Integrating Model-Checking and Theorem Proving for Automating the Generation of Abstractions

Shiva Nejati and Mehrdad Sabetzadeh
Department of Computer Science
University of Toronto
{shiva,mehrdad}@cs.toronto.edu

January 31, 2003
Introduction and Motivation

- Model-checkers are efficient tools for verifying finite-state systems, however ...
 - suffer from the state explosion problem;
 - cannot handle parameterized/unbounded systems.

- Theorem provers are very general, however ...
 - require detailed guidance;
 - working with theorem-provers requires a great deal of expertise.

- In principle, we would like to combine the two approaches:
 - Model-checkers handle decision procedures.
 - Theorem provers handle proofs in undecidable logics.
Introduction and Motivation (Cnt’d)

- We need to verify systems that
 - are very large and complicated;
 - have unbounded state-spaces.

- Combining model-checking and theorem proving facilitates
 - automating the process of constructing finite-state abstractions.

- Example:
 - A BDD-based model-checker has been integrated with the PVS theorem prover.
Outline

• What is Abstraction?
• Predicate Abstraction
• Abstraction in PVS
• 3-Valued (Mixed) Abstraction
• Optimizations to Under-Approximation Abstraction
• Conclusions
What is Abstraction?

- Reducing a large model to a smaller one while preserving the desired properties.

- To verify a concrete model C using abstraction:
 1. generate an abstract model A either *manually* or *automatically*;
 2. check the soundness of abstraction:
 \[\forall \varphi \in L \cdot A \models \varphi \Rightarrow C \models \varphi; \]
 3. check the properties of interest over A:
 \[A \models \varphi. \]
Computing Abstractions

• Σ_c is the concrete state-space;

• Σ_a is the abstract state-space;

• $\alpha : 2^{\Sigma_c} \rightarrow \Sigma_a$ is an abstraction function;

• $\gamma : \Sigma_a \rightarrow 2^{\Sigma_c}$ is a concretization function;

• Properties of α and γ:

 $\forall S \subseteq \Sigma_c. \ S \subseteq \gamma(\alpha(S))$;

 $\forall s \in \Sigma_a. \ \alpha(\gamma(s)) = s$.

Abstraction: an Example

- The concrete model:

 \[
 c = -4 \rightarrow c = -3 \rightarrow c = -2 \rightarrow c = -1 \rightarrow c = 0 \rightarrow c = 1 \rightarrow \ldots
 \]

- Abstraction criteria: \(\varphi_1 = (c < 0) \) and \(\varphi_2 = (c \geq 0) \)

- Over-approximation:

 \[
 a_0 \quad \begin{array}{c}
 \text{c < 0}
 \end{array} \quad a_1 \quad \begin{array}{c}
 \text{c \geq 0}
 \end{array}
 \]

 The abstract model *simulates* the concrete model.
Abstraction: an Example (Cnt’d)

- Under-approximation

\[c < 0 \quad \text{and} \quad c \geq 0 \]

▫ The abstract model is *simulated* by the concrete model.

- 3-val (mixed) Abstraction:

\[c < 0 \quad \text{and} \quad c \geq 0 \]
Manual Generation of Abstractions

- Let \(A \) and \(C \) be Kripke structures.
- \(A \) is an over-approximation abstraction of \(C \) iff
 \[
 (1) \quad \forall s \in I_c \cdot \alpha(s) \in I_a \\
 (2) \quad \forall s_0, s_1 \in \Sigma_c \cdot R_c(s_0, s_1) \Rightarrow R_a(\alpha(s_0), \alpha(s_1))
 \]

init_simulation: THEOREM
init(s) IMPLIES a_init(abst(s))

may_next_simulation: THEOREM
next(s0, s1) IMPLIES a_next(abst(s0), abst(s1))

✔ The above soundness criteria were proven by PVS’s (grind) rule without need for human guidance.
Let $\varphi_1, \ldots, \varphi_n$ be a set of abstraction predicates, and let b_1, \ldots, b_n be abstract boolean variables.

