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ABSTRACT OF THE DISSERTATION

New Computational Aspects of Discrepancy Theory

by Aleksandar Nikolov

Dissertation Director: S. Muthukrishnan

The main focus of this thesis work is computational aspects of discrepancy theory. Dis-

crepancy theory studies how well discrete objects can approximate continuous ones.

This question is ubiquitous in mathematics and computer science, and discrepancy the-

ory has found numerous applications. In this thesis work, we (1) initiate the study of

the polynomial time approximability of central discrepancy measures: we prove the first

hardness of approximation results and design the first polynomial time approximation

algorithms for combinatorial and hereditary discrepancy. We also (2) make progress on

longstanding open problems in discrepancy theory, using insights from computer sci-

ence: we give nearly tight hereditary discrepancy lower bounds for axis-aligned boxes in

higher dimensions, and for homogeneous arithmetic progressions. Finally, we have (3)

found new applications of discrepancy theory to (3a) fundamental questions in private

data analysis and to (3b) communication complexity. In particular, we use discrep-

ancy theory to design nearly optimal efficient algorithms for counting queries, in all

parameter regimes considered in the literature. We also show that discrepancy lower

bounds imply communication lower bounds for approximation problems in the one-way

model. Directions for further research and connections to expander graphs, compressed

sensing, and the design of approximation algorithms are outlined.
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Chapter 1

Introduction

Many questions in combinatorics and computer science can be phrased as questions

about how well a “simple” probability measure can approximate a “complex” measure.

Discrepancy theory provides useful tools to address such questions. A number of tech-

niques in computer science, often developed independently from discrepancy theory,

naturally relate to discrepancy problems: ϵ-nets, expander graphs, randomized and it-

erative rounding are just a few examples. Understanding these techniques within the

framework of discrepancy theory provides context and a fresh viewpoint, which can

lead to further progress. On the other hand, discrepancy theory itself raises interesting

and under-explored computational questions.

In this thesis we initiate the study of the computational complexity of approximat-

ing combinatorial discrepancy measures. We show the first hardness of approximation

results and design the first nontrivial polynomial time approximation algorithms. The

geometric techniques we develop for our approximation algorithms allow us to resolve

a number of important questions in discrepancy theory. They also have further appli-

cations in computer science: they allow us to characterize the necessary and sufficient

noise required to answer statistical database queries while preserving individual privacy,

in all parameter regimes considered in the literature.

We finish the thesis with directions for further research. We sketch connections

between discrepancy theory and communication complexity, expander graph construc-

tions, compressed sensing, and the design of approximation algorithms. We hope that

investigating these connections further will prove fruitful.

We start this introductory chapter with a brief historical background on discrepancy

theory, and an overview of some applications of discrepancy to computer science. Then
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we introduce basic measures of discrepancy and provide a more detailed overview of

the major results of the thesis.

1.1 Historical Background

Discrepancy theory has its origins in number theory and the theory of uniformity of

distribution. Central objects of study in the latter area are uniform sequences, i.e. se-

quences of bounded real numbers that “hit” every interval of the same length equally of-

ten in the limit. An early and fundamental result is Weyl’s criterion of uniformity [148],

which can be used to show, for example, that the sequence (iα mod 1)∞i=1, which is fun-

damental in Diophantine approximation, is uniform in [0, 1) for any irrational α.

The 1930s saw the emergence of a line of work inquiring into the necessary irregular-

ity of discrete distributions. The uniformity of a sequence shows that the sequence in a

sense converges to a uniform distribution. But what if we are interested in more precise

information about the speed of convergence or in characterizing the most uniform se-

quence? The modern formulation of discrepancy grew out of such considerations in the

work of van der Corput [143, 144], van Aardenne-Ehrenfest [141, 142], and Roth [126].

The latter paper gave an influential geometric reformulation of the question of quan-

tifying the discrepancy of a sequence. It turns out that this question is equivalent to

the problem of determining the smallest absolute deviation of a discrete counting mea-

sure supported on n points from the Lebesgue measure in the plane, where deviation is

measured with respect to axis aligned rectangles. This reformulation naturally suggests

investigating discrepancy with respect to other shapes and essentially started the field

of geometric discrepancy theory.

Combinatorial discrepancy also has its origins in number theory, particularly in the

study of irregularities with respect to long arithmetic progressions. Recall that the van

der Waerden theorem implies that for any k there exists an n such that any bi-chromatic

coloring of the integers {1, . . . , n} contains a monochromatic arithmetic progression of

length at least k. This fundamental result in Ramsey theory is an example of extreme
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discrepancy: it shows that for any two-coloring of a large enough set, there exist arith-

metic progressions that are extremely imbalanced. But the value of n with respect to k

in van der Waerden’s theorem is enormous, and a natural question is how well one can

simultaneously balance long arithmetic progressions on {1, . . . , n}. A beautiful result

of Roth from 1964 shows that no matter how we color the positive integers between 1

and n red and blue, some arithmetic progression will have Ω(n1/4) integers of one color

in excess of the other [127]. This is a classical problem in combinatorial discrepancy

theory, which is generally concerned with simultaneously balancing a collection of sets

with respect to a bichromatic coloring of their union.

The modern definition of combinatorial discrepancy and its connection to classical

discrepancy (i.e. uniformity of distribution) are due to Beck [19]. Informally, Beck

observed that combinatorial discrepancy is equivalent to the discrepancy question of

approximating a given counting measure by a counting measure with half the support

of the given one. This intuition can be formalized into transference theorems between

the two notions of discrepancy.

In a striking result, Beck showed that Roth’s lower bound on the discrepancy of

arithmetic progressions is nearly tight [20]. Beck’s paper introduced the partial coloring

method, which still remains one of the most powerful tools for proving discrepancy upper

bounds. In another celebrated result (known as the Six Standard Deviations Suffice

theorem), Spencer showed a tight upper bound of O(
√
n) on the discrepancy of O(n)

subsets of a universe of size n, by refining the partial coloring method of Beck [135].

Both Beck’s result on arithmetic progressions and Spencer’s result show that a careful

coloring strategy can achieve much better discrepancy bounds than a simple random

coloring.

Geometric vector balancing questions are closely related to combinatorial discrep-

ancy theory. Typically, a vector balancing problem asks to give signs to a sequence

of vectors from a normed vector space, so that the signed sum of the vectors is as

small as possible in a prescribed norm. Equivