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What is Spectre and Meltdown?
● Two variants of a vulnerability in modern processors

● Could allow attackers access to data presumed to be protected

● Certain PoCs have been shown to be able to:
○ Access memory which otherwise should not be accessible (sometimes between 

processes)

○ Access memory from the kernel memory space (from an unprivileged program execution)

● Exploit two major designs in modern processors: caching and 

speculative (/out-of-order) execution



Who and What do they Affect?
● Affects some/all modern processors, servers, mobile phones (Apple SoCs)

● Meltdown
○ Intel, ARM, IBM ...

● Spectre:
○ Intel, AMD, ARM, IBM ...

● Affects all operating systems
○ MacOS, Linux, Windows



Side-Channel Attacks
● Attack based on information gained from the implementation of a 

computer system.

○ Caches: attack which monitors how quickly data accesses take and infer whether or not 

said data was in the cache

○ Timing: attack which monitors time it takes for machine to do various computations

○ Power-monitoring: attack which monitors power consumption of hardware on varius 

computations

○ etc. 



In this case... 
The side channel comes from monitoring how quickly data can be accessed 
from the cache.

Data which is accessed quickly => stored in the cache

Data which is accessed slowly => stored in main memory



What do they exploit?
● Speculative (/out-of-order) Execution 

● Caching



Speculative Execution
● Goal: we want to use the CPU as much as possible

● A processor will try to compute something even before it is asked to do so

● Ex.

● Processor will do some work ahead of time to compute functions F1 and 

F2 even though we don’t know which will be executed

bool A = some condition
if A is true:

then execute function F1()
else:

execute function F2()  



Speculative Execution cont.
● Predict what will happen in the future

● If there is branching (i.e. if statements, some loop forms), the processor 

will execute some code which it thinks it will need to do later on

● If a branch is taken, the processor can continue like normal, it guessed 

correctly

● If a branch is not taken, the work must be discarded, it guessed 

incorrectly (work still stored on cache)



Inside the CPU
If one processing unit is free
the CPU will try to assign a piece of an 
instruction to use that unit.

E.g. One instruction uses the ALU
while another uses the memory unit



High Level Example
Note: Ignoring the specifics of how a CPU works.

An add instruction may be currently using the ALU to compute the addition 

of two values stored in separate registers. The instruction is probably already 

done using the memory unit...

The CPU can look ahead in the instruction sequence and see if it finds a load 

(from memory) instruction. If it does, it can start executing that instruction 

because the memory unit is available. 



Speculative Execution - A Real Life Example

















1. Hanging out with a group of friends

2. The group wants to order some pizza

3. A member of the group calls the pizza store to place an order

4. The order that that group member places is based on what the group 

usually orders

5. The member comes back to join the group and realizes the group wants 

to order something completely different

6. The member calls back the pizza store to change the order. 
a. The pizza store has to start over and throw away the previous wrong order

b. Wasted time making the previous order so now they need to start fresh

7. The group has to wait for the store to finish the new order which is what 

will be delivered to them



Caching
● The CPU requests data from memory which is stored in a cache

● Speeds up memory access

● Temporal locality: something which was accessed recently from memory 

might be accessed again soon
○ Ex. a counter in a loop

● Spatial locality: something which is close to another thing which was 

accessed recently might be accessed soon
○ Ex. elements in an array
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Attacker - Exploiting Cache
● Flush  + Reload

○ Flush any access of memory for data you control from the cache (by clflush)

○ Lets malicious (or user program) run and access memory you control with secret

○ Try reloading elements from the controlled memory and see how quickly they are 

accessed

● Evict  + Reload (mostly used if cflush is unavailable)
○ Evicting memory access of data you control by loading other (possibly random) data into 

the cache

○ Due to limited size of cache           evict the specific cache line

○ Let victim program run and access memory using secret, reload data and measure access 

time



Mitigation
● Funny: 

https://web.archive.org/web/20180104032628/https://www.kb.cert.org/vu

ls/id/584653

● Best solution is to redesign modern CPUs

https://web.archive.org/web/20180104032628/https://www.kb.cert.org/vuls/id/584653
https://web.archive.org/web/20180104032628/https://www.kb.cert.org/vuls/id/584653


Meltdown



Impact
● Modern processors

○ Intel (mostly!)