$$\gamma(f(b_1, \ldots, b_n)) = f(\varphi_1/b_1, \ldots, \varphi_n/b_n)$$

$$\alpha(\psi) = \bigwedge \{ f(b_1, \ldots, b_n) \mid \psi \Rightarrow f(\varphi_1/b_1, \ldots, \varphi_n/b_n) \}$$

- It is hard to compute α because
 - there are 2^{2^n} distinct boolean functions $f(b_1, \ldots, b_n)$.
- A simplified version of α is:
 $$\alpha(\psi) = \bigwedge \{ b_i \mid \psi \Rightarrow b_i \}$$

- Let $\varphi_1 = (c < 0)$ and $\varphi_2 = (c \geq 0)$. Then, $\alpha(c > 5) = \neg \varphi_1 \land \varphi_2$, but what about $\alpha(c \leq 0)$?!
A conservative abstraction scheme has been implemented as a proof rule in PVS.

They improve the abstraction function α:

$$\alpha(\psi) = \bigwedge \{f(b_1, \ldots, b_n) \mid \psi \Rightarrow f(\varphi_1/b_1, \ldots, \varphi_n/b_n)\}$$

where $f(b_1, \ldots, b_n)$ are all possible disjunctions of variables b_1, \ldots, b_n.

This reduces the number of functions from 2^{2^n} to 3^n.

Let $\varphi_1 = (c < 0)$ and $\varphi_2 = (c \geq 0)$. Then,

$$\alpha(c \leq 0) = (\varphi_1 \lor \varphi_2) \land (\neg \varphi_1 \lor \neg \varphi_2).$$

Under-approximation of the abstract function α:

$$\alpha_-(\psi) = \bigvee \{f(b_1, \ldots, b_n) \mid f(\varphi_1/b_1, \ldots, \varphi_n/b_n) \Rightarrow \psi\}$$
Abstraction in PVS: Over-Approximation

- There is an over-approximation transition from a_0 to a_1 iff
 \[\exists s, s' \cdot s \in \gamma(a_0) \land s' \in \gamma(a_1) \land R_c(s, s') \]

- We need to express it as a quantifier-free formula. If a_0, \ldots, a_k are the only successors of a then
 \[\forall s, s' \cdot s \in \gamma(a) \land R_c(s, s') \Rightarrow s' \in (\gamma(a_0) \lor \ldots \lor \gamma(a_k)) \]

- Let $\varphi_1 = (c < 0)$ and $\varphi_2 = (c \geq 0)$. Then,
 \[\forall c, c' \cdot \varphi_1(c) \land (c' = c + 1) \Rightarrow \varphi_2(c') \lor \varphi_1(c') \]
 \[\forall c, c' \cdot \varphi_2(c) \land (c' = c + 1) \Rightarrow \varphi_2(c') \]

(abstract-and-mc ("lambda(s):c(s) >= 0" "lambda(s):c(s) < 0"))
Abstraction in PVS: Under-Approximation

- There is an under-approximation transition from a_0 to a_1 iff

$$\forall s \cdot \exists s' \cdot s \in \gamma(a_0) \Rightarrow s' \in \gamma(a_1) \land R_c(s, s')$$

- This formula is not in quantifier-free form.
- However, in our example:

$$\forall c \cdot \exists c' \cdot (c \geq 0) \Rightarrow (c' \geq 0) \land R_c(c, c')$$

$$\Rightarrow \quad \text{(Since } R_c(c, c') \iff (c' = c + 1))$$

$$\forall c \cdot (c \geq 0) \Rightarrow (c + 1 \geq 0)$$

✎ If the pre- or post-image function can be written in quantifier-free form, the under-approximation formula can be written in quantifier-free form, as well.
Abstraction in PVS: Under-approximation Cnt’d

- **pre-** and **post-image functions:**

 \[
 \text{post}(\psi) \triangleq \{ s' \in S \mid \exists s \in S \cdot R(s, s') \land s \models \psi \} \\
 \text{pre}(\psi) \triangleq \{ s \in S \mid \forall s' \in S \cdot R(s, s') \Rightarrow s' \models \psi \}
 \]

