Balancing Vectors in Any Norm

Aleksandar (Sasho) Nikolov

University of Toronto

Based on joint work with
Daniel Dadush, Kunal Talwar, and Nicole Tomczak-Jaegermann
Outline

1. Introduction
2. Volume Lower Bound
3. Factorization Upper Bounds
4. Conclusion
Discrepancy

\[
\begin{pmatrix}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{pmatrix}
\begin{pmatrix}
-1 \\
1 \\
-1 \\
1 \\
\end{pmatrix}
=
\begin{pmatrix}
1 \\
0 \\
0 \\
-1 \\
\end{pmatrix}
\]

\[
disc(U, \| \cdot \|_\infty) = \min_{\varepsilon \in \{\pm 1\}^N} \| U \varepsilon \|_\infty
\]
Discrepancy

\[
\begin{pmatrix}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
-1 \\
1 \\
-1 \\
1 \\
-1 \\
1 \\
1 \\
1 \\
-1
\end{pmatrix}
= \begin{pmatrix}
1 \\
0 \\
0 \\
-1
\end{pmatrix}
\]

\[
\text{disc}(U, \| \cdot \|_\infty) = \min_{\varepsilon \in \{\pm 1\}^N} \| U\varepsilon \|_\infty
\]

Natural to consider arbitrary norms: any norm can be written as \(\| U \cdot \|_\infty \).
Basic Bounds

- [Spencer, 1985; Gluskin, 1989]: For any matrix $U \in \{0, 1\}^{n \times N}$,
 \[\text{disc}(U) \lesssim \sqrt{n} \]

- [Beck and Fiala, 1981]: For any matrix $U \in \{0, 1\}^{n \times N}$ with at most t ones per column,
 \[\text{disc}(U) \leq 2t - 1 \]

Most combinatorial discrepancy bounds are implied by geometric vector balancing arguments.
Basic Bounds

- [Spencer, 1985; Gluskin, 1989]: For any matrix $U \in \{0, 1\}^{n \times N}$, $\text{disc}(U) \lesssim \sqrt{n}$

- Implied by: For any $u_1, \ldots, u_N \in B^n_\infty = [-1, 1]^n$, there exist $\varepsilon_1, \ldots, \varepsilon_N \in \{-1, +1\}$ s.t. $\|\varepsilon_1 u_1 + \ldots + \varepsilon_N u_N\|_\infty \lesssim \sqrt{n}$. Most combinatorial discrepancy bounds are implied by geometric vector balancing arguments.
Basic Bounds

- [Spencer, 1985; Gluskin, 1989]: For any matrix \(U \in \{0, 1\}^{n \times N} \),
 \(\text{disc}(U) \lesssim \sqrt{n} \)

- **Implied by**: For any \(u_1, \ldots, u_N \in B_{\infty}^n = [-1, 1]^n \), there exist \(\varepsilon_1, \ldots, \varepsilon_N \in \{-1, +1\} \) s.t. \(\|\varepsilon_1 u_1 + \ldots + \varepsilon_N u_N\|_{\infty} \lesssim \sqrt{n} \).

- [Beck and Fiala, 1981]: For any matrix \(U \in \{0, 1\}^{n \times N} \) with at most \(t \) ones per column, \(\text{disc}(U) \leq 2t - 1 \)
Basic Bounds

- [Spencer, 1985; Gluskin, 1989]: For any matrix $U \in \{0, 1\}^{n \times N}$, $\text{disc}(U) \lesssim \sqrt{n}$

- **Implied by:** For any $u_1, \ldots, u_N \in B_\infty^n = [-1, 1]^n$, there exist $\varepsilon_1, \ldots, \varepsilon_N \in \{-1, +1\}$ s.t. $\|\varepsilon_1 u_1 + \ldots + \varepsilon_N u_N\|_\infty \lesssim \sqrt{n}$.

- [Beck and Fiala, 1981]: For any matrix $U \in \{0, 1\}^{n \times N}$ with at most t ones per column, $\text{disc}(U) \leq 2t - 1$

- **Implied by:** For any $u_1, \ldots, u_N \in B_1^n$, there exist $\varepsilon_1, \ldots, \varepsilon_N \in \{-1, +1\}$ s.t. $\|\varepsilon_1 u_1 + \ldots + \varepsilon_N u_N\|_\infty < 2$.

Most combinatorial discrepancy bounds are implied by geometric vector balancing arguments.
Basic Bounds

- [Spencer, 1985; Gluskin, 1989]: For any matrix $U \in \{0, 1\}^{n \times N}$,
 \[\text{disc}(U) \lesssim \sqrt{n} \]

 Implied by: For any $u_1, \ldots, u_N \in B^n_\infty = [-1, 1]^n$, there exist
 $\varepsilon_1, \ldots, \varepsilon_N \in \{-1, +1\}$ such that
 \[\|\varepsilon_1 u_1 + \ldots + \varepsilon_N u_N\|_\infty \lesssim \sqrt{n}. \]

- [Beck and Fiala, 1981]: For any matrix $U \in \{0, 1\}^{n \times N}$ with at most t
 ones per column, $\text{disc}(U) \leq 2t - 1$

 Implied by: For any $u_1, \ldots, u_N \in B^n_1$, there exist
 $\varepsilon_1, \ldots, \varepsilon_N \in \{-1, +1\}$ such that
 \[\|\varepsilon_1 u_1 + \ldots + \varepsilon_N u_N\|_\infty < 2. \]

Most combinatorial discrepancy bounds are implied by geometric vector
balancing arguments.
The Vector Balancing Problem

Given $u_1, \ldots, u_N \in \mathbb{R}^n$, and symmetric convex body $K \subset \mathbb{R}^n$ ($K = -K$), find the smallest t such that

$$\exists \varepsilon_1, \ldots, \varepsilon_N \in \{-1, +1\} : \varepsilon_1 u_1 + \ldots + \varepsilon_N u_N \in tK$$