○ IBM and ARM (minimally)

● Cloud providers
○ Specifically those that rely on Intel CPUs

● Containers such as Docker, OpenVZ, and LXC



What is Meltdown?
● An unprivileged user program can read kernel memory

○ Use of out-of-order instruction execution and memory-to-cache access in processor

○ Abuse privilege check of memory access after data has been brought from memory

● One major variant
○ Rogue data cache load (CVE-2017-5754)



Recall
● The operating system provides a user process with the illusion that they 

have a large (e.g. infinite) amount of memory to use
○ In reality the actual physical memory is limited

● The kernel address space is mapped to the user address space for 

efficiency and performance (and possibly more reasons)
○ E.g. if a system call happens, context switching into the kernel address space will just take 

too long otherwise

● Protection with hardware protection bit which usually traps to the 

operating system



Meltdown - One Major Variant
● Modern CPUs enforce a privilege check of a program accessing kernel 

memory
○ This privilege check sometimes occurs too late during speculative execution, i.e. once the 

data has already been read

● The CPUs knows that this occurs so anything unprivileged which was 

executed will be forgotten and an exception will be raised (usually 

SIGSEGV)

● So what’s the problem? Recall: memory accessed recently is still stored in 

cache



● Allocate an array with some size = 256 * cache line size (e.g. 4K, 8K)
○ Large size ensures that only specific indices from the array will be cached

● Read from kernel memory at the index in the array
○ E.g. array [ read( kernel_memory ) ]

○ This will store array [ read ( kernel_memory ) ] in the cache

● The privilege check occurs once the read instruction is thrown out (i.e. has 

been fully executed and the CPU is done with it)

● If we can store the data from kernel memory before the privilege check is 

performed we can read data from kernel memory through a “covert 

channel”

Meltdown - Walkthrough



Attacker controls an array...

create $array[256 * 4096]

256 is key to distinguish the character stored in kernel memory

4096 is a variable value which represents the cache line size. The cache line 
size stores data accessed from memory (think: temporal and spatial locality). 
We want this to be as big as the cache line so that other possible kernel data 
values are not brought into the cache.



The attacker makes an access to kernel memory…

access $kernelMemory, $register

This reads data from address $kernelMemory and stores the data in $register



The attacker preps the value to be stored in the array…

shiftleft $register, 0x0C

Shifts the value stored in $register by 12... value x 4096 (2^12)



Attacker stores the value into their controlled array…

store $array, read[ $register + $array ]

This will store a value into the $array at index $register



Meltdown - One Major Variant (Example)
Pseudo-assembly:

create $array[256 * 4096] /* done beforehand  */

1. access $kernelMemory, $register 
2. shiftleft $register, 0x0C
3. store $array, read[ $register + $array ]

This instruction sequence is executed out-of-order, the CPU will set up and 

execute pieces of instructions 1-3, until the read from kernel memory is done. 

There is a race condition between instructions 2 and 3 and the CPU raising an 

exception for the unprivileged access to kernel memory. 



Now the attacker can go through their array iterating over values 1*4096, 

2*4096,, 3*4096 … etc. 

The read of the array which is the fastest corresponds to the index into the 

array which was cached.

The data read from kernel memory can be extracted by taking the index of the 

fast array access and breaking it up as: k * 4096 where k corresponds to the 

character in kernel memory. 



Exception Handling vs Exception Suppression

We can improve the rate of success either by handling or suppressing the 

exception raised by the program once the access to kernel memory is done.



Exception Handling

Exception Handling: catch the exception when it occurs (e.g. fork application 

=> parent process will not be affected by exception, install your own signal 

handler etc.)



Exception Suppression

Exception Suppression: prevent the exception from being raised in the first 

place (e.g. place attacker code after a branch and force CPU to speculatively 

execute code, if the CPU guessed wrong it will “roll back”* and the exception 

will not be raised)

*roll back: erase things such as the instruction execution in registers, CPU pipeline etc. 



