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1 The Beck-Fiala Theorem

So far we saw a general upper bound on the combinatorial discrepancy of set systems consisting
of m sets over a universe of size n. While this bound is tight in general, already in the exercises
we indicated that it can be improved when the set system has special structure. In this lecture we
study “sparse” set systems, i.e. set systems in which no element appears in too many sets.

Definition 1. Let (U ,S) be a finite set system. The degree of (U ,S) is

d(S) = max
j∈U
|{S ∈ S : j ∈ S}|.

Beck and Fiala [4] proved the following remarkable theorem, showing that the discrepancy of a set
system S can be bounded in terms of its degree.

Theorem 2. For any set system (S,U), we have disc(S) ≤ 2d(S)− 1.

Proof. For brevity, let d = d(S). Without loss of generality, we will assume that U = [n]. We
provide an “iterative rounding” procedure to construct a colouring χ satisfying disc(χ,S) ≤ 2d−1.
To be more precise, we construct a sequence x(0), x(1), . . . , x(T ) so that for all j ∈ [n]:

1. xj(0) = 0,

2. for all t = 0, 1, . . . , T , xj(t) ∈ [−1,+1],

3. xj(T ) ∈ {−1,+1}.

This is similar to the Lovett-Meka proof of Spencer’s theorem from the last lecture, except that at
the last step we have x(T ) ∈ {−1, 1}n, which defines a coloring χ(j) = xj(T ). We will show that
this coloring has discrepancy disc(χ,S) ≤ 2d− 1.

At each time t = 1, 2, . . . , T we specify two sets: first, the fixed indices at t are

Vt := {j : xj(t) ∈ {−1,+1}},

and second, the dangerous sets at t are

Dt = {S ∈ S : |S \ Vt| > d}.

Our goal at time t+ 1 is to construct a x(t+ 1) so that

1. ∀S ∈ Dt,
∑

j∈S xj(t+ 1) = 0;
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2. ∀j ∈ Vt, xj(t+ 1) = xj(t);

3. Vt ( Vt+1.

First we prove the theorem, assuming that we can construct such a sequence. It is clear that T ≤ n,
since the set of fixed indices grows in cardinality by at least one in every time step. Now, choose
an arbitrary S ∈ S and suppose that S becomes safe (i.e. not dangerous) at time t. Then by the
triangle inequality

|χ(S)| =

∣∣∣∣∣∣
∑
j∈S

xj(T )

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
j∈S

xj(t)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
j∈S

(xj(T )− xj(t))

∣∣∣∣∣∣ .
Since S became safe at iteration t we have

∑
j∈S xj(t) = 0. Moreover, for any j ∈ Vt, xj(T ) = xj(t).

Applying these observations, and using the definition of the dangerous sets Dt we have

|χ(S)| ≤

∣∣∣∣∣∣
∑

j∈S\Vt

(xj(T )− xj(t))

∣∣∣∣∣∣ < 2|S \ Vt| ≤ 2d,

where the strict inequality follows since (xj(T ) − xj(t)) ∈ (−1, 1) for any j which was not fixed
(and, thus, was not −1 or +1) at time t. But, the discrepancy must be an integer, so we must have
|χ(S)| ≤ 2d− 1.

Next we move on to constructing the sequence x(0), x(1), . . . , x(T ). Fix any time t ∈ {0, 1, 2, . . . , T},
and consider the system of equations

∀S ∈ Dt :
∑

j∈S\Vt

∆xj = 0 (1)

where there is one variable ∆xj for each active j 6∈ Vt. Note that

|Dt| · d < |{(j, S) : j ∈ S \ Vt, S ∈ Dt}| ≤ (n− |Vt|)d,

where the first inequality follows since each set S ∈ Dt is dangerous and so |S \ Vt| > d, and the
second inequality follows since each element j is contained in at most d sets. This means that
|Dt| < n − |Vt|, and thus the above system of equations has more variables than constraints, and,
therefore, a nonzero solution ∆x. Then we can define

xj(t+ 1) =

{
xj(t) if j ∈ Vt
xj(t) + γ∆xj otherwise

where γ is the largest real so that x(t) ∈ [−1,+1]n. There must be at least one j that becomes +1
or −1 after this update, and it follows that Vt ( Vt+1. The other two requirements follow directly
from the construction.

Exercise 1. Modify the proof of the Beck-Fiala theorem to show the improved bound disc(S) ≤
max{2d(S)− 3, d}.
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Exercise 2. Let A be an m× n matrix such that for every j ∈ [n] we have∑
i:aij>0

aij ≤ 1,

−
∑

i:aij<0

aij ≤ 1.

Prove that for any x(0) ∈ [0, 1]n there exists a x ∈ {0, 1}n so that

∀i ∈ [m] :

n∑
j=1

aij(xj − xj(0)) < 1.