![Diagram showing vector balancing problem](image)
The Vector Balancing Problem

Given $u_1, \ldots, u_N \in \mathbb{R}^n$, and symmetric convex body $K \subset \mathbb{R}^n$ ($K = -K$), find the smallest t such that

$$\exists \varepsilon_1, \ldots, \varepsilon_N \in \{-1, +1\} : \varepsilon_1 u_1 + \ldots + \varepsilon_N u_N \in tK$$

Minkowski Norm: $\|x\|_K = \inf\{t \geq 0 : x \in tK\}; \ t = \text{disc}((u_i)_{i=1}^N, \|\cdot\|_K)$.
The Vector Balancing Problem

Given \(u_1, \ldots, u_N \in \mathbb{R}^n \), and symmetric convex body \(K \subset \mathbb{R}^n \) \((K = -K)\), find the smallest \(t \) such that

\[\exists \varepsilon_1, \ldots, \varepsilon_N \in \{-1, +1\} : \varepsilon_1 u_1 + \ldots + \varepsilon_N u_N \in tK \]

Minkowski Norm: \(\|x\|_K = \inf\{t \geq 0 : x \in tK\} \); \(t = \text{disc}((u_i)_{i=1}^N, \|\cdot\|_K) \).

Vector Balancing Constant: worst case over sequences in \(C \)

\[\text{vb}(C, K) = \sup \left\{ \text{disc}(U, \|\cdot\|_K) : N \in \mathbb{N}, u_1, \ldots, u_N \in C, U = (u_i)_{i=1}^N \right\} \]
Questions and Prior Results

- [Dvoretzky, 1963] “What can be said” about $\text{vb}(K, K)$?
- [Bárány and Grinberg, 1981] $\text{vb}(K, K) \leq n$ for all K.

Banaszczyk's theorem implies $\text{vb}(B_n^2, B_n^\infty) \lesssim \sqrt{\log 2} n$.

Komlós Problem: Prove or disprove $\text{vb}(B_n^2, B_n^\infty) \lesssim 1$.

Sasho Nikolov (U of T) Balancing Vectors
Questions and Prior Results

- [Dvoretzky, 1963] “What can be said” about $\text{vb}(K, K)$?
- [Bárány and Grinberg, 1981] $\text{vb}(K, K) \leq n$ for all K.
- [Spencer, 1985; Gluskin, 1989] $\text{vb}(B_n^\infty, B_n^\infty) \lesssim \sqrt{n}$
- [Beck and Fiala, 1981] $\text{vb}(B_1^n, B_\infty^n) < 2$
Questions and Prior Results

- [Dvoretzky, 1963] “What can be said” about $\text{vb}(K, K)$?
- [Bárány and Grinberg, 1981] $\text{vb}(K, K) \leq n$ for all K.
- [Spencer, 1985; Gluskin, 1989] $\text{vb}(B_n^\infty, B_n^\infty) \preceq \sqrt{n}$
- [Beck and Fiala, 1981] $\text{vb}(B_1^n, B_\infty^n) < 2$
- [Banaszczyk, 1998] $\text{vb}(B_2^n, K) \leq 5$ if K has Gaussian measure $\gamma_n(K) \geq \frac{1}{2}$

Komlós Problem: Prove or disprove $\text{vb}(B_2^n, B_\infty^n) \preceq 1$.

- Banaszczyk’s theorem implies $\text{vb}(B_2^n, B_\infty^n) \preceq \sqrt{\log 2n}$.
Vector Balancing and Rounding

For any \(w \in [0, 1]^N \), any \(U = (u_i)_{i=1}^N \), \(u_i \in C \), and any symmetric convex \(K \), there exists a \(x \in \{0, 1\}^N \) such that

\[
\| Ux - Uw \|_K \leq \text{vb}(C, K).
\]
Our Results

We initiate a systematic study of upper and lower bounds on $\text{vb}(C, K)$ and its computational complexity:

A natural volumetric lower bound on $\text{vb}(C, K)$ is tight up to a $O(\log n)$ factor. The proof implies an efficient algorithm to compute $\varepsilon \in \{-1, 1\}^N$ given $u_1, \ldots, u_N \in C$, so that $\|\varepsilon_1 u_1 + \ldots + \varepsilon_N u_N\|_K \lesssim (1 + \log n) \text{ vb}(C, K)$. Also rounding version.

An efficiently computable upper bound on $\text{vb}(C, K)$ is tight up to factors polynomial in $\log n$. Based on an optimal application of Banaszczyk's theorem. Implies an efficient approximation algorithm for $\text{vb}(C, K)$. The results extend to hereditary discrepancy with respect to arbitrary norms.

Prior work [Bansal, 2010; Nikolov and Talwar, 2015] implies bounds which deteriorate with the number of facets of K.

Sasho Nikolov (U of T) Balancing Vectors
Our Results

We initiate a systematic study of upper and lower bounds on \(\text{vb}(C, K) \) and its computational complexity:

- A natural volumetric lower bound on \(\text{vb}(C, K) \) is tight up to a \(O(\log n) \) factor.
 - The proof implies an efficient algorithm to compute \(\varepsilon \in \{-1, 1\}^N \) given \(u_1, \ldots, u_N \in C \), so that \(\|\varepsilon_1 u_1 + \ldots + \varepsilon_N u_N\|_K \lesssim (1 + \log n) \text{vb}(C, K) \).

- Also rounding version.

Also rounding version.

Prior work [Bansal, 2010; Nikolov and Talwar, 2015] implies bounds which deteriorate with the number of facets of \(K \).