Mitigation
● Change how CPU handles privileged memory access

● CPU can improve privilege check for memory accesses before an 

instruction is executed (some draw back in performance?)

● Linux kernel: KAISER/KPTI [with KASLR]
○ KAISER: Limits how much of the kernel space is mapped to a processes address space

○ KASLR: randomizes the location of the kernel address space on boot up (can be brute 

forced though)

○ Variations also implemented in Windows and macOS (also: iOS and tvOS)



Proof of Concept

https://github.com/IAIK/meltdown

https://github.com/IAIK/meltdown


Linux Kernel source code mitigation for Meltdown:

Source: https://lkml.org/lkml/2017/12/27/2

https://lkml.org/lkml/2017/12/27/2


Spectre



Impact
● Almost every computer system 

○ Intel
○ AMD
○ ARM-based
○ IBM-processors
○ etc. 

● Browsers
○ Chrome

● Cloud Providers
○ Stronger impact than Meltdown



What is Spectre? 
● Reading data from a user processes address space by…

○ Tricking the CPU into speculatively executing instructions that would otherwise not be 

executed

● Result: leaks the information (from cache) via a side channel to the 

adversary

● Two major variants:
○ Bounds check bypass, Spectre-V1 (CVE-2017-5753)

○ Branch Target Injection, Spectre-V2 (CVE-2017-5715)



Major Difference to Meltdown
● Meltdown exploit：

○ Out-of-order instruction execution to read kernel data

● Spectre exploit：
○ Speculative instruction execution through indirect and conditional branching to read user 

process data (can be applied to kernel memory as well)



Variant 1 - Exploiting Conditional Branches
● Conditional Branch Prediction (refer to speculative execution)

● Train the CPU’s predictor into mispredicting the direction of a branch
○ Give branch predictor a certain amount of good values

○ Then give an evil value

○ Predictor will execute the code before the condition has been checked



Variant 1 - Exploiting Conditional Branches cont.
● The result will be discard, but the memory access will remain in cache.  

● Check the memory latency for accessing specific data and analyze the 

results
○ Accessing cache is way more faster than accessing main memory...



Variant 1 - Exploiting Conditional Branches cont.

● For example: 

if (x < array1_size)

y = array2[array1[x] * 4096];

● x = (address of a secret byte to read) - (base address of array1)



Variant 1 - Real Life Example
● Background: you’re working at a company  and you want to know if your 

boss will be away for a specific week



Variant 1 - Real Life Example cont.
1. You prep by calling the administration team every week and asking them 

to confirm your contact information

2. The week before you want to know whether or not your boss is away you 

call and ask the administration team to 

confirm your contact information iff the 

boss will be away the next week



Variant 1 - Real Life Example cont.
3.   The team loads up the boss’ schedule and your information based on the 

boss’ presence next week. Only after they are done do they remember the 

boss told them not to tell anyone about his schedule.

4.   They tell you “We can’t tell you that information” 

and you respond with “Okay but can you tell me 

if my phone number is still listed as ###-#####”



Variant 1 - Real Life Example cont.
One of two things can happen...

● If they respond quickly [with a “yes”] then the boss is highly likely (almost 

certainly) going to be away next week

● If they take some time to respond then the boss is highly likely (almost 

certainly) not going to be away next week



Variant 2 - Exploiting Indirect Branches
● Gadget: a machine code snippet found in code of victim

● Indirect Branch: jumping to code at some memory location
○ e.g. jmp [eax] => jump to instruction stored at memory address in register eax

● Attacker chooses a gadget from the victim’s address space and then 
forces the CPU to speculatively execute the gadget

○ Not reliant on the vulnerability of victims code.
○ Attacker has to find the virtual address of gadget



Variant 2 - Background

Exploiting Branch Target Buffer (BTB) …



Branch Target Buffer (BTB)
● Unit inside the CPU which stores a mapping of source addresses of 

recently executed branch instructions to destination addresses

● Used for processors to predict future code addresses without even 

decoding the branch instruction

○ How it improves performance? - Speculative Execution 

● Only the 31 least significant bits of the branch address are used to index 

the BTB (the major reason for why spectre works) 



Branch Target Buffer (BTB)
● Why is this useful? 

