
 TOR
Onion routing and hidden services

TOR

Hosting “hidden”
websites. The dark

web.

Anonymity through
onion routing.

Why do people use TOR?

--Doxing Prevention
--Whistleblowers
--Political Views
--Sensitive Topics
--Censorship
--Bypass Surveillance
--Law Enforcement
--Cheese Pizza

“https://facebookcorewwwi.onion/”.
http://3g2upl4pq6kufc4m.onion/

https://facebookcorewwwi.onion/

Why is encryption not enough?

● Encryption hides the payload. Headers are left exposed. Both to the
receiver and Eve.

● Tor protects against traffic analysis, which reveals a lot of
information (e-commerce price discrimination based on country)

Alternatives. VPN?

● VPNs reveal the exact amount and
timing of communication.

● ISPs can keep logs of all of your
network traffic.

● Censorship not escaped
● ProxyChaining

○ Entry Node still knows who the
exit node is

What is Onion Routing?

● Tor directs Internet traffic through a free, worldwide, volunteer overlay network
consisting of more than seven thousand relays.

● Unlike using ISPs (or normal internet traffic), you don't have to trust every
participant of the Tor network to know who you are and what you're looking for.
WHY? Since everyone in the network only knows what’s behind them and what’s
after them.

● Traffic is routed through multiple nodes. This makes it a little bit more difficult to
trace the route but it is still very traceable. Why?

https://en.wikipedia.org/wiki/Overlay_network

Onion Routing continued

● The smart bit is using layered encryption
so every node can only decrypt part of the
message.

Main Players:*
1. A CLIENT’s local software aka onion proxy:

a. fetches directories
b. establishes circuits across the network
c. handles connections from user applications

2. A NODE (ONION ROUTER) maintains a long-term identity key and a short-term onion key:
a. Identity key:

i. sign TLS certificates
ii. sign the node’s router descriptor (a summary of its keys, address, bandwidth, exit

policy, etc)
iii. sign directories (if node is a directory server)

b. Onion key: (RSA Private key!)
i. decrypt requests from users to set up a circuit and negotiate ephemeral (short-term)

session keys

3. Packets are called CELLS. Each cell is 512 bytes.

Main Protocols:*
1. TLS:

a. Layer on top of all communications.
b. Why? So Eve does not know what is happening (Is a key exchange happening?

Is a normal message being sent? Eve doesn’t know).
2. RSA:

a. Only when setting up session keys to create a circuit.
b. Why? So that we can talk to nodeX (through other nodes) and have ONLY

nodeX understand what we’re saying.
3. Ephemeral DHKE (ephemeral = short-term keys, change often):

a. Only when setting up session keys.
b. Why make session keys, why not just use RSA? Can’t send large messages

using RSA!
c. Why Ephemeral? So we have “Perfect Forward Secrecy” i.e. if RSA private key

is ever compromised in the future, the attacker can’t decrypt previous
messages

4. AES
a. To actually encrypt the data!
b. We give AES the session key that DHKE set up for us

*

TLS Key TLS Key

TLS Key

Result of
DHKE

Diffie-Hellman Key Exchange

http://www.youtube.com/watch?v=YEBfamv-_do

Client, C, wants to connect to a server, S through the TOR network. Remember packets
in TOR are “cells”. All of this happens within a TLS layer.

1. C sends a “create” cell to the first node N1 (of C’s choice). This contains the first
half of the DHKE (gx) encrypted using N1’s onion key (RSA private key).

2. N1 sends a “created” cell to C. This contains the second half of DHKE (gy) along with a
hash of the negotiated key K1=gxy

Circuit Construction Steps*

 Client N1

To make sure that Mallory can not claim to be N1 and spoof this connection

Why bother have N1 send a hash of the key back to C? *

1. C sends a “relay extend” cell to the first node N1. This contains the address of the next
node chosen by C, N2, and the first half of the DHKE (gx2) encrypted using N2’s onion
key. Each node keeps track of its next hop, so the client does not share this info again.

2. N1 copies this encrypted half-handshake (gx2) into a “create” cell and passes it on to N2.

3. N2 replies with a “created” cell to N1. This contains the second half of DHKE (gy2) along
with a hash of the negotiated key K2=gx2y2

4. N1 now wraps the “created” message into a “relay extend” cell and sends that to C.
This is repeated for a selected N3.

 Client N1 N2
*

No, it just knows that it’s creating a symmetric key with someone but does not know who
that is.

Idea: can we use a public key to encrypt traffic returning
to C? *

Does N2 know who C is?