The results extend to hereditary discrepancy with respect to arbitrary norms.
Our Results

We initiate a systematic study of *upper* and *lower bounds* on $\text{vb}(C, K)$ and its computational complexity:

- A natural volumetric lower bound on $\text{vb}(C, K)$ is tight up to a $O(\log n)$ factor.
 - The proof implies an efficient algorithm to compute $\varepsilon \in \{-1, 1\}^N$ given $u_1, \ldots, u_N \in C$, so that $\|\varepsilon_1 u_1 + \ldots + \varepsilon_N u_N\|_K \lesssim (1 + \log n) \text{vb}(C, K)$.
 - Also rounding version.

- An efficiently computable upper bound on $\text{vb}(C, K)$ is tight up to factors polynomial in $\log n$.
 - Based on an optimal application of Banaszczyks’ theorem.
 - Implies an efficient approximation algorithm for $\text{vb}(C, K)$.
Our Results

We initiate a systematic study of upper and lower bounds on \(\text{vb}(C, K) \) and its computational complexity:

- A natural volumetric lower bound on \(\text{vb}(C, K) \) is tight up to a \(O(\log n) \) factor.
 - The proof implies an efficient algorithm to compute \(\epsilon \in \{-1, 1\}^N \) given \(u_1, \ldots, u_N \in C \), so that \(\|\epsilon_1 u_1 + \ldots + \epsilon_N u_N\|_K \lesssim (1 + \log n) \text{vb}(C, K) \).
 - Also rounding version.

- An efficiently computable upper bound on \(\text{vb}(C, K) \) is tight up to factors polynomial in \(\log n \).
 - Based on an optimal application of Banaszczyks’ theorem.
 - Implies an efficient approximation algorithm for \(\text{vb}(C, K) \).

- The results extend to hereditary discrepancy with respect to arbitrary norms.
Our Results

We initiate a systematic study of upper and lower bounds on $\text{vb}(C, K)$ and its computational complexity:

- A natural volumetric lower bound on $\text{vb}(C, K)$ is tight up to a $O(\log n)$ factor.
 - The proof implies an efficient algorithm to compute $\varepsilon \in \{-1, 1\}^N$ given $u_1, \ldots, u_N \in C$, so that $\|\varepsilon_1 u_1 + \ldots + \varepsilon_N u_N\|_K \lesssim (1 + \log n) \text{vb}(C, K)$.
 - Also rounding version.

- An efficiently computable upper bound on $\text{vb}(C, K)$ is tight up to factors polynomial in $\log n$.
 - Based on an optimal application of Banaszczyks’ theorem.
 - Implies an efficient approximation algorithm for $\text{vb}(C, K)$.

- The results extend to hereditary discrepancy with respect to arbitrary norms.

Prior work [Bansal, 2010; Nikolov and Talwar, 2015] implies bounds which deteriorate with the number of facets of K.
Outline

1. Introduction

2. Volume Lower Bound

3. Factorization Upper Bounds

4. Conclusion
Hereditary Discrepancy

Issue: $\text{disc}(U, K) = \text{disc}(U, \| \cdot \|_K)$ is

- not robust to slight changes in U (e.g. repeat each column)
- hard to approximate [Charikar, Newman, and Nikolov, 2011]
Hereditary Discrepancy

Issue: $\text{disc}(U, K) = \text{disc}(U, \| \cdot \|_K)$ is

- not robust to slight changes in U (e.g. repeat each column)
- hard to approximate [Charikar, Newman, and Nikolov, 2011]

$\text{vb}(C, K)$ is more robust, but not about a specific matrix U.

\textbf{Observation:} $\text{vb}(C, K) = \sup \{ \text{hd}(U, K) : N \in \mathbb{N}, u_1, \ldots, u_N \in C, U = (u_i)_{i=1}^N \}$.
Hereditary Discrepancy

Issue: \(\text{disc}(U, K) = \text{disc}(U, \| \cdot \|_K) \) is

- not robust to slight changes in \(U \) (e.g. repeat each column)
- hard to approximate [Charikar, Newman, and Nikolov, 2011]

\(\text{vb}(C, K) \) is more robust, but not about a specific matrix \(U \).

Hereditary discrepancy is a robust analog of discrepancy:

\[
\text{hd}(U, K) = \max_{S \subseteq [N]} \text{disc}(U_S, K),
\]

where \(U_S = (u_i)_{i \in S} \) is the submatrix of \(U \) indexed by \(S \).
Hereditary Discrepancy

Issue: $\text{disc}(U, K) = \text{disc}(U, \| \cdot \|_K)$ is
 - not robust to slight changes in U (e.g. repeat each column)
 - hard to approximate [Charikar, Newman, and Nikolov, 2011]

$\text{vb}(C, K)$ is more robust, but not about a specific matrix U.

Hereditary discrepancy is a robust analog of discrepancy:

$$\text{hd}(U, K) = \max_{S \subseteq [N]} \text{disc}(U_S, K),$$

where $U_S = (u_i)_{i \in S}$ is the submatrix of U indexed by S.

Observation:

$$\text{vb}(C, K) = \sup \left\{ \text{hd}(U, K) : N \in \mathbb{N}, u_1, \ldots, u_N \in C, U = (u_i)_{i=1}^N \right\}.$$
The Volume Lower Bound

Define \(L = \{ x \in \mathbb{R}^N : Ux \in K \} \): the set of “good \(x \)”.

\[\text{disc}(U, K) = \min \{ t : tL \cap \{-1, 1\}^N \neq \emptyset \} . \]
The Volume Lower Bound

Define $L = \{ x \in \mathbb{R}^N : Ux \in K \}$: the set of “good x”.

\[\text{disc}(U, K) = \min \{ t : tL \cap \{-1, 1\}^N \neq \emptyset \} . \]

[Lovász, Spencer, and Vesztergombi, 1986]:
If $t = \text{hd}(U, K)$, then $[0, 1]^N \subseteq \bigcup_{x \in \{0, 1\}^N} (x + tL).$
The Volume Lower Bound

Define \(L = \{ x \in \mathbb{R}^N : Ux \in K \} \): the set of “good \(x \)”.

