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1 Discrepancy and Rounding

Using the connection between discrepancy and rounding, in this lecture we will give an approxi-
mation algorithm for (a special case of) the bin packing problem. The approach will be to solve a
linear programming relaxation of the problem, and then round the linear program solution using
discrepancy. The main fact that enables this approach to work is the following lemma we saw back
in the first lecture.

Lemma 1. For any m × n matrix A, and any w ∈ [0, 1]n, there exists a x ∈ {0, 1}n such that
‖Ax−Aw‖∞ ≤ herdisc(A).

Linear discrepancy in fact allows us to round any real vactor, and not just vectors with entries in
[0, 1]. This is captures by the following proposition:

Proposition 2. ∀x ∈ Rn
+,∃y ∈ Zn

+ such that ‖Ax−Ay‖∞ ≤ herdisc(A)

Proof. Let x̄i = xi − bxic, then x̄i ∈ [0, 1], and there exists ȳ ∈ {0, 1}n and y = ȳ + bxc (where the
floor is applied coordinate-wise) such that:

‖Ax̄−Aȳ‖∞ ≤ herdisc(A)

‖(Ax̄+Abxc)− (Aȳ +Abxc)‖∞ ≤ herdisc(A)

‖Ax−Ay‖∞ ≤ herdisc(A)

2 Approximation to Bin Packing

The bin packing problem takes as input a set of n items of sizes s1, s2, . . . , sn, where each si ∈ [0, 1].
The goal is to pack the items into the smallest number of bins, each of size 1. Let us use OPT to
denote the optimal number of bins needed to pack all items. Bin packing is NP-hard, and remains
NP-hard to decide whether we need 2 vs. 3 bins (i.e. whether OPT ≤ 2 or ≥ 3). Before getting
started, we list the current known approximations:

• The First-Fit (arbitrary order) algorithm gives a 2-approximation.

• The First-Fit in decreasing order gives a 1.7 OPT + 1 [2].

• De La Vega and Lucker gave an asymptotic PTAS that uses ≤ (1 + ε)OPT + 1 bins, for any
given ε ≥ 0.
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• Karmarkar and Karp (KK) gave an algorithm that achieves ≤ OPT + O(log2(OPT)) many
bins [3].

• Rothvoss used discrepancy to give an algorithm that uses≤ OPT+O(log(OPT) log log (OPT ))
bins [4].

• Rothvoss and Hoberg refined the discrepancy approach to give an algorithm that uses ≤
OPT +O(log(OPT)) bins [1].

For the special case when si >
1

k+1 ,∀i (i.e. we can place at most k items per bin), and k is
a constant, the KK result already gives OPT + O(log(OPT)) bins. Hoberg and Rothvoss’s result
essentially reduces the general case to this case. It is open whether there exists an efficient algorithm
that packs all items in OPT + 1 bins (!).

For the remainder of the lecture, we will show how to get the KK bound for si >
1
4 ,∀i using

discrepancy on the Gilmore Gomory LP relaxation, defined below. We will show that we can pack
all items in OPT + O(log n) many bins. There is a standard reduction that then implies that we
can do so with OPT +O(log OPT) many bins.

For convenience, let us assume all the weights are sorted in decreasing order:

1 ≥ s1 ≥ s2 ≥ . . . ≥ sn >
1
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Let s = (s1, s2, . . . , sn) denote the sorted vector, and let Ps be all possible ways to pack the items:

Ps =

{
p ∈ {0, 1}n : pT s =

∑
pisi ≤ 1

}
Think of p as the indicator of a feasible set of items which we can assign to a single bin. Since we
can only fit at most 3 items per bin, it follows that |Ps| = O(n3). Now consider the following linear
program, which is a relaxation of the bin packing problem:

minimize
∑

xp (# of bins)

subject to
∑

xp · p ≥ 1 (each item in at least a bin)

xp ≥ 0 ∀p ∈ Ps
If we denote by LP the value of this linear program, then, because every bin packing gives a solution
to the program, we have LP ≤ OPT.

Let x be an optimal solution to the lienar program such that |{p : xp > 0}| ≤ n. That such an
optimal solution always exists follows from the theory of basic feasible solutions. Let B be the
constraint matrix of the program, with columns restricted to p such that xp > 0, and let us replace
x with x restricted to these patterns p, as well. Given the item size constraint, notice that each
column in B has at most 3 zeroes:

B =


...

...
p1 . . . pn
...

...