No, that makes C identifiable to all the nodes.

Using the Circuit
1. C sends a “relay” cell to N1 after encrypting the cell payload (that is, the relay

header and payload) with K3, K2, then K1.
2. N1 decrypts the relay header and payload with the session key, looks up the

node for the next step in the circuit (N2) and sends the decrypted relay cell to
N2.

▪ When N3 later replies to C with a relay cell, it encrypts the cell's relay header
and payload with the single key it shares with C, and sends the cell back toward
C along the circuit. Subsequent nodes add further layers of encryption as they
relay the cell back to C.

*

Note: Circuits are built preemptively in the background to avoid delays

Summary: *

https://svn.torproject.org/svn/projects/design-paper/tor-design.html

How many relay nodes?

How many relay nodes?

A Tor Circuit Contains 3 Relays
1. Entry/Guard Node
2. Middle Node
3. Exit Node

Why not two?
If the attacker owns both relays,

they can immediately sniff out who you
are. With 3 relays, the middle relay
can obscure what entry and exit node
the attacker needs to own.

Why not more than 3 relays?
The problem comes down to cost,

adding more relays does increase
security in exchange for increased
network load. However, you are still
susceptible to traffic analysis if the
attacker owns both the start and exit
nodes. Therefore, it was determined
that 3 relays was a good compromise.

https://www.torproject.org/docs/faq.html.en#ChoosePathLength

https://www.torproject.org/docs/faq.html.en#ChoosePathLength

Problems?
● What if there are hostile node

owners (eg. government)?

● What if DDoS attacks are used?

● What if network analysis is used
to establish patterns?

● Wouldn’t adding each encryption
layer add extra size to the
message?

● The nodes in the circuit are
chosen randomly.

● TOR handles load sharing.
Rerouting failures to avoid
detecting traffic paths.

● The route is reset by the TOR
network every 10 minutes.
Efficiency vs Security.

● “Cells” of fixed size.

Some of TOR’s Properties:*

▪ perfect forward secrecy

▪ Congestion control

▪ Directory servers

▪ Integrity checking

▪ configurable exit policies

▪ By using Incremental or telescoping path-building design instead of a
single multiply encrypted data structure

▪ By making Client negotiate session keys with each node in the circuit.
Once these keys are deleted, subsequently compromised nodes cannot
decrypt old traffic.

Perfect Forward Secrecy* ==
getting the key at some
point in the future
doesn’t expose old
messages

What protocols are supported?*

▪ Tor uses the standard and near-ubiquitous SOCKS proxy interface so most
TCP-based programs are supported without modification

Many TCP streams can share
one circuit*
▪ Improved Efficiency

Avoid multiple public key
operations for every request

▪ Improved anonymity
Building so many circuits could be a
threat to anonymity*

This was excluded from the algorithm described in
previous slides for simplicity

*https://www.freehaven.net/anonbib/cache/wright03.pdf

Is any content filtering done?*

Using Privoxy:
A non-caching web proxy with filtering capabilities for enhancing
privacy, manipulating cookies and modifying web page data and
HTTP headers before the page is rendered by the browser”

https://en.wikipedia.org/wiki/Web_cache
https://en.wikipedia.org/wiki/Proxy_server#Web_proxy_servers
https://en.wikipedia.org/wiki/Web_page
https://en.wikipedia.org/wiki/HTTP

▪ decentralized (no inter-node
control communication or global
views of traffic)

▪ uses end-to-end acks to maintain
anonymity while allowing nodes
at the edges of the network to
detect congestion or flooding and
send less data until the
congestion subsides.

Congestion Control*

▪ more trusted nodes act as directory
servers

▪ provide signed directories
describing known routers and their
current state.

▪ Clients periodically download them
via HTTP

▪ Better than the older approach of
flooding status info to all nodes

Directory Servers*

Online directory of TOR nodes

http://torstatus.blutmagie.de/

Integrity Checking*

Why is integrity checking critical?
 Any node on the circuit could change
the contents of data cells as they
passed by — for example, to alter a
connection request so it would connect
to a different webserver, or to ‘tag’
encrypted traffic and look for
corresponding corrupted traffic at the
network edges!