- \(\text{disc}(U, K) = \min \{ t : tL \cap \{-1, 1\}^N \neq \emptyset \} \).

[Lovász, Spencer, and Vesztergombi, 1986]:
If \(t = \text{hd}(U, K) \), then \([0, 1]^N \subseteq \bigcup_{x \in \{0, 1\}^N} (x + tL)\).

[Banaszczyk, 1993]:

\[
1 = \text{vol}([0, 1]^N) \geq \text{vol}(tL) = t^N \text{vol}(L)
\]
The Volume Lower Bound

Define \(L = \{ x \in \mathbb{R}^N : Ux \in K \} \): the set of “good \(x \)”.

\[\text{disc}(U, K) = \min \{ t : tL \cap \{-1, 1\}^N \neq \emptyset \} \].

[Lovász, Spencer, and Vesztergombi, 1986]:
If \(t = \text{hd}(U, K) \), then \([0, 1]^N \subseteq \bigcup_{x \in \{0,1\}^N} (x + tL)\).

[Banaszczyk, 1993]:

\[1 = \text{vol}([0, 1]^N) \geq \text{vol}(tL) = t^N \text{vol}(L) \iff \text{hd}(U, K) \geq \text{vol}(L)^{-1/N}. \]
A Hereditary Volume Lower Bound

A simple strengthening:

$$\text{hd}(U, K) \geq \text{volLB}(U, K) = \max_{S \subseteq [N]} \frac{\text{vol}(\{ x \in \mathbb{R}^S : U_S x \in K \})}{|S|}.$$
A Hereditary Volume Lower Bound

A simple strengthening:

$$\text{hd}(U, K) \geq \text{volLB}(U, K) = \max_{S \subseteq [N]} \text{vol}(\{ x \in \mathbb{R}^S : U_S x \in K \})^{-1/|S|}.$$

Lower Bound on $\text{vb}(C, K)$:

$$\text{vb}(C, K) \geq \text{volLB}(C, K) = \sup \left\{ \text{volLB}((u_i)_{i=1}^N, K) : u_1, \ldots, u_N \in C \right\}.$$
A Hereditary Volume Lower Bound

A simple strengthening:

$$\operatorname{hd}(U, K) \geq \operatorname{volLB}(U, K) = \max_{S \subseteq [N]} \operatorname{vol}(\{x \in \mathbb{R}^S : U_Sx \in K\})^{-1/|S|}.$$

Lower Bound on $\operatorname{vb}(C, K)$:

$$\operatorname{vb}(C, K) \geq \operatorname{volLB}(C, K) = \sup \left\{ \operatorname{volLB}((u_i)_{i=1}^N, K) : u_1, \ldots, u_N \in C \right\}.$$

Theorem

For any $n \times N$ matrix U, and any symmetric convex $C, K \subset \mathbb{R}^n$,

$$\operatorname{volLB}(U, K) \leq \operatorname{hd}(U, K) \lesssim (1 + \log n) \cdot \operatorname{volLB}(U, K)$$

$$\operatorname{volLB}(C, K) \leq \operatorname{vb}(C, K) \lesssim (1 + \log n) \cdot \operatorname{volLB}(C, K)$$
Rothvoß’s Algorithm

Algorithm [Rothvoß, 2014]: given $K \subset \mathbb{R}^n$,

1. Sample a standard Gaussian $G \sim N(0, I_n)$;
2. Output $X = \arg \min \{ \| x - G \|_2^2 : x \in K \cap [-1, 1]^n \}$.

Goal: $|\{ i : X_i \in \{-1, +1\} \}| \geq \alpha n$ for a constant α.
(X is a partial coloring.)

Intuition: If K is “big enough,” then in an average direction $\partial [-1, 1]^n$ is closer to the origin than ∂K and is more likely to be hit by X.
Rothvoß’s Algorithm

Algorithm [Rothvoß, 2014]: given $K \subset \mathbb{R}^n$,

1. Sample a standard Gaussian $G \sim N(0, I_n)$;
2. Output $X = \arg \min \{ \|x - G\|_2^2 : x \in K \cap [-1, 1]^n \}$.

Goal: $|\{i : X_i \in \{-1, +1\}\}| \geq \alpha n$ for a constant α.

(X is a partial coloring.)

Intuition: If K is “big enough,” then in an average direction $\partial[-1, 1]^n$ is closer to the origin than ∂K and is more likely to be hit by X.

[Rothvoß, 2014] For any small enough α there is a δ so that if K has Gaussian measure $\gamma_n(K) \geq e^{-\delta n}$, then with high probability $|\{i : X_i \in \{-1, +1\}\}| \geq \alpha n$.

Rothvoß’s Algorithm

Algorithm [Rothvoß, 2014]: given $K \subset \mathbb{R}^n$,

1. Sample a standard Gaussian $G \sim N(0, I_n)$;
2. Output
 $$X = \arg \min \{ \|x - G\|^2_2 : x \in K \cap [-1, 1]^n \}.$$

Goal: $|\{i : X_i \in \{-1, +1\}\}| \geq \alpha n$ for a constant α.

(X is a partial coloring.)

Intuition: If K is “big enough,” then in an average direction $\partial [-1, 1]^n$ is closer to the origin than ∂K and is more likely to be hit by X.

