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Introduction

Discrepancy


1 1 1 0 0 0 0 0 0
1 1 0 1 1 0 0 0 0
0 0 0 1 0 0 1 0 0
0 0 0 1 1 1 1 1 1
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=


1
0
0
−1



disc(U, ‖ · ‖∞) = min
ε∈{±1}N

‖Uε‖∞

Natural to consider arbitrary norms: any norm can be written as ‖U · ‖∞.
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Introduction

Basic Bounds

[Spencer, 1985; Gluskin, 1989]: For any matrix U ∈ {0, 1}n×N ,
disc(U) .

√
n

Implied by: For any u1, . . . , uN ∈ Bn
∞ = [−1, 1]n, there exist

ε1, . . . , εN ∈ {−1,+1} s.t. ‖ε1u1 + . . .+ εNuN‖∞ .
√
n.

[Beck and Fiala, 1981]: For any matrix U ∈ {0, 1}n×N with at most t
ones per column, disc(U) ≤ 2t − 1

Implied by: For any u1, . . . , uN ∈ Bn
1 , there exist

ε1, . . . , εN ∈ {−1,+1} s.t. ‖ε1u1 + . . .+ εNuN‖∞ < 2.

Most combinatorial discrepancy bounds are implied by geometric vector
balancing arguments.
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Introduction

The Vector Balancing Problem

Given u1, . . . , uN ∈ Rn, and symmetric convex body K ⊂ Rn (K = −K ),
find the smallest t such that

∃ ε1, . . . , εN ∈ {−1,+1} : ε1u1 + . . .+ εNuN ∈ tK

u1 + u2

u1 − u2

−u1 + u2

−u1 − u2

Minkowski Norm: ‖x‖K = inf{t ≥ 0 : x ∈ tK}; t = disc((ui )
N
i=1, ‖ · ‖K ).

Vector Balancing Constant: worst case over sequences in C

vb(C ,K ) = sup

{
disc(U, ‖ · ‖K ) : N ∈ N, u1, . . . , uN ∈ C ,U = (ui )

N
i=1

}
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Introduction

Questions and Prior Results

[Dvoretzky, 1963] “What can be said” about vb(K ,K )?

[Bárány and Grinberg, 1981] vb(K ,K ) ≤ n for all K .

[Spencer, 1985; Gluskin, 1989] vb(Bn
∞,B

n
∞) .

√
n

[Beck and Fiala, 1981] vb(Bn
1 ,B

n
∞) < 2

[Banaszczyk, 1998] vb(Bn
2 ,K ) ≤ 5 if K has

Gaussian measure γn(K ) ≥ 1
2

Komlós Problem: Prove or disprove vb(Bn
2 ,B

n
∞) . 1.

Banaszczyk’s theorem implies vb(Bn
2 ,B

n
∞) .

√
log 2n.
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Introduction

Vector Balancing and Rounding

For any w ∈ [0, 1]N , any U = (ui )
N
i=1, ui ∈ C , and any symmetric convex

K , there exists a x ∈ {0, 1}N such that

‖Ux − Uw‖K ≤ vb(C ,K ).
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Introduction

Our Results

We initiate a systematic study of upper and lower bounds on vb(C ,K ) and
its computational complexity:

A natural volumetric lower bound on vb(C ,K ) is tight up to a
O(log n) factor.

The proof implies an efficient algorithm to compute ε ∈ {−1, 1}N given
u1, . . . , uN ∈ C , so that ‖ε1u1 + . . .+ εNuN‖K . (1 + log n) vb(C ,K ).
Also rounding version.

An efficiently computable upper bound on vb(C ,K ) is tight up to
factors polynomial in log n.

Based on an optimal application of Banaszczyks’ theorem.
Implies an efficient approximation algorithm for vb(C ,K ).

The results extend to hereditary discrepancy with respect to arbitrary
norms.

Prior work [Bansal, 2010; Nikolov and Talwar, 2015] implies bounds which
deteriorate with the number of facets of K .
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Volume Lower Bound

Hereditary Discrepancy

Issue: disc(U,K ) = disc(U, ‖ · ‖K ) is

not robust to slight changes in U (e.g. repeat each column)

hard to approximate [Charikar, Newman, and Nikolov, 2011]

vb(C ,K ) is more robust, but not about a specific matrix U.