Configurable Exit Policies*

▪ Each node advertises a policy
describing the hosts and ports to
which it will connect

▪ Safer for exit node volunteers
because they can control the
types of traffic that will exit from
their nodes

Ways of using TOR
● TOR browser

○ Uses NoScript
○ “HTTPS everywhere” Firefox

extension
○ Using other browsers is

dangerous
● Other products
● Write your own program using

the related API:
https://stem.torproject.org

https://stem.torproject.org

Moving on to …

The Deep, Dark, Web

The Surface Web is anything indexed
by a search engine like Google,
Yahoo, Bing, etc. As of 2016 Google
indexes over 130 trillion pages, with
only 1 trillion pages indexed in 2008.
The Deep Web is anything that isn’t
indexed by a search engine like
Google, Yahoo, Bing, etc. This includes
dynamic pages that can only be
viewed with special permissions,
cookies, cache, etc. It’s estimated the
Deep Web is 500x bigger than the
Surface web.

The Dark Web is a subset of the Deep
Web. The unique feature of pages in
the Dark Web is that they follow a
unique protocol to encrypt information
differently, that is standard browsers
cannot read and decrypt these sites.
These protocols include TOR’s onion
service, I2P’s standard protocol, and
etc. These protocols helps preserve
the service hosts anonymity while
making themselves known to the
network.

Hidden Service(Rendezvous) Protocol

Hidden Service Protocol

The hidden service creates a Service
Descriptor containing it’s Public key
for Authentication and the IP
Addresses of the Relays acting as
introduction points. The Service
Descriptor gets signed with the hosts
private key.
The Service Descriptor now gets
added to a Distributed Hash Table,
where each relay holds a block of
the table.

The Hidden Service calculates it’s key pair

Hidden Service Protocol

Hidden Service Protocol

Hidden Service Protocol

The hidden service decrypts the
clients encrypted message with
their private key which contains
the rendezvous point and secret
message. The service now creates
a circuit to the rendezvous point if
they accept the message and
sends a one-time secret to the
rendezvous point. The rendezvous
point now establishes the
connection between the client and
the hidden service.

Hidden Service Protocol

De-Anonymization

Traffic Analysis:
● Timing Analysis
● Circuit reconstruction using

hostile nodes (limited success)
● Dumb users (EPICFAIL)

Sensitive Information:
Websites can tell if traffic comes

from a relay, sensitive information can
give out client identity. Un-Encrypted
Data containing sensitive information
can also give away identity to exit
node.

https://edwardsnowden.com/docs/doc/tor-stinks-presentation.pdf

NSA internal document

US IntelligenceUK intelligence

https://edwardsnowden.com/docs/doc/tor-stinks-presentation.pdf

Attack: Javascript Exploit(2013)

Attack:
Malicious JavaScript exploited a
TOR/Firefox memory-management
vulnerability, forcing users to send out
a unique identifier to a server. Exploit
also contained “heap spraying” used
to bypass security protection and
detection.

TOR’s Response:
Since the alleged vulnerabilities and
exploits commonly related to
JavaScript and Flash. TOR has since
been packaged with NoScript;
disabling most add-ons and plugins
such as Javascript, Java, Flash, etc.

Prerequisites: Requires attacker to be the host of the hidden service, which executes the
exploit.

Additional Info : CVE-2013-1690

Context:
An issue with specially crafted web
content using the “onreadystatechange”
event may cause a crash in which
unmapped memory is executed.

Use:
It was suspected that the FBI used this
exploit to deliver a heap sprayed
payload.

Vulnerability & Exploit Database:
https://blog.rapid7.com/2013/08/07/h
eres-that-fbi-firefox-exploit-for-you-cv
e-2013-1690/

https://www.rapid7.com/db/modules/
exploit/windows/browser/mozilla_fire
fox_onreadystatechange

https://blog.rapid7.com/2013/08/07/heres-that-fbi-firefox-exploit-for-you-cve-2013-1690/
https://blog.rapid7.com/2013/08/07/heres-that-fbi-firefox-exploit-for-you-cve-2013-1690/
https://blog.rapid7.com/2013/08/07/heres-that-fbi-firefox-exploit-for-you-cve-2013-1690/
https://www.rapid7.com/db/modules/exploit/windows/browser/mozilla_firefox_onreadystatechange
https://www.rapid7.com/db/modules/exploit/windows/browser/mozilla_firefox_onreadystatechange
https://www.rapid7.com/db/modules/exploit/windows/browser/mozilla_firefox_onreadystatechange

Additional Info: Heap Spraying

Heap Spraying is used to hide a
payload inside a chunk of data. By
itself it is not a security issue, however
given a separate security issue like the
firefox memory-management
vulnerability, heap spraying allows an
attacker to deliver the payload
undetected.