[Rothvoß, 2014] For any small enough α there is a δ so that if there exists a dimension $(1 - \delta)n$ subspace W for which $K \cap W$ has Gaussian measure $\gamma_W(K \cap W) \geq e^{-\delta n}$, then with high probability $|\{i : X_i \in \{-1, +1\}\}| \geq \alpha n$.
Tightness of the Volume Lower Bound

Need to show: for any $U \in \mathbb{R}^{n \times N}$ and symmetric convex $K \subset \mathbb{R}^n$

$$\text{hd}(U, K) \lesssim (1 + \log n) \cdot \text{volLB}(U, K).$$
Tightness of the Volume Lower Bound

Need to show: for any $U \in \mathbb{R}^{n \times N}$ and symmetric convex $K \subset \mathbb{R}^n$

$$\text{hd}(U, K) \lesssim (1 + \log n) \cdot \text{volLB}(U, K).$$

Proof by an algorithm:
Find a partial coloring with discrepancy $\lesssim \text{volLB}(U, K)$ and recurse.
Tightness of the Volume Lower Bound

Need to show: for any $U \in \mathbb{R}^{n \times N}$ and symmetric convex $K \subset \mathbb{R}^n$
$$\text{hd}(U, K) \lesssim (1 + \log n) \cdot \text{volLB}(U, K).$$

Proof by an algorithm:
Find a partial coloring with discrepancy $\lesssim \text{volLB}(U, K)$ and recurse.

1. Preprocess so that $N = n$, $U = I_n$;
2. Apply Rothvoß’s algorithm to tK, $t \asymp \text{volLB}(I_n, K)$;
 - If conditions hold, gives a partial coloring $X \in tK$;
3. $S = \{ i : -1 < X_i < 1 \}$; Project K on \mathbb{R}^S and recurse.
 - Need a “recentered” variant of Rothvoß’s algorithm.
Tightness of the Volume Lower Bound

Need to show: for any $U \in \mathbb{R}^{n \times N}$ and symmetric convex $K \subset \mathbb{R}^n$

$$\text{hd}(U, K) \lesssim (1 + \log n) \cdot \text{volLB}(U, K).$$

Proof by an algorithm:
Find a partial coloring with discrepancy $\lesssim \text{volLB}(U, K)$ and recurse.

1. Preprocess so that $N = n$, $U = I_n$;
2. Apply Rothvoß’s algorithm to tK, $t \approx \text{volLB}(I_n, K)$;
 - If conditions hold, gives a partial coloring $X \in tK$;
3. $S = \{i : -1 < X_i < 1\}$; Project K on \mathbb{R}^S and recurse.
 - Need a “recentered” variant of Rothvoß’s algorithm.

After $k \lesssim 1 + \log n$ iterations, we have $X^1, \ldots X^k$ so that

$$X^1 + \ldots + X^k \in \{-1, 1\}^n;$$

$$\|X^1 + \ldots + X^k\|_K \leq kt \lesssim (1 + \log n) \text{volLB}(I_n, K).$$
Tightness of the Volume Lower Bound

Need to show: for any $U \in \mathbb{R}^{n \times N}$ and symmetric convex $K \subset \mathbb{R}^n$

$$\text{hd}(U, K) \lesssim (1 + \log n) \cdot \text{volLB}(U, K).$$

Proof by an algorithm:
Find a partial coloring with discrepancy $\lesssim \text{volLB}(U, K)$ and recurse.

1. Preprocess so that $N = n$, $U = I_n$;
2. Apply Rothvoss’s algorithm to tK, $t \approx \text{volLB}(I_n, K)$;
 - If conditions hold, gives a partial coloring $X \in tK$;
3. $S = \{ i : -1 < X_i < 1 \}$; Project K on \mathbb{R}^S and recurse.
 - Need a “recentered” variant of Rothvoss’s algorithm.

After $k \lesssim 1 + \log n$ iterations, we have $X^1, \ldots X^k$ so that

$$X^1 + \ldots + X^k \in \{-1, 1\}^n;$$

$$\|X^1 + \ldots + X^k\|_K \leq kt \lesssim (1 + \log n) \text{volLB}(I_n, K).$$

Main Challenge: Show that the conditions of Rothvoss’s algorithm are satisfied.
From Volume To Gaussian Measure

For Rothvoß’s algorithm, we need that on some subspace of large dimension, the body tK, $t \propto \text{volLB}(I_n, K)$, has large Gaussian measure.
From Volume To Gaussian Measure

For Rothvoß’s algorithm, we need that on some subspace of large dimension, the body tK, $t \approx \text{volLB}(I_n, K)$, has large Gaussian measure. From the definition of $\text{volLB}(I_n, K)$:

$$\forall S \subseteq [n] : \text{vol}((\text{volLB}(I_n, K) \cdot K) \cap \mathbb{R}^S) \geq 1.$$
From Volume To Gaussian Measure

For Rothvoß’s algorithm, we need that on some subspace of large dimension, the body tK, $t \approx \text{volLB}(I_n, K)$, has large Gaussian measure.

From the definition of $\text{volLB}(I_n, K)$:

$$\forall S \subseteq [n] : \text{vol}((\text{volLB}(I_n, K) \cdot K) \cap \mathbb{R}^S) \geq 1.$$

Theorem (Structural result)

For any δ there exists a $m = m(\delta)$ so that the following holds.

Let L be a symmetric convex body s.t. $\text{vol}(L \cap \mathbb{R}^S) \geq 1$ for all $S \subseteq [n]$.

There exists a subspace W of dimension $(1 - \delta)n$ for which

$$\gamma_W((mL) \cap W) \geq e^{-\delta n}.$$

Apply to $L = \text{volLB}(I_n, K) \cdot K$ to get that the conditions of Rothvoß’s algorithm are satisfied.
Proof Ideas

Generally applicable strategy:

1. Prove the theorem for an ellipsoid $E = T(B_2^n)$.
 - Reduces to linear algebra!
Proof Ideas

Generally applicable strategy:

1. Prove the theorem for an ellipsoid $E = T(B_2^n)$.
 - Reduces to linear algebra!
2. Approximate a general convex body L by an appropriate ellipsoid.

Theorem (Regular M-ellipsoid, [Milman, 1986; Pisier, 1989])

For any symmetric convex $L \subseteq \mathbb{R}^n$ there exists an ellipsoid E such that for any $t \geq 1$

$$\max\{N(L, tE), N(E, tL)\} \leq e^{cn/t},$$

where c is a constant.