Hereditary discrepancy is a robust analog of discrepancy:

hd(U,K ) = max
S⊆[N]

disc(US ,K ),

where US = (ui )i∈S is the submatrix of U indexed by S .

Observation:

vb(C ,K ) = sup

{
hd(U,K ) : N ∈ N, u1, . . . , uN ∈ C ,U = (ui )

N
i=1

}
.
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Volume Lower Bound

The Volume Lower Bound

Define L = {x ∈ RN : Ux ∈ K}: the set of “good x”.

disc(U,K ) = min{t : tL ∩ {−1, 1}N 6= ∅}.

[Lovász, Spencer, and Vesztergombi, 1986]:
If t = hd(U,K ), then [0, 1]N ⊆

⋃
x∈{0,1}N (x + tL).

[Banaszczyk, 1993]:

1 = vol([0, 1]N) ≥ vol(tL) = tN vol(L)
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⋃
x∈{0,1}N (x + tL).

[Banaszczyk, 1993]:

1 = vol([0, 1]N) ≥ vol(tL) = tN vol(L) ⇐⇒ hd(U,K ) ≥ vol(L)−1/N .
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Volume Lower Bound

A Hereditary Volume Lower Bound

A simple strengthening:

hd(U,K ) ≥ volLB(U,K ) = max
S⊆[N]

vol({x ∈ RS : USx ∈ K})−1/|S |.

Lower Bound on vb(C ,K ):

vb(C ,K ) ≥ volLB(C ,K ) = sup
{

volLB((ui )
N
i=1,K ) : u1, . . . , uN ∈ C

}
.

Theorem

For any n × N matrix U, and any symmetric convex C ,K ⊂ Rn,
volLB(U,K ) ≤ hd(U,K ) . (1 + log n) · volLB(U,K )

volLB(C ,K ) ≤ vb(C ,K ) . (1 + log n) · volLB(C ,K )
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Volume Lower Bound

Rothvoß’s Algorithm

Algorithm [Rothvoß, 2014]: given K ⊂ Rn,

1 Sample a standard Gaussian G ∼ N(0, In);

2 Output
X = arg min{‖x − G‖22 : x ∈ K ∩ [−1, 1]n}.

X
G

Goal: |{i : Xi ∈ {−1,+1}}| ≥ αn for a constant α.
(X is a partial coloring.)

Intuition: If K is “big enough,” then in an average direction ∂[−1, 1]n is
closer to the origin than ∂K and is more likely to be hit by X .
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(X is a partial coloring.)

Intuition: If K is “big enough,” then in an average direction ∂[−1, 1]n is
closer to the origin than ∂K and is more likely to be hit by X .

[Rothvoß, 2014] For any small enough α there is a δ so that
if K has Gaussian measure γn(K ) ≥ e−δn, then
with high probability |{i : Xi ∈ {−1,+1}| ≥ αn.
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Algorithm [Rothvoß, 2014]: given K ⊂ Rn,

1 Sample a standard Gaussian G ∼ N(0, In);

2 Output
X = arg min{‖x − G‖22 : x ∈ K ∩ [−1, 1]n}.

X
G

Goal: |{i : Xi ∈ {−1,+1}}| ≥ αn for a constant α.
(X is a partial coloring.)

Intuition: If K is “big enough,” then in an average direction ∂[−1, 1]n is
closer to the origin than ∂K and is more likely to be hit by X .

[Rothvoß, 2014] For any small enough α there is a δ so that
if there exists a dimension (1− δ)n subspace W for which
K ∩W has Gaussian measure γW (K ∩W ) ≥ e−δn, then
with high probability |{i : Xi ∈ {−1,+1}}| ≥ αn.
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Volume Lower Bound

Tightness of the Volume Lower Bound

Need to show: for any U ∈ Rn×N and symmetric convex K ⊂ Rn

hd(U,K ) . (1 + log n) · volLB(U,K ).

Proof by an algorithm:
Find a partial coloring with discrepancy . volLB(U,K ) and recurse.