- Conventional programming languages can be translated into guarded command form,
 - this makes it possible to have q-free **pre** and **post** functions:

 \[
 g(\bar{x}) \land \bar{x}' := \text{assign}(\bar{x}) \\
 \text{pre}(\varphi) = g(\bar{x}) \land \varphi(\text{assign}(\bar{x})/\bar{x})
 \]

Example:

\[
(x > 5) \land x' := x - 10 \\
\text{pre}(x > 0) = (x > 5) \land (x - 10 > 0) = (x > 10)
\]
3-Valued (or Mixed) Abstraction

- Let $\varphi_1, \ldots, \varphi_n$ be a set of abstraction predicates, and let b_1, \ldots, b_n be the corresponding 3-valued abstract variables.

- The abstract domain is all possible 3-valued states:

$$\Sigma_a = \{\wedge_{1 \leq i \leq n}(b_i = l) \mid l \in \{\top, M, \bot\}\}$$

- The number of states is 3^n.

- Let $\varphi_1 = (c < 0)$ and $\varphi_2 = (c \geq 0)$. Then,

$$\alpha(c \leq 0) = (\varphi_1 = M) \land (\varphi_2 = M)$$

$$= (\neg \varphi_1 \land \varphi_2) \lor (\varphi_1 \land \neg \varphi_2)$$

$$= (\varphi_1 \lor \varphi_2) \land (\neg \varphi_1 \lor \neg \varphi_2)$$
3-Valued Abstraction: the Transition Relation

- There is an over-approximation transition from φ_1 to φ_2 iff $\varphi_1 \land \neg\text{pre}(\neg\varphi_2)$ is \textit{satisfiable}.

- There is an under-approximation transition from φ_1 to φ_2 iff $\varphi_1 \land \text{pre}(\neg\varphi_2)$ is \textit{unsatisfiable}.

- Let $\varphi_1 = (c < 0)$, $\varphi_2 = (c \geq 0)$, and $R(c, c') \iff (c' = c + 1)$:

 (1) $\varphi_1 \xrightarrow{M} \varphi_2$ because $\varphi_1(c) \land \varphi_2(c + 1)$ is SAT:

 $$\exists c \cdot (c < 0) \land (c + 1 \geq 0)$$

 (2) $\varphi_2 \xrightarrow{\top} \varphi_2$ because $\neg(\varphi_2(c) \land \neg\varphi_2(c + 1))$ is a \textit{tautology}:

 $$\forall c \cdot (c \geq 0) \Rightarrow (c + 1 \geq 0)$$
Optimizations to Under-Approximation

- Using a distance-bounded reachability (instead of the immediate-successor) relation for computing the under-approx. transition relation.

- $\textit{EF}(c \geq 0)$ is conclusive for this abstract model.

- Let $\varphi_1 = (c < 0)$, $\varphi_2 = (c \geq 0)$, and $R(c, c') \Leftrightarrow (c' = c + 1)$, and let $\textit{init}(c) = -2$:

 (1) $\varphi_1 \overset{T}{\rightarrow} \varphi_2$ because

 \[
 \forall c \cdot (-2 \leq c < 0) \Rightarrow (c + 1 \geq 0) \lor (c + 1 \leq 0) \land (c + 2 \geq 0)
 \]
Concluding Remarks

• What we did:
 – surveyed some of the approaches to automated generation of abstract models;
 – demonstrated how distance-bounded reachability can be employed to make an under-approximation transition relation more precise.

• What we learned:
 – gained hands-on experience with the PVS toolkit;
 * in particular, we implemented a number of abstraction examples.
 – We found PVS very useful for generating abstract models; however, the PVS specification language does not provide a convenient means for describing state transition systems.
Future Work

- **How this work can be pursued:**
 - Finding out whether pre-image functions can be used for the elimination of quantifiers in general;
 - Using pre-image functions for quantifier elimination in other contexts e.g. SAT-based model-checking.
 - Using fairness assumptions for sharpening the results of abstraction (for some preliminary work in this direction, see the report.)