
OpenSSL
Julian Sequeira and Shayan Ghazi

RSA Overview

RSA Overview (2)

M: Message

C: Ciphertext (encrypted string)

n = p*q

RSA Overview (3)

Only for efficiency

RSA Overview (4)

1. Prime generation is easy - it’s easy to find a random prime number, even large ones

2. Multiplication is easy - given p and q, it’s easy to calculate n = pq

3. Modulo inverse is easy - given e and φ(n), it’s easy to calculate d s.t. ed mod φ(n) = 1

4. Modular exponentiation is easy - given n, m and e, it’s easy to compute c = m^e mod n

5. Prime factorization is hard - given n it’s hard to find primes p and q such that pq = n

6. Modular root extraction is hard - given n, e and c, it’s difficult to recover m such that

c = m^e mod n, without knowing p or q (or d).

RSA Overview (5)

● Often e is picked first, then n = pq is chosen such that gcd(e, φ(n)) = 1

● The default value of e in OpenSSL is 65,537

● This is a Fermat prime, with the form 2^(2^k) + 1, where k = 4

● This allows calculating m^e to be faster - you square m, k+1 times,
and then multiply the result by m.

Demo

A B
Using OpenSSL to securely communicate between two parties

Demo: Create Alice’s private key

openssl genpkey -algorithm RSA -pkeyopt rsa_keygen_bits:2048

-pkeyopt rsa_keygen_pubexp:3 -out privkey-A.pem

This command creates a generates a private key (genpkey) with a specified

algorithm (RSA) we provide the size of n in bits and and the value of e and the

output file (privkey-A.pem)

Demo: Create Alice’s public key

openssl pkey -in privkey-A.pem -pubout -out pubkey-A.pem

This command takes in a private key (pkey -in) with a specified name

(privkey-A.pem) and the outputs a public key (-pubout) with specified name

(pubkey-A.pem)

Demo: How to view private keys (as text)...

openssl pkey -in privkey.pem -text -noout | less

This command takes in a private key (privkey.pem in example above). We want

to view as -text and we pipe into less for easy sequential viewing. The -noout

prevents the base64 encoding from being printed as well.

Demo: How to view public keys (as text)...

openssl pkey -in pubkey.pem -pubin -text -noout | less

This command takes in a public key (using -pubin, pubkey.pem in example

above). We want to view as -text and we pipe into less for easy sequential

viewing.

Demo: Alice creates a signing request

openssl req -new -key privkey-A.pem -out A-req.csr

Here you specify details for a certificate you want to create. It will prompt you

for your country, organization, email, etc… This request will be processed by a

certificate authority, who will generate a certificate for Alice.

Demo: Generate the certificate

openssl x509 -req -in A-req.csr -CA root.crt -CAkey root.key

-CAcreateserial -out Alice.crt -days 500 -sha256

The Certificate Authority generates a certificate using the x509 utility. It takes

in a request (-req -in A-req.csr) and outputs to A.crt. We specify the length of

its validity (-days 500). -CAcreateserial creates a serial file and assigns a serial

number to the certificate. A fingerprint is created using the sha256 algorithm

Demo: View the certificate

openssl x509 -in Alice.crt -text -noout

This command allows you to view the certificate in text. The -noout option is so

the base64 encoding of the certificate does not also get printed. Using this you

can view details such as it’s expiry date, serial number, issuer, etc…

Demo: Verify the certificate against the CA

openssl verify -CAfile root.crt Bob.crt

The verify utility can be used to check if Bob’s certificate was signed by the

certificate authority’s certificate (-CAfile root.crt). You should get a B.crt: OK if

the certificate can be trusted.

Chain of Trust

Demo: Extract a public key from a certificate

openssl x509 -pubkey -in Bob.crt -noout > pubkey-B.pem

Extract the public key using the -pubkey option and put it in pubkey-B.pem

Alice now has Bob’s public key, and can use it to encrypt files to send to Bob.

Demo: Alice encrypts her message

openssl pkeyutl -encrypt -in largefile.txt -pubin -inkey

pubkey-B.pem -out ciphertext.bin

Using utilities (pkeyutl) Alice will encrypt (-encrpyt) the message.txt file using

a public key (-pubin). She will use Bob’s public key (-inkey pubkey-B.pem) so

only Bob can decrypt the file. Alice stores the output in ciphertext.bin.

Demo: Error!

Public Key operation error - data too large for key
size:rsa_pk1.c:153:

RSA can only encrypt data smaller than the key length- it is not for encrypting

arbitrarily large files! The solution here is to use symmetric key encryption-

Alice can generate a symmetric key and share it with Bob using RSA.

Demo: Alice generates a random key

openssl rand -base64 32 -out symkey.pem

The rand command is a pseudo-random byte generator. It is seeded using the

$HOME/.rnd file, and can take in additional seed sources using the -rand flag.