1 Preprocess so that N = n, U = In;
2 Apply Rothvoß’s algorithm to tK , t � volLB(In,K );

If conditions hold, gives a partial coloring X ∈ tK ;

3 S = {i : −1 < Xi < 1}; Project K on RS and recurse.
Need a “recentered” variant of Rothvoß’s algorithm.

After k . 1 + log n iterations, we have X 1, . . .X k so that

X 1 + . . .+ X k ∈ {−1, 1}n;

‖X 1 + . . .+ X k‖K ≤ kt . (1 + log n) volLB(In,K ).

Main Challenge: Show that the conditions of Rothvoß’s algorithm are
satisfied.
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Volume Lower Bound

From Volume To Gaussian Measure

For Rothvoß’s algorithm, we need that on some subspace of large
dimension, the body tK , t � volLB(In,K ), has large Gaussian measure.

From the definition of volLB(In,K ):

∀S ⊆ [n] : vol((volLB(In,K ) · K ) ∩ RS) ≥ 1.

Theorem (Structural result)

For any δ there exists a m = m(δ) so that the following holds.
Let L be a symmetric convex body s.t. vol(L ∩ RS) ≥ 1 for all S ⊆ [n].
There exists a subspace W of dimension (1− δ)n for which

γW ((mL) ∩W ) ≥ e−δn.

Apply to L = volLB(In,K ) · K to get that the conditions of Rothvoß’s
algorithm are satisfied.
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Volume Lower Bound

Proof Ideas

Generally applicable strategy:
1 Prove the theorem for an ellipsoid E = T (Bn

2 ).

Reduces to linear algebra!

2 Approximate a general convex body L by an appropriate ellipsoid.

Theorem (Regular M-ellipsoid, [Milman, 1986; Pisier, 1989])

For any symmetric convex L ⊆ Rn there exists an ellipsoid E such that for
any t ≥ 1

max{N(L, tE ),N(E , tL)} ≤ ecn/t ,
where c is a constant.

N(K , L) = number of translates of L needed to cover K .
E preserves “large scale” information about L.

L ∩ RS has large volume =⇒ E ∩ RS has large volume.

E ∩W has large Gaussian measure =⇒ L ∩W has large Gaussian
measure.
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Volume Lower Bound

Partial Colorings

The bound hd(U,K ) . (1 + log n) volLB(U,K ) is in general tight.

Is the hereditary discrepancy of partial colorings � volLB(U,K )?

The hereditary discrepancy of partial colorings is . volLB(U,K ).

A lower bound would follow from

Conjecture

Suppose K ⊂ Rn is a symmetric convex body of volume ≤ 1. Then there
exists a S ⊆ [n] s.t. diam`2(K ∩ RS) .

√
|S |.

True for ellipsoids and reduces to the Restricted Invertibility Principle.

True for general bodies K if we replace RS with an arbitrary subspace
W and |S | with dim W .
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Factorization Upper Bounds
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Factorization Upper Bounds

Upper Bounds from Banaszczyk’s Theorem

We showed how to efficiently compute near optimal signs
ε1, . . . , εN ∈ {−1, 1} for any u1, . . . , uN .

But what if we want to compute vb(C ,K ) or hd(U,K )?

We do not know how to efficiently compute volLB(C ,K ).

We need a natural upper bound on vb(C ,K ).

Recall [Banaszczyk, 1998]:
For any convex K ⊂ Rn such that γn(K ) ≥ 1

2 , vb(Bn
2 ,K ) ≤ 5.

Observations:

If E‖G‖K ≤ 1 for G ∼ N(0, In), then γn(2K ) ≥ 1
2 .

vb(Bn
2 ,K ) . E‖G‖K .

vb(C ,K ) . (E‖G‖K ) · diam`2(C ).

Last bound can be very loose! Can we do better?
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Factorization Upper Bounds

A Better Upper Bound

Idea: Map C into Bn
2 using a linear map.

λ(C ,K ) = inf{(E‖G‖T (K)) · diam`2(T (C )) : T a linear map}.

Claim: vb(C ,K ) . λ(C ,K ).

Take a linear map T achieving λ(C ,K );

Can assume diam`2(T (C )) = 1, so E‖G‖T (K) = λ(C ,K );

vb(C ,K ) = vb(T (C ),T (K )) and apply Banaszczyk’s theorem.
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Factorization Upper Bounds

Tightness of the Upper Bound

Theorem

For any symmetric convex C ,K ⊂ Rn,
λ(C ,K )

(1 + log n)5/2
. vb(C ,K ) . λ(C ,K ).

