Aircrack

by Christopher Primerano and Yuliya Cherenkova

WEP
(Wired Equivalent Privacy)

Two methods of authentication: Open System
authentication and Shared Key authentication

RC4 encryption algorithm (a stream cipher)

Pre-shared keys: to avoid using same key with a
stream cipher, WEP concatenates a 24-bit initialization
vector (IV) with the key.

To ensure that a packet has not been modified in
transit, it uses an Integrity Check (ICV) field in the
packet, containing CRC-32 checksum

WEP
(Wired Equivalent Privacy)

RC4 Keystream = RC4 (IV,k) ICV(M)
XOR
< >

CIPHERED

C=[M][ICV(M) I®[RC4A(K [IV)]

WEP encryption protocol

WEP

Security Flaws

Shared Key authentication is one-way: a client cannot
verify AP

Open System: any client can connect to the AP
CRC-32 is not cryptographically secure.

No built-in method of updating keys

WEP

Security Flaws

The 802.11 standard does not specify how the IVs are
set or changed. IV reuse is allowed

Birthday paradox: 24 bits in IV

The IV is a part of the RC4 encryption key and it is sent
in plaintext

RC4 algorithm weaknesses within the WEP protocol
due to key construction: certain IV values yield weak
keystreams

WEP
Passive Attack to Decrypt Traffic

Observe traffic until IV collision occurs

XOR two packets that use the same |V to obtain the
XOR of the two plaintext messages

IP traffic is often very predictable and includes a lot of
redundancy, which is helpful for statistical analysis

If an attacker can send traffic from a host on the web
to the host on the target network, it gets very easy

WEP
Active Attack to Inject Traffic

 An attacker can construct correct encrypted packets
knowing exact plaintext of one encrypted message

 Construct a new message, calculate CRC-32, and
perform bit flips on the original encrypted message

 Based on: C(X) xor X xor Y = C(Y)

WEP

Current State

* No longer included as a possible security option on
new routers

* |s not a valid security option when setting up a
wireless N or AC network

WPA / WPA 2

e ANonce, SNonce -
Randomly generated

 MIC (Message Integrity
Code) - Computed from
message

* All plaintext

STA

WPA Handshake

ANonce

AP

<

STA constructs
the PTK

SNonce + MIC

>

GTK + MIC

AP constructs
the PTK

Ack

>

WPA Keys

 PSK (Pre-Shared Key) - This key is generated from the
passphrase and SSID when a network is created

* PMK (Pairwise Master Key) - In a PSK environment this is
equal to the PSK

* PTK (Pairwise Transient Key) - This is generated from the
PMK, the AP and Station MAC’s and the AP and Station
Nonce’s running through a Pseudo Random Function

+ PSK = PMK = PBKDF2(HMAC-SHA1, passphrase, SSID, 4096, 256)

 PTK = PRF(PMK, Min(AP_Mac, STA_Mac) || Max(AP_Mac, STA_ Mac) || Min(ANonce, SNonce) ||
Max(ANonce, SNonce))

5 Keys from PTK

PRF using HMAC-SHA1

 KCK (Key Confirmation

Key) is used to validate
amc - _—7 \ -

. KCK is used for - 1

X =512 (TKIP)
X = 384 (CCMP)

Bits 0-127 Bits 128-255 Bits 256-383

cracking WPA . - o

Bits 384-447 Bits 448-511
TMK1 TMK2

T T T S

WPA Cracking

Need to capture 4-Way handshake

From handshake [AS]Nonce, MAC’s and MIC are extracted
Generate PMK from passphrase

Compute PTK using [AS]Nonce, MAC'’s

Extract KCK and try to validate captured MIC

If MIC validates then PMK is correct and so is passphrase

If MIC does not validate, try new PMK

Aircrack

A suite of tools focused on WiFi cracking
airmon-ng - Adapter Mode Manager
airodump-ng - Packet Capture
aireplay-ng - Packet Injection
aircrack-ng - Key Cracking

etc

Demo

Demo

alrmon-ng start <interface>

airodump-ng --output-format pcap -w <filename> --
bssid <bssid> --channel <channel> mon0

aireplay-ng -0 1 -a <bssid> -c <client mac> mon0O
aircrack-ng <filename> -w <dictionary>

hashcat -m 2500 -a3 --pw-min=8 <filename> <pattern>