$N(K, L) =$ number of translates of L needed to cover K.

E preserves “large scale” information about L.
Proof Ideas

Generally applicable strategy:
1. Prove the theorem for an ellipsoid \(E = T(B^2_n) \).
 - Reduces to linear algebra!
2. Approximate a general convex body \(L \) by an appropriate ellipsoid.

Theorem (Regular \(M \)-ellipsoid, [Milman, 1986; Pisier, 1989])

For any symmetric convex \(L \subseteq \mathbb{R}^n \) there exists an ellipsoid \(E \) such that for any \(t \geq 1 \)

\[
\max\{N(L, tE), N(E, tL)\} \leq e^{cn/t},
\]

where \(c \) is a constant.

\(N(K, L) = \) number of translates of \(L \) needed to cover \(K \).

\(E \) preserves “large scale” information about \(L \).

- \(L \cap \mathbb{R}^S \) has large volume \(\implies E \cap \mathbb{R}^S \) has large volume.
- \(E \cap W \) has large Gaussian measure \(\implies L \cap W \) has large Gaussian measure.
The bound $\text{hd}(U, K) \lesssim (1 + \log n) \text{volLB}(U, K)$ is in general tight.
Partial Colorings

The bound $\text{hd}(U, K) \lesssim (1 + \log n) \text{volLB}(U, K)$ is in general tight. Is the hereditary discrepancy of partial colorings $\approx \text{volLB}(U, K)$?
Partial Colorings

The bound $\text{hd}(U, K) \lesssim (1 + \log n) \text{volLB}(U, K)$ is in general tight. Is the hereditary discrepancy of partial colorings $\asymp \text{volLB}(U, K)$?

- The hereditary discrepancy of partial colorings is $\lesssim \text{volLB}(U, K)$.
Partial Colorings

The bound $\text{hd}(U, K) \lesssim (1 + \log n) \text{volLB}(U, K)$ is in general tight.

Is the hereditary discrepancy of partial colorings $\simeq \text{volLB}(U, K)$?

- The hereditary discrepancy of partial colorings is $\lesssim \text{volLB}(U, K)$.
- A lower bound would follow from

Conjecture

*Suppose $K \subset \mathbb{R}^n$ is a symmetric convex body of volume ≤ 1. Then there exists a $S \subseteq [n]$ s.t. $\text{diam}_{\ell_2}(K \cap \mathbb{R}^S) \lesssim \sqrt{|S|}$.***
Partial Colorings

The bound $\text{hd}(U, K) \lesssim (1 + \log n) \text{volLB}(U, K)$ is in general tight.

Is the hereditary discrepancy of partial colorings $\lesssim \text{volLB}(U, K)$?

- The hereditary discrepancy of partial colorings is $\lesssim \text{volLB}(U, K)$.
- A lower bound would follow from

Conjecture

Suppose $K \subset \mathbb{R}^n$ is a symmetric convex body of volume ≤ 1. Then there exists a $S \subseteq [n]$ s.t. $\text{diam}_{\ell_2}(K \cap \mathbb{R}^S) \lesssim \sqrt{|S|}$.

- True for ellipsoids and reduces to the Restricted Invertibility Principle.
- True for general bodies K if we replace \mathbb{R}^S with an arbitrary subspace W and $|S|$ with $\dim W$.
Outline

1. Introduction
2. Volume Lower Bound
3. Factorization Upper Bounds
4. Conclusion
Upper Bounds from Banaszczyk’s Theorem

We showed how to efficiently compute near optimal signs \(\varepsilon_1, \ldots, \varepsilon_N \in \{-1, 1\} \) for any \(u_1, \ldots, u_N \).

But what if we want to compute \(\text{vb}(C, K) \) or \(\text{hd}(U, K) \)?

We do not know how to efficiently compute \(\text{volLB}(C, K) \).

We need a natural upper bound on \(\text{vb}(C, K) \).

Recall [Banaszczyk, 1998]:

For any convex \(K \subset \mathbb{R}^n \) such that \(\gamma_n(K) \geq \frac{1}{2} \), \(\text{vb}(B_{\ell_2^n}, K) \leq 5 \).

Observations:

If \(E \|G\|_K \leq 1 \) for \(G \sim \mathcal{N}(0, I_n) \), then \(\gamma_n(2K) \geq \frac{1}{2} \).

\(\text{vb}(B_{\ell_2^n}, K) \lesssim E \|G\|_K \).

\(\text{vb}(C, K) \lesssim (E \|G\|_K) \cdot \text{diam}_\ell_2(C) \).

The last bound can be very loose! Can we do better?
Upper Bounds from Banaszczyk’s Theorem

We showed how to efficiently compute near optimal signs $\varepsilon_1, \ldots, \varepsilon_N \in \{-1, 1\}$ for any u_1, \ldots, u_N.

But what if we want to compute $vb(C, K)$ or $hd(U, K)$?

- We do not know how to efficiently compute $volLB(C, K)$.
- We need a natural upper bound on $vb(C, K)$.

Recall [Banaszczyk, 1998]:

For any convex $K \subset \mathbb{R}^n$ such that $\gamma_n(K) \geq \frac{1}{2}$, $vb(B_n^2, K) \leq 5$.

Observations:

- If $E \|G\|_K \leq 1$ for $G \sim N(0, I_n)$, then $\gamma_n(2K) \geq \frac{1}{2}$.
- $vb(B_n^2, K) \asymp E \|G\|_K$.
- $vb(C, K) \asymp (E \|G\|_K) \cdot diameter_\ell_2(C)$.

Last bound can be very loose! Can we do better?
Upper Bounds from Banaszczyk’s Theorem

We showed how to efficiently compute near optimal signs $\varepsilon_1, \ldots, \varepsilon_N \in \{-1, 1\}$ for any u_1, \ldots, u_N.