Moreover, given membership oracle access to K and a vertex
representation of C , we can efficiently compute λ(C ,K ).

For a matrix U ∈ Rn×N , we can take C = conv{±u1, . . . ,±uN}, and then
λ(C ,K ) approximates hd(U,K ).

Proof outline:

1 Formulate λ(C ,K ) as a convex minimization problem;

2 Derive the Lagrange dual: an equivalent maximization problem;

3 Relate dual solutions to the volume lower bound.
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Factorization Upper Bounds

Convex Formulation

‖x‖T (K) = ‖T−1x‖K
First attempt: inf{E‖T−1G‖K : diam`2(T (C )) ≤ 1}

Not convex: the objective is ∞ for T = 0 and finite for any invertible
T , but 0 = 1

2(T + (−T )).

Observation: E‖T−1G‖K is defined entirely by A = T ∗T , because the
covariance of T−1G is given by A−1.

Formulation: λ(C ,K ) = inf f (A)

s.t. 〈x ,Ax〉 ≤ 1 ∀x ∈ C

A � 0.

f (A) = E‖T−1G‖K for any T such that T ∗T = A;

f is well defined over positive definite A;

The first constraint encodes diam`2(T (C )) ≤ 1:
〈x ,Ax〉 = 〈x ,T ∗Tx〉 = 〈Tx ,Tx〉 = ‖Tx‖22.
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Factorization Upper Bounds

Properties of the Formulation

The function f (A) is convex in A, and the constraints are also convex;

Lagrange Duality: there exists an equivalent dual maximization
problem, whose value also equals λ(U,C );

Each dual solution gives a lower bound on volLB(C ,K ), and,
therefore, on vb(C ,K );

Tools: K -convexity, and Sudakov minoration;

=⇒ λ(C ,K ) gives a lower bound on vb(C ,K ).

Computation: The convex optimization problem can be solved using the
ellipsoid method, given a membership oracle for K and a vertex
representation of C .

Sasho Nikolov (U of T) Balancing Vectors 23 / 25



Factorization Upper Bounds

Properties of the Formulation

The function f (A) is convex in A, and the constraints are also convex;

Lagrange Duality: there exists an equivalent dual maximization
problem, whose value also equals λ(U,C );

Each dual solution gives a lower bound on volLB(C ,K ), and,
therefore, on vb(C ,K );

Tools: K -convexity, and Sudakov minoration;

=⇒ λ(C ,K ) gives a lower bound on vb(C ,K ).

Computation: The convex optimization problem can be solved using the
ellipsoid method, given a membership oracle for K and a vertex
representation of C .

Sasho Nikolov (U of T) Balancing Vectors 23 / 25



Factorization Upper Bounds

Properties of the Formulation

The function f (A) is convex in A, and the constraints are also convex;

Lagrange Duality: there exists an equivalent dual maximization
problem, whose value also equals λ(U,C );

Each dual solution gives a lower bound on volLB(C ,K ), and,
therefore, on vb(C ,K );

Tools: K -convexity, and Sudakov minoration;

=⇒ λ(C ,K ) gives a lower bound on vb(C ,K ).

Computation: The convex optimization problem can be solved using the
ellipsoid method, given a membership oracle for K and a vertex
representation of C .

Sasho Nikolov (U of T) Balancing Vectors 23 / 25



Conclusion

Outline

1 Introduction

2 Volume Lower Bound

3 Factorization Upper Bounds

4 Conclusion

Sasho Nikolov (U of T) Balancing Vectors 24 / 25



Conclusion

Conclusion

In this work:

Tightness of natural upper and lower bounds for vector balancing.

Efficient algorithms to find nearly optimal vector balancing signs, and
to compute vb(C ,K ), and hereditary discrepancy with respect to any
norm.

Our results strongly use the geometry of the underlying discrepancy
problem.

Open questions:

Does volLB(C ,K ) give lower bounds on partial colorings?

vb(K ,K ) � volLB(K ,K )? (True for `p.)

Can the bounds for λ(C ,K ) be improved?
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