Containers
RunC
Proc File System

Iproc/<pid>/exe

This is a symbolic link that points back to the running process. However, unlike a
regular symbolic link, /proc/<pid>exe points directly to the process’ data in kernel
memory.

For example, if we deleted a process’ binary but the process is still running, then
its binary is still loaded in kernel memory. We can read the binary from /proc/<pid>/exe
even though the binary itself is deleted.

Iproc/self
This is a symbolic link that can be seen by every process, and resolves to the
process’ /proc/<pid> directory.

CVE-2019-5736

When a container engine (like Docker, Kubernetes, etc) creates a container or
attaches to a container (ex: Docker exec) it runs RunC, which then does an “execv()” on
the process we give it.

The RunC vulnerability exploits this and the /proc/self/exe link to write to the
host’s RunC binary from within the container. By telling RunC to run /proc/self/exe, an
attacker can create a /proc directory for RunC within the container which contains the
/<pid>/exe link that points directly tp the RunC binary in memory.

note: this exploit requires a root use inside the container (for write access to
RunC inside the container), and that the victim running the malicious container has root
access as well (to execv RunC).

Exploit
Step 1: setup

We create a container with a virtual linux file system (this file system links to the
system’s files, like /bin/sh and /bin/bash, but we can access these).

We can overwrite the /bin/sh link to return /proc/self/exe, so that a user
attempting to connect to our container (ex: using docker exec) will cause RunC to run
itself.

We then run a process which will loop through each /proc folder looking for a
/proc/<pid>/exe that points to RunC.



Step 2: trigger

When a user connects to the container, they may want to open a shell in order to
examine the files and processes inside. When they do this (for example, if they try to
run /bin/sh where we’ve overwritten) RunC will receive the /proc/self/exe link and
attempt to run itself.

The new instance of RunC will be spawned from inside the container, creating its
entry in the /proc file system.

The malicious program within the container will find this folder and save its file
descriptors (/proc/<pid>/fd) and start trying to open the file for writing. It won’t work yet
(since we can’t write to the binary while RunC is still running) but the program will keep
trying until it does.

When RunC terminates (we didn’t give it appropriate arguments since we were
trying to launch /bin/sh) it will simply close with a usage message and “docker exec” will
report that it couldn’t run /bin/sh. Now the malicious process can write a payload to the
RunC binary.

Step 3: infected RunC

Now that a payload has been written to RunC, whenever a superuser attempts to
create a container they will run an instance of RunC with root privileges, which will run
the attacker’s code.

Mitigation