But what if we want to compute $\text{vb}(C, K)$ or $\text{hd}(U, K)$?

- We do not know how to efficiently compute $\text{volLB}(C, K)$.
- We need a natural upper bound on $\text{vb}(C, K)$.

Recall [Banaszczyk, 1998]:
For any convex $K \subset \mathbb{R}^n$ such that $\gamma_n(K) \geq \frac{1}{2}$, $\text{vb}(B_2^n, K) \leq 5$.
Upper Bounds from Banaszczyk’s Theorem

We showed how to efficiently compute near optimal signs \(\varepsilon_1, \ldots, \varepsilon_N \in \{-1, 1\} \) for any \(u_1, \ldots, u_N \).

But what if we want to compute \(\text{vb}(C, K) \) or \(\text{hd}(U, K) \)?

- We do not know how to efficiently compute \(\text{volLB}(C, K) \).
- We need a natural upper bound on \(\text{vb}(C, K) \).

Recall [Banaszczyk, 1998]:
For any convex \(K \subset \mathbb{R}^n \) such that \(\gamma_n(K) \geq \frac{1}{2} \), \(\text{vb}(B_2^n, K) \leq 5 \).

Observations:
- If \(\mathbb{E}\|G\|_K \leq 1 \) for \(G \sim N(0, I_n) \), then \(\gamma_n(2K) \geq \frac{1}{2} \).
- \(\text{vb}(B_2^n, K) \lesssim \mathbb{E}\|G\|_K \).
Upper Bounds from Banaszczyk’s Theorem

We showed how to efficiently compute near optimal signs $\varepsilon_1, \ldots, \varepsilon_N \in \{-1, 1\}$ for any u_1, \ldots, u_N.

But what if we want to compute $\text{vb}(C, K)$ or $\text{hd}(U, K)$?

- We do not know how to efficiently compute $\text{volLB}(C, K)$.
- We need a natural upper bound on $\text{vb}(C, K)$.

Recall [Banaszczyk, 1998]:

For any convex $K \subset \mathbb{R}^n$ such that $\gamma_n(K) \geq \frac{1}{2}$, $\text{vb}(B_2^n, K) \leq 5$.

Observations:

- If $\mathbb{E}\|G\|_K \leq 1$ for $G \sim N(0, I_n)$, then $\gamma_n(2K) \geq \frac{1}{2}$.
- $\text{vb}(B_2^n, K) \lesssim \mathbb{E}\|G\|_K$.
- $\text{vb}(C, K) \lesssim (\mathbb{E}\|G\|_K) \cdot \text{diam}_{\ell_2}(C)$.

Last bound can be very loose! Can we do better?
A Better Upper Bound

Idea: Map C into B^n_2 using a linear map.

$$\lambda(C, K) = \inf\{(\mathbb{E}\|G\|_{T(K)}) \cdot \text{diam}_{\ell_2}(T(C)) : T \text{ a linear map}\}.$$

Claim: $\nu_b(C, K) \lesssim \lambda(C, K)$.
A Better Upper Bound

Idea: Map C into B_2^n using a linear map.

$$\lambda(C, K) = \inf \{(\mathbb{E}\|G\|_{T(K)}) \cdot \text{diam}_{\ell_2}(T(C)) : T \text{ a linear map}\}.$$

Claim: $vb(C, K) \lesssim \lambda(C, K)$.

- Take a linear map T achieving $\lambda(C, K)$;
- Can assume $\text{diam}_{\ell_2}(T(C)) = 1$, so $\mathbb{E}\|G\|_{T(K)} = \lambda(C, K)$;
A Better Upper Bound

Idea: Map C into B_2^n using a linear map.

$$\lambda(C, K) = \inf\{ \langle E\| G \|_{T(K)} \rangle \cdot \text{diam}_{\ell_2}(T(C)) : T \text{ a linear map} \}.$$

Claim: $\nu b(C, K) \lesssim \lambda(C, K)$.

- Take a linear map T achieving $\lambda(C, K)$;
 - Can assume $\text{diam}_{\ell_2}(T(C)) = 1$, so $E\|G\|_{T(K)} = \lambda(C, K)$;
 - $\nu b(C, K) = \nu b(T(C), T(K))$ and apply Banaszczyk’s theorem.
Tightness of the Upper Bound

Theorem

For any symmetric convex $C, K \subset \mathbb{R}^n$,

$$\lambda(C, K) \frac{1}{(1 + \log n)^{5/2}} \lesssim \text{vb}(C, K) \lesssim \lambda(C, K).$$

Moreover, given membership oracle access to K and a vertex representation of C, we can efficiently compute $\lambda(C, K)$.

For a matrix $U \in \mathbb{R}^{n \times N}$, we can take $C = \text{conv}\{\pm u_1, \ldots, \pm u_N\}$, and then $\lambda(C, K)$ approximates $\text{hd}(U, K)$.

Proof outline:
1. Formulate $\lambda(C, K)$ as a convex minimization problem;
2. Derive the Lagrange dual: an equivalent maximization problem;
3. Relate dual solutions to the volume lower bound.
Tightness of the Upper Bound

Theorem

For any symmetric convex $C, K \subset \mathbb{R}^n$,

$$\frac{\lambda(C, K)}{(1 + \log n)^{5/2}} \lesssim \text{vb}(C, K) \lesssim \lambda(C, K).$$

Moreover, given membership oracle access to K and a vertex representation of C, we can efficiently compute $\lambda(C, K)$.

For a matrix $U \in \mathbb{R}^{n \times N}$, we can take $C = \text{conv}\{\pm u_1, \ldots, \pm u_N\}$, and then $\lambda(C, K)$ approximates $\text{hd}(U, K)$.

