boldsymbol{x})}{P_{\theta}(\boldsymbol{x})} \right)$$

Benjamin Marlin, Kevin Swersky, Bo Chen and Nando de Freitas

Contrastive Divergence

• The contrastive divergence principle results in a gradient that looks identical to stochastic maximum likelihood. The difference is that CD samples from the T-step Gibbs distribution.

Update Weights & Reset Chain to Data

Benjamin Marlin, Kevin Swersky, Bo Chen and Nando de Freitas

Pseudo-Likelihood

 The principle of maximum pseudo-likelihood is based on optimizing a product of one-dimensional conditional densities under a log loss.

$$f^{PL}(\theta) = \sum_{\boldsymbol{x} \in \mathcal{X}} \sum_{d=1}^{D} P_{e}(\boldsymbol{x}) \log P_{\theta}(\boldsymbol{x}_{d} | \boldsymbol{x}_{-d})$$

$$= \frac{1}{N} \sum_{n,d} g_{PL}(r_{dn})$$

$$g_{PL}(r) = -\log(1 + r^{-1})$$

$$r_{dn} = P_{\theta}(\boldsymbol{x}_{n}) / P_{\theta}(\bar{\boldsymbol{x}}_{n}^{d})$$

Benjamin Marlin, Kevin Swersky, Bo Chen and Nando de Freitas

Pseudo-Likelihood

 The principle of maximum pseudo-likelihood is based on optimizing a product of one-dimensional conditional densities under a log loss.

Benjamin Marlin, Kevin Swersky, Bo Chen and Nando de Freitas

Ratio Matching

 The ratio matching principle is very similar to pseudolikelihood, but is based on minimizing a squared difference between one dimensional conditional distributions.

$$f^{RM}(\theta) = \sum_{\boldsymbol{x} \in \mathcal{X}} \sum_{d=1}^{D} \sum_{\xi \in \{0,1\}} P_{e}(\boldsymbol{x}) \Big(P_{\theta}(X_{d} = \xi | \boldsymbol{x}_{-d}) - P_{e}(X_{d} = \xi | \boldsymbol{x}_{-d}) \Big)^{2}$$

$$= \frac{1}{N} \sum_{n=1}^{N} \sum_{d=1}^{D} g_{RM}(r_{dn})$$

$$g_{RM}(r) = (1+r)^{-2}$$

Aapo Hyvarinen. Some extensions of score matching. Computational Statistics & Data Analysis, 51(5):2499–2512, 2007.

Benjamin Marlin, Kevin Swersky, Bo Chen and Nando de Freitas

Generalized Score Matching

• The generalized score matching principle is similar to ratio matching, except that the difference between inverse one dimensional conditional distributions is minimized.

$$f^{GSM}(\theta) = \sum_{x \in \mathcal{X}} \sum_{d=1}^{D} P_e(x) \left(\frac{1}{P_{\theta}(x_d|x_{-d})} - \frac{1}{P_e(x_d|x_{-d})} \right)^2$$

$$= \frac{1}{N} \sum_{n=1}^{N} \sum_{d=1}^{D} g_{GSM}(r_{dn})$$

$$g_{GSM}(r) = r^{-2} - 2r$$

Siwei Lyu. Interpretation and generalization of score matching. In Uncertainty in Artificial Intelligence 25, 2009.

Benjamin Marlin, Kevin Swersky, Bo Chen and Nando de Freitas

Minimum Probability Flow

 Minimize the flow of probability from data states to non-data states (as we've just seen!).

$$f^{MPF}(\theta) = \sum_{x \in \mathcal{X}} \sum_{d=1}^{D} P_e(x) \log P_{\theta}^{(\epsilon)}(x)$$

$$\approx \frac{1}{N} \sum_{n=1}^{N} \sum_{d=1}^{D} I[P_e(\bar{x}_n^d) = 0] g_{MPF}(r_{dn})$$
 $g_{MPF}(r) = r^{-1/2}$

Jascha Sohl-Dickstein, Peter Battaglino, Michael R. DeWeese. Minimum Probability Flow Learning.