 {p1 . . . pn} = {p : xp > 0}

Bx = 1

2



Let A be a matrix constructed as follows:

A =

(
TnB

3 . . . 3

)

where Tn is the lower triangular {0, 1} matrix:

1 . . . 0

1
. . . 0

1 . . . 1



This means that each of the first n rows of A is of the form Ai∗ =
i∑

j=1
Bj∗. Since the columns

of B have at most 3 ones each, and all other entries are 0, it follows that A ∈ {0, 1, 2, 3}(n+1)×n.
Moreover, each column in A is monotone non-decreasing. Because Bx = 1, we have:

Ax =


1
2
...
n

3 · LP


where LP ≤ OPT . Assume xp ∈ [0, 1), and let D denote herdisc(A). By Proposition 2,

∃y ∈ Zn
+ s.t. ‖Ax−Ay‖∞ ≤ D
|3 · 1T y − 3 · 1Tx| ≤ D

The second inequality implies 1T y ≤ LP + 1
3D ≤ OPT + 1

3D.

Claim 3. We can pack all items in D +
∑

p yp many bins.

Proof. We will use yp copies of pattern p, and additional D copies of the pattern that contains a
space for item 1. We will pack items according to these patterns, except that we will also allow
ourselves to put a smaller item in the space reserved for a larger item. Since item 1 is the largest
one1, we can pack any item in a space reserved for it.

We construct a bipartite graph G(V = U ∪ V, E) as follows: Every vertex ui ∈ U corresponds to
an item i of size si. For item 1, we create (By)1 + D copies of v1, which is the number of slots
where item 1 can fit (or any item with size ≤ s1). For the remaining items, create (By)i copies of
vertex vi for each item i (i.e. the # of slots for items of size ≤ si). For every ui ∈ U , add an edge

1recall that items are sorted in non-increasing order
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(ui, vj) ∈ E for all j ≤ i. The goal is to compute a U-perfect matching. Then, for any edge (ui, vj)
of the matching, we will pack item i in any slot reserved for item j. Since the matching is perfect,
we can pack all items.

The proof that a U-perfect matching exists is based on Hall’s theorem, which says:

Theorem 4. U-perfect matching exists if and only if for all W ⊆ U , |N(W)| ≥ |W|, where N(W)
is the set of neighbors of W.

Now we verify the condition of Hall’s theorem. Assume W = {u1, . . . , ui}. This is without loss of
generality, because ∀j ≤ i, N(uj) ⊆ N(ui) by construction. Therefore

|N(W)| =
i∑

j=1

(By)j +D for j = 1

= (Ay)i +D

≥ (Ax)i = i = |W|

Therefore a U-perfect matching exists and all items can be packed, and the cost of the solution is
at most ≤ LP + (1 + 1

3)D.

On the other hand, for all A with monotone non-decreasing columns and entries in [k], we have
herdisc(A) = O(k log n), thus:

D = herdisc(A)

≤ herdisc(A)

= O(3 log n) = O(log n)

Let us prove a somewhat weaker bound using an exercise from a previous lecture. Let π1, . . . , πk
be three permutations on {1, . . . , n} and let S be sets of the type {πi(1), . . . , πi(j)}, i.e. prefixes of
the permutations. Recall that we used the partial coloring result of Lovett and Meka to show that
such a set system has discrepancy O(

√
k log n) for any choice of π1, . . . , πk. We use this result in

the following proposition.

Proposition 5. For any matrix A with monotone non-decreasing columns and entries in [k] we
have herdisc(A) = O(k3/2 log n).

Proof. Let us bound the discrepancy of an arbitrary matrix A satisfying the condition of the
proposition. Since this class of matrices is closed under taking submatrices, this automatically
bounds the hereditary discrepancy as well.

We decompose A into k matrices where the entries are of the form:

A
(`)
ij =

{
1 if Aij ≥ `
0 otherwise

Therefore A = A(1) + . . . + A(k). Since A has monotone columns, thus each A(`) has monotone
columns. Therefore the matrix

Ã =

A
(1)

...

A(k)
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is the incidence matrix of a set system S consisting of the prefixes of k permutations, as we defined
it above. Then disc(S) = disc(Ã) = O(

√
k log n), i.e. there exists an x ∈ {−1, 1}n such that

‖Ãx‖∞ = O(
√
k log n), or equivalently, ‖A(`)x‖∞ = O(

√
k log n) for all `. It follows that

‖Ax‖∞ = ‖A(1)x+ . . .+A(`)x‖∞ ≤ ‖A(1)x‖∞ + . . .+ ‖A(`)x‖∞ = O(k3/2 log n),

as we wanted.

This proposition and the claim we proved earlier mean that we can pack all items in number of
bins bounded by ∑

p

yp +D ≤ OPT +
4

3
D = OPT +O(log n).
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