Attack: Packet Analyzing(2015)

Attack:
Gather network data on a
pre-determined list of hidden services
in advance. Analyze patterns in
number of packets being passed
between the hidden service and entry
relay allowed researchers to obtain a
unique fingerprint for the service. With
machine learning, researchers were
able to pinpoint the host with 88%
certainty.

Problems:
-Pattern analyzation fails when you pad
the traffic.
-2.9% False Positive rate is enormous
when thousands or millions of pages
are being browsed every second.
Packet analyzing becomes too
expensive.

https://arstechnica.com/information-technology/2015/07/new-attack-on-tor-can-deanonymize-hidden-services-with-surprising-accuracy/

Detecting and blocking TOR

● Hard since it looks just like https.
Uses same ports. Could use
statistical to distinguish different
SSL protocols.

● Block all connections to known
TOR relays. (Solution: TOR
bridges)

● MediaWiki TorBlock extension
automatically restricts edits made
through Tor

https://en.wikipedia.org/wiki/MediaWiki
https://www.mediawiki.org/wiki/Extension:TorBlock

Popularity

2014/11/29 - 2018/02/27

Sources
● https://css.csail.mit.edu/6.858/2011/lec/l17-tor.txt
● https://edwardsnowden.com/docs/doc/tor-stinks-presentation.pdf [leaked NSA internal doc]
● https://media.torproject.org/video/2011-12-28-28c3-4800-en-how_governments_have_tried_to_block_tor_h264.m

p4 [from the makers of Tor]
● https://svn.torproject.org/svn/projects/presentations/slides-28c3.pdf
● https://www.youtube.com/watch?v=LAcGiLL4OZU
● https://www.torproject.org/docs/documentation.html.en
● https://arstechnica.com/information-technology/2013/08/attackers-wield-firefox-exploit-to-uncloak-anonymous-tor-

users/
● https://arstechnica.com/information-technology/2015/07/new-attack-on-tor-can-deanonymize-hidden-services-with

-surprising-accuracy/
● https://en.wikipedia.org/wiki/Heap_spraying
● https://www.torproject.org/docs/onion-services.html.en
● https://www.torproject.org/docs/faq.html.en#ChoosePathLength
● https://searchengineland.com/googles-search-indexes-hits-130-trillion-pages-documents-263378
● https://www.youtube.com/watch?v=oiR2mvep_nQ
● https://www.youtube.com/watch?v=joxQ_XbsPVw

https://css.csail.mit.edu/6.858/2011/lec/l17-tor.txt
https://edwardsnowden.com/docs/doc/tor-stinks-presentation.pdf
https://media.torproject.org/video/2011-12-28-28c3-4800-en-how_governments_have_tried_to_block_tor_h264.mp4
https://media.torproject.org/video/2011-12-28-28c3-4800-en-how_governments_have_tried_to_block_tor_h264.mp4
https://svn.torproject.org/svn/projects/presentations/slides-28c3.pdf
https://www.youtube.com/watch?v=LAcGiLL4OZU
https://www.torproject.org/docs/documentation.html.en
https://arstechnica.com/information-technology/2013/08/attackers-wield-firefox-exploit-to-uncloak-anonymous-tor-users/
https://arstechnica.com/information-technology/2013/08/attackers-wield-firefox-exploit-to-uncloak-anonymous-tor-users/
https://arstechnica.com/information-technology/2015/07/new-attack-on-tor-can-deanonymize-hidden-services-with-surprising-accuracy/
https://arstechnica.com/information-technology/2015/07/new-attack-on-tor-can-deanonymize-hidden-services-with-surprising-accuracy/
https://en.wikipedia.org/wiki/Heap_spraying
https://www.torproject.org/docs/onion-services.html.en
https://www.torproject.org/docs/faq.html.en#ChoosePathLength
https://searchengineland.com/googles-search-indexes-hits-130-trillion-pages-documents-263378
https://www.youtube.com/watch?v=oiR2mvep_nQ
https://www.youtube.com/watch?v=joxQ_XbsPVw

Sources. Continued.
● https://www.youtube.com/watch?v=QRYzre4bf7I
● https://www.icann.org/news/blog/the-dark-web-the-land-of-hidden-services
● https://www.torproject.org/download/download-easy.html.en#warning
● https://www.youtube.com/watch?v=lVcbq_a5N9I

https://www.youtube.com/watch?v=QRYzre4bf7I
https://www.icann.org/news/blog/the-dark-web-the-land-of-hidden-services
https://www.torproject.org/download/download-easy.html.en#warning
https://www.youtube.com/watch?v=lVcbq_a5N9I