Proof outline:

1. Formulate $\lambda(C, K)$ as a convex minimization problem;
2. Derive the Lagrange dual: an equivalent maximization problem;
3. Relate dual solutions to the volume lower bound.
Convex Formulation

\[\|x\|_{T(K)} = \| T^{-1}x \|_K \]

First attempt: \(\inf \{ \mathbb{E}\| T^{-1}G \|_K : \text{diam}_{\ell_2}(T(C)) \leq 1 \} \)

- *Not convex:* the objective is \(\infty \) for \(T = 0 \) and finite for any invertible \(T \), but \(0 = \frac{1}{2}(T + (-T)) \).
Convex Formulation

\[\|x\|_{T(K)} = \| T^{-1}x\|_K \]

First attempt: \(\inf \{ E\| T^{-1}G\|_K : \text{diam}_{\ell_2}(T(C)) \leq 1 \} \)

- *Not convex:* the objective is \(\infty \) for \(T = 0 \) and finite for any invertible \(T \), but \(0 = \frac{1}{2}(T + (-T)) \).

Observation: \(E\| T^{-1}G\|_K \) is defined entirely by \(A = T^*T \), because the covariance of \(T^{-1}G \) is given by \(A^{-1} \).
Convex Formulation

\[\|x\|_{T(K)} = \|T^{-1}x\|_K \]

First attempt: \(\inf \{ \mathbb{E} \|T^{-1}G\|_K : \text{diam}_{\ell_2}(T(C)) \leq 1 \} \)

- *Not convex:* the objective is \(\infty \) for \(T = 0 \) and finite for any invertible \(T \), but \(0 = \frac{1}{2}(T + (-T)) \).

Observation: \(\mathbb{E} \|T^{-1}G\|_K \) is defined entirely by \(A = T^*T \), because the covariance of \(T^{-1}G \) is given by \(A^{-1} \).

Formulation:

\[\lambda(C, K) = \inf f(A) \]

\[\text{s.t. } \langle x, Ax \rangle \leq 1 \quad \forall x \in C \]

\[A \succ 0. \]

- \(f(A) = \mathbb{E} \|T^{-1}G\|_K \) for any \(T \) such that \(T^*T = A \);
- \(f \) is well defined over positive definite \(A \);
Convex Formulation

\[\|x\|_{T(K)} = \| T^{-1}x \|_K \]

First attempt: \(\inf \{ \mathbb{E}\| T^{-1}G \|_K : \text{diam}_2(T(C)) \leq 1 \} \)

- *Not convex:* the objective is \(\infty \) for \(T = 0 \) and finite for any invertible \(T \), but \(0 = \frac{1}{2}(T + (-T)) \).

Observation: \(\mathbb{E}\| T^{-1}G \|_K \) is defined entirely by \(A = T^* T \), because the covariance of \(T^{-1}G \) is given by \(A^{-1} \).

Formulation:

\[\lambda(C, K) = \inf f(A) \]

s.t. \[\langle x, Ax \rangle \leq 1 \quad \forall x \in C \]

\[A \succ 0. \]

- \(f(A) = \mathbb{E}\| T^{-1}G \|_K \) for any \(T \) such that \(T^* T = A \);
- \(f \) is well defined over positive definite \(A \);
- The first constraint encodes \(\text{diam}_2(T(C)) \leq 1: \)
 \[\langle x, Ax \rangle = \langle x, T^* Tx \rangle = \langle Tx, Tx \rangle = \| Tx \|_2^2. \]
Properties of the Formulation

- The function \(f(A) \) is convex in \(A \), and the constraints are also convex;
- **Lagrange Duality**: there exists an *equivalent* dual maximization problem, whose value also equals \(\lambda(U, C) \);
Properties of the Formulation

- The function $f(A)$ is convex in A, and the constraints are also convex;
- **Lagrange Duality**: there exists an *equivalent* dual maximization problem, whose value also equals $\lambda(U, C)$;
- Each dual solution gives a lower bound on $\text{volLB}(C, K)$, and, therefore, on $\text{vb}(C, K)$;
 - Tools: K-convexity, and Sudakov minoration;
- $\Rightarrow \lambda(C, K)$ gives a lower bound on $\text{vb}(C, K)$.

Computation: The convex optimization problem can be solved using the ellipsoid method, given a membership oracle for K and a vertex representation of C.

Sasho Nikolov (U of T)
Properties of the Formulation

- The function $f(A)$ is convex in A, and the constraints are also convex;
- **Lagrange Duality**: there exists an *equivalent* dual maximization problem, whose value also equals $\lambda(U, C)$;
- Each dual solution gives a lower bound on $\text{volLB}(C, K)$, and, therefore, on $\text{vb}(C, K)$;
 - Tools: K-convexity, and Sudakov minoration;
- $\implies \lambda(C, K)$ gives a lower bound on $\text{vb}(C, K)$.

Computation: The convex optimization problem can be solved using the ellipsoid method, given a membership oracle for K and a vertex representation of C.
Outline

1. Introduction
2. Volume Lower Bound
3. Factorization Upper Bounds
4. Conclusion
Conclusion

In this work:

- Tightness of natural upper and lower bounds for vector balancing.
- Efficient algorithms to find nearly optimal vector balancing signs, and to compute $\text{vb}(C, K)$, and hereditary discrepancy with respect to any norm.
- Our results strongly use the geometry of the underlying discrepancy problem.
Conclusion

In this work:

- Tightness of natural upper and lower bounds for vector balancing.
- Efficient algorithms to find nearly optimal vector balancing signs, and to compute \(\text{vb}(C, K) \), and hereditary discrepancy with respect to any norm.
- Our results strongly use the geometry of the underlying discrepancy problem.

Open questions:

- Does \(\text{volLB}(C, K) \) give lower bounds on partial colorings?
- \(\text{vb}(K, K) \preceq \text{volLB}(K, K) ? \) (True for \(\ell_p \).
- Can the bounds for \(\lambda(C, K) \) be improved?

Thomas Rothvoss. Constructive discrepancy minimization for convex sets.