Hint: For any set S ⊆ [n], any i, and any x ∈ {0, 1}n,∑
j∈S

aij(xj − xj(0)) ≤
∑

j:aij>0

aij(1− xj(0))−
∑

j:aij<0

aij(xj(0)).

2 Towards the Beck-Fiala Conjecture

In the same paper, Beck and Fiala made the following conjecture, which remains open today:

Open Problem: Prove or disprove the upper bound disc(S) ≤ O(
√
d(S)).

This is perhaps the most prominent open problem in combinatorial discrepancy theory. The best
known bound is 2d − log∗(d) [5], where log∗ is the iterated logarithm function (the inverse of the
tower of 2’s function). On the other hand, we can prove bounds which come close to the conjecture,
at the cost of a mild dependendce on m, the number of sets in the set system. The best one is due
to Banaszczyk [1]:

Theorem 3. For any set system (S,U), disc(S) = O(
√
d log |S|).

Banaszczyk’s proof uses deep facts from convex geometry and proves a more general statement,
which we will discuss in the next lecture. In the remainder of this lecture we will sketch an
algorithmic proof of the theorem which is a refinement of the Beck and Fiala proof, and is due
to Bansal, Dadush, and Garg [2]. The main idea is to randomize the steps in the Beck-Fiala
argument: rather than walk in an arbitrary direction, we pick the direction at random. Then the
hope is that once a set becomes safe, its discrepancy behaves like that of a random coloring on a
set of size at most d. I.e. we hope that the discrepancy of a safe set behaves like a Gaussian with
variance bounded by O(d). If that’s the case, then a standard tail bound argument would give
the O(

√
d log |S|) discrepancy bound. Unfortunately, because we are restricted to the subspace on

which the system of equations (1) are satisfied, the values xj(t) for different j may be correlated so
that they don’t behave like a random coloring. The key insight in the proof is to that it is possible
to make the random choices so that this correlation has minimal effect.

The following main lemma shows that we can “randomize” Beck and Fiala’s proof so that the
discrepancy of every set behaves as if we chose a random coloring for a set of size O(d).
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Lemma 4. There exists a constant C such that for any set system S with degree d = d(S), there
exists a sequence of random vectors x(0) = 0, x(1), . . . , x(T ) so that x(T ) ∈ {−1, 1}n, and for any
set S ∈ S and any 0 ≤ η ≤ 1

2C , we have

max{Eeη
∑

j∈S xj(T ),Ee−η
∑

j∈S xj(T )} ≤ eCη2d. (2)

Let us first finish the proof of Theorem 3 assuming Lemma 4.

Proof of Theorem 3. The proof follows along the lines of a standard Chernoff bound. Observe
first that if

√
d log |S| = Ω(d), then the theorem follows from the Beck-Fiala theorem. Assume

otherwise. By Lemma 4 and Markov’s inequality, we have that for any t, η ≥ 0,

Pr

(∑
j∈S

xj(T ) > t

)
= Pr

(
eη

∑
j∈S xj(T ) > eηt

)
<

Eeη
∑

j∈S xj(T )

eηt
≤ eCη2d−ηt.

The choice of η that minimizes the right hand side is η = t
2Cd , which is at most 1

2C as long as

t ≤ d. Then, we get e−t
2/4Cd on the right. The same argument works for −

∑
j∈S xj(T ), and we

have that, for any t ≤ d,

Pr

(∣∣∑
j∈S

xj(T )
∣∣ > t

)
< 2e−t

2/4Cd.

Setting t =
√

4Cd log 2|S| and taking a union bound shows that the discrepancy of the coloring χ
defined by χ(j) = xj(T ) is O(

√
d log |S|) with positive probability.

The proof of Lemma 4 relies on two technical lemmas which we will not prove in this lecture.
The first lemma is a a form of a martingale concentration inequality, which is essentially due to
Freedman [6] (see also [3]).

Lemma 5. Let y0, y1, . . . , yT and ∆y1, . . . ,∆yT be random variables such that

1. y0 is deterministic;

2. yt − yt−1 ≤ ∆yt for all t with probability 1;

3. ∆yt ≤ 1 for all t with probability 1;

4. E[∆yt + ∆y2t | y0, . . . , yt−1] ≤ 0 for all t with probability 1.

Then EeyT ≤ ey0.

The second lemma shows that in any subspace of sufficiently large dimension, we can find a non-
trivial distribution on random vectors with essentially uncorrelated coordinates.
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Lemma 6. Let W be a linear subspace of Rn of dimension at least n
2 . Then there exists a probability

distribution DW supported on W such that z ∼ DW satisfies

∀j ∈ [n] : Ezj = 0

E
n∑
j=1

z2j = n,

∀u ∈ Rn : E

 n∑
j=1

ujzj

2

≤ 2E
n∑
j=1

u2jz
2
j ,

and |zj | ≤ n with probability 1.