Benjamin Marlin, Kevin Swersky, Bo Chen and Nando de Freitas

Comparison: Gradients

$$\nabla f^{ML} \approx -\left(\frac{1}{N}\sum_{n=1}^{N}\nabla F_{\theta}(\boldsymbol{x}_{n}) - \frac{1}{S}\sum_{s=1}^{S}\nabla F_{\theta}(\tilde{\boldsymbol{x}}_{s})\right)$$

$$\nabla f^{CD} \approx -\frac{1}{N}\sum_{n=1}^{N}\left(\nabla F_{\theta}(\boldsymbol{x}_{n}) - \nabla F_{\theta}(\tilde{\boldsymbol{x}}_{n})\right)$$

$$\nabla f^{PL} = \frac{-1}{N}\sum_{n,d}g'_{PL}(r_{dn})r_{dn}\left(\nabla F_{\theta}(\boldsymbol{x}_{n}) - \nabla F_{\theta}(\bar{\boldsymbol{x}}_{n}^{d})\right)$$

$$\nabla f^{RM} = \frac{2}{N}\sum_{n=1}^{N}\sum_{d=1}^{D}g'_{RM}(r_{dn})r_{dn}\left(\nabla F_{\theta}(\boldsymbol{x}_{n}) - \nabla F_{\theta}(\bar{\boldsymbol{x}}_{n}^{d})\right)$$

$$\nabla f^{GSM} = \frac{2}{N}\sum_{n=1}^{N}\sum_{d=1}^{D}g'_{GSM}(r_{dn})r_{dn}\left(\nabla F_{\theta}(\boldsymbol{x}_{n}) - \nabla F_{\theta}(\bar{\boldsymbol{x}}_{n}^{d})\right)$$

Benjamin Marlin, Kevin Swersky, Bo Chen and Nando de Freitas

Comparison: Weighting Functions

Benjamin Marlin, Kevin Swersky, Bo Chen and Nando de Freitas

Comparison: Weighting Functions

What about MPF?

$$P_{\theta}(\boldsymbol{x}_n)/P_{\theta}(\bar{\boldsymbol{x}}_n^d)$$

Comparison: A Manifold of Estimators?

Dimensions:

- 1. Neighborhood structure around data configurations.
- 2. Form of loss function on the probability ratio.
 - Smooth
 - Monotonically decreasing
 - Bounded below
 - Others?

Covers: PL, GLP, NLCE, RM, GSM, MPF

Limitations: No good for missing data/explicit latent variables.

Benjamin Marlin, Kevin Swersky, Bo Chen and Nando de Freitas

Outline:

- Boltzmann Machines and RBMs
- Inductive Principles
 - Maximum Likelihood
 - Contrastive Divergence
 - Pseudo-Likelihood
 - Ratio Matching
 - Generalized Score Matching
- Experiments
- Demo

Benjamin Marlin, Kevin Swersky, Bo Chen and Nando de Freitas

Experiments:

Data Sets:

- MNIST handwritten digits
- 20 News Groups
- CalTech 101 Silhouettes

Evaluation Criteria:

- Log likelihood (using AIS estimator)
- Classification error
- Reconstruction error
- De-noising
- Novelty detection

Benjamin Marlin, Kevin Swersky, Bo Chen and Nando de Freitas

Experiments: Log Likelihood

Benjamin Marlin, Kevin Swersky, Bo Chen and Nando de Freitas

Experiments: Classification Error

(a) MNIST

(b) 20News

(c) CalTech

Benjamin Marlin, Kevin Swersky, Bo Chen and Nando de Freitas

Experiments: De-noising

Benjamin Marlin, Kevin Swersky, Bo Chen and Nando de Freitas

Experiments: Novelty Detection

Benjamin Marlin, Kevin Swersky, Bo Chen and Nando de Freitas

Experiments: Learned Weights on MNIST

(a) CD

(b) SML

(d) RM