● Allows the CPU to speculatively execute code at predicted indirect branch 

target without actually having decoded the branch instructions

● Can improve performance if indirect branch prediction is correct by 

allowing processor to execute ahead
○ Likewise can harm performance if prediction is incorrect.



Variant 2 - Exploiting Indirect Branches cont.

● Attacker trains the Branch 

Target Buffer (BTB) to 

mispredict a branch from an 

indirect branch instruction to 

the address of the gadget.



Variant 2 - Exploiting Indirect Branches cont.
● Gadget was run by speculative execution because of branch 

misprediction
○ Some states in the CPU may be wiped clean of the operations ever having been executed

○ However, the results will still be in the cache



Advanced...
● Mistrain Branches History Buffer (BHB)

● Mistrain return instruction - Return Stack Buffer

● Contention on arithmetic units

● V3c Composition Attack

● Javascript is also vulnerable to the Spectre
○ Enable `#shared-array-buffer` in `chrome:///flags`

○ https://xlab.tencent.com/special/spectre/spectre_check.html

○ https://github.com/cgvwzq/spectre

https://xlab.tencent.com/special/spectre/spectre_check.html
https://github.com/cgvwzq/spectre


Mitigation Options
● Preventing Speculative Execution:

○ Ensure control flow leads the instruction

○ Software using serialization or speculation blocking

○ Causing a significant degradation in the performance

● Preventing Access to Secret Data (more for JIT compiler)
○ Chrome: each website per process

● Limiting Data Extraction from Covert Channels

● Preventing Branch Poisoning



Mitigation Options cont
● Preventing Data from Entering Covert Channels 

○ Future processors (no such design is currently available) …

● KAISER/KPTI does not help for Mitigation



Proof of Concept

https://www.exploit-db.com/exploits/43427

https://www.youtube.com/watch?v=0kHFvUcQsWQ

https://www.exploit-db.com/exploits/43427
https://www.youtube.com/watch?v=0kHFvUcQsWQ


References
https://meltdownattack.com/meltdown.pdf 

https://spectreattack.com/spectre.pdf

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

http://www.cs.toronto.edu/~arnold/427/18s/427_18S/indepth/spectre_meltdown/index.html

https://www.kb.cert.org/vuls/id/584653/

https://www.slideshare.net/GavinGuo3/spectrev12-fv22fv4-vs-meltdownv3-102527086

https://github.com/IAIK/meltdown

https://www.csoonline.com/article/3247868/vulnerabilities/spectre-and-meltdown-explained-what-they-are-how-they-work-whats-at-risk.html

https://www.reddit.com/r/sysadmin/comments/7ot0ke/genius_explanation_of_meltdownspectre_malware/dscjd68/

http://www.cis.syr.edu/~wedu/seed/Labs_16.04/System/Spectre_Attack/Spectre_Attack.pdf

http://www.cis.syr.edu/~wedu/seed/Labs_16.04/System/Meltdown_Attack/Meltdown_Attack.pdf

https://meltdownattack.com/meltdown.pdf
https://spectreattack.com/spectre.pdf
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
http://www.cs.toronto.edu/~arnold/427/18s/427_18S/indepth/spectre_meltdown/index.html
https://www.kb.cert.org/vuls/id/584653/
https://www.slideshare.net/GavinGuo3/spectrev12-fv22fv4-vs-meltdownv3-102527086
https://github.com/IAIK/meltdown
https://www.csoonline.com/article/3247868/vulnerabilities/spectre-and-meltdown-explained-what-they-are-how-they-work-whats-at-risk.html
https://www.reddit.com/r/sysadmin/comments/7ot0ke/genius_explanation_of_meltdownspectre_malware/dscjd68/
http://www.cis.syr.edu/~wedu/seed/Labs_16.04/System/Spectre_Attack/Spectre_Attack.pdf
http://www.cis.syr.edu/~wedu/seed/Labs_16.04/System/Meltdown_Attack/Meltdown_Attack.pdf