Alice outputs 32 random bytes to symkey.pem and encodes it in base64.

Demo: Alice encrypts her symkey

openssl pkeyutl -encrypt -in symkey.pem -pubin -inkey

pubkey-B.pem -out symkey.enc.pem

Using utilities (pkeyutl) Alice will encrypt (-encrpyt) the symkey.pem file using

a public key (-pubin). She will use Bob’s public key (-inkey pubkey-B.pem) so

only Bob can decrypt it. Alice stores the output in symkey.enc.pem.

Demo: Alice’s encrypted signature

openssl dgst -sha1 -sign privkey-A.pem -out signature.bin

symkey.pem

Alice will hash the symkey using the sha256 algorithm (dgst -sha256). She

then encrypts the hash with her private key (-sign privkey-A.pem). The output

is signature.bin

Demo: Alice transmits her encrypted
message and signature

cp signature.bin ../Bob

cp symkey.enc.pem ../Bob

We want to send our (Alice’s) encrypted message (ciphertext) and signature

(signature.bin) to Bob. For the demo, we’ll simply copy the files over to Bob’s

folder - but you can imagine this happening over a network via some transfer

protocol.

Demo: Bob decrypts Alice’s message

openssl pkeyutl -decrypt -in symkey.enc.pem -inkey privkey-B.pem

-out symkey.pem

Using utilities (pkeyutl), Bob can decrypt (-decrypt) taking in (-in) the file to

decrypt (ciphertext.bin) using a provided key (-inkey privkey-B.pem). Finally,

the decrypted text is outputted (-out) to (symkey.pem)

Demo: Bob verifies message is from Alice

openssl dgst -sha1 -verify pubkey-A.pem -signature signature.bin

symkey.pem

For Bob to verify the message, he applies the same hash that Alice used for her

signature (dgst -sha1) and uses her public key (-pubkey-A.pem) to verify

(-verify) the provided signature (-signature signature.bin) by decrypting it and

comparing the result to the hashed, decrypted message (symkey.pem)

Demo: Alice encrypts the largefile using AES

openssl enc -aes-256-cbc -pass file:symkey.pem -p -md sha256 -in

largefile.txt -out ciphertext.bin

The enc utility is used for symmetric key encryption, with aes-256-cbc

specified as the algorithm. The key derivation function uses sha256, and the

-p flag will print the key, salt and initialization vector to the screen.

Demo: Alice sends the ciphertext to Bob

cp ciphertext.bin ../Bob

Again, we’ll simply copy it over for the demo, but this can be done over a

network just as easily.

Demo: Bob decrypts the ciphertext

openssl enc -aes-256-cbc -d -pass file:symkey.pem -p -md sha256

-in ciphertext.bin -out largefile_received.txt

Bob will decrypt the ciphertext using a similar command that Alice used to

encrypt it. Note: Bob needs to know what encryption Alice used for this to work.

He will use the -d flag to specify decryption and put it in largefile_received.txt.

Demo: A summary - what happened?

1. Alice generated public and private keys

2. Alice generated a certificate signing request- the CA took it and made her a certificate

3. Alice extracted Bob’s public key from Bob’s certificate

4. Alice generated a symmetric key and encrypted it with Bob’s public key (symkey.enc.pem)

5. Alice hashed the symmetric key, then encrypted her hash with her private key (signature.bin)

6. Bob decrypted symkey.enc.pem with his private key to get symkey.pem

7. Bob decrypted signature.bin with Alice’s public key, hashed symkey.pem and compared them

8. Alice used the symkey to encrypt largefile.txt

9. Bob used the symkey to decrypt largefile.txt

References

https://prefetch.net/articles/realworldssl.html

http://www.cs.toronto.edu/~arnold/347/17f/lectures/crypto/

https://www.openssl.org/docs/

https://www.openssl.org/docs/manpages.html

https://www.johndcook.com/blog/2018/12/12/rsa-exponent/

https://jamielinux.com/docs/openssl-certificate-authority/create-the-root-pair.html

https://gist.github.com/fntlnz/cf14feb5a46b2eda428e000157447309

https://prefetch.net/articles/realworldssl.html
http://www.cs.toronto.edu/~arnold/347/17f/lectures/crypto/
https://www.openssl.org/docs/
https://www.openssl.org/docs/manpages.html
https://www.johndcook.com/blog/2018/12/12/rsa-exponent/
https://jamielinux.com/docs/openssl-certificate-authority/create-the-root-pair.html
https://gist.github.com/fntlnz/cf14feb5a46b2eda428e000157447309

Extra: Root CA makes self-signed certificate

openssl req -x509 -new -nodes -key rootCA.key -sha256 -days 1024

-out rootCA.crt

Here is a command to self-sign a certificate, we used this for our pseudo root

CA (the trusted third-party).