In fact the distribution has the form
∑k

i=1 σiwi, where σ1, . . . , σk ∈ {−1, 1} are chosen indepen-
dently and uniformly, and w1, . . . , wk ∈ Rn are efficiently computable vectors. The lemma reduces
to a statement about the existence of positive semidefinite matrices with particular properties.

Proof of Lemma 4. The proof proceeds along the lines of the proof of Theorem 2 but using the
distribution in Lemma 6 to randomize each step, and using Lemma 5 to analyze the random
process.

We define the set of fixed variables Vt at time t to contain, as before, all j for which xj(t) < −1 + δ
or xj(t) > 1 − δ. Here δ is very small, for instance δ = 1/n. At the end of the algorithm we will
round all coordinates in Vt to the nearest integer, which does not change the estimate significantly.

We slightly modify the definition of dangerous sets to Dt = {S ∈ S : |S \ Vt| > 2d}. Now an
argument analogous to the one before shows that, at any time step t, the subspace W ⊆ R[n]\Vt

of solutions to the system of equations (1) has dimension at least (n − Vt)/2. Let DW be the
distribution supported on W from Lemma 6, and let ∆x(t) be sampled from DW . Then we define

xj(t+ 1) =

{
xj(t) if j ∈ Vt
xj(t) + γ∆xj(t) otherwise

,

where γ is a tiny constant, to be chosen later. The final time step T is the one in which VT = [n]

Exercise 3. Using a variant of the analysis in the proof of Spencer’s theorem from the previous

lecture, show that E[T ] = O
(
logn
γ2

)
.

We analyze this construction using Lemma 5. Let S ∈ S be an arbitrary set in the set system, and
let t be the last time when S is dangerous, i.e. the largest t such that S ∈ Dt. Define y0 = Cη2d
for a constant C to be chosen later, and for any s ∈ {1, . . . , T − t} define

ys = η
∑
j∈S

xj(t+ s) + Cη2
∑
j∈S

(1− xj(t+ s)2).

Intuitively, the first term is the (positive) discrepancy of S, and the second term is how much
progress the elements of S have made towards becoming fixed. In particular, at time T the second
term vanishes, and we have yT−t = η

∑
j∈S xj(t+ s).
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Let us define, for any s ∈ {0, . . . , T − t− 1},

∆ys+1 = ηγ
∑
j∈S

∆xj(t+ s)− Cη2
∑
j∈S

(2γxj(t+ s)∆xj(t+ s) + γ2∆xj(t+ s)2).

It is easy to see that conditions 1 and 2 of Lemma 5 are satisfied, and condition 3 is satisfied if γ
is chosen to be small enough. The main challenge is to verify the fourth condition of the lemma.
In the rest of the proof, all expectations will be conditional on y1, . . . , ys. For convenience we will
denote ∆y = ∆ys+1, and also ∆x = ∆x(t+ s) and x = x(t+ s). We calculate,

E∆y = −Cη2γ2E
∑
j∈S

∆x2j , (3)

and

E∆y2 = 2η2γ2E

∑
j∈S

∆xj

2

+ 8C2η4γ2E

∑
j∈S

xj∆xj

2

+O(γ3)

≤ 4η2γ2E
∑
j∈S

∆x2j + 16C2η4γ2E
∑
j∈S

x2j∆x
2
j +O(γ3)

≤ (4 + 16C2η2)η2γ2E
∑
j∈S

∆x2j +O(γ3),

where the first inequality follows from Cauchy-Schwarz, the second from Lemma 6, and the last
inequality because x2j ≤ 1. Here the notation O(γ3) hides all terms multiplied by a power of γ

greater than 2. Because the algorithm makes at most O(γ−2 log n) steps (with constant, and also
with high probability), all such terms can be made negligible by choosing γ small enough. To finish
verifying the fourth condition of Lemma 5, we just need to set C such that 4 + 16C2η2 < C, which
holds whenever η ≤ 1

2C and C > 8. Then, Lemma 5 implies that EeyT−t ≤ ey0 , which, by the
definition of ys is equivalent to

Eeη
∑

j∈S xj(T ) ≤ eCη2d.

The bound for Ee−η
∑

j∈S xj(T ) is proved analogously.

Exercise 4. Let A be an m × n matrix each of whose columns has Euclidean norm at most 1.
Modify the proof above to show that disc(A) = O(

√
logm).

A famous conjecture by Komlós posits that the bound in the exercise above can be improved to
disc(A) = O(1). This conjecture implies the Beck-Fiala conjecture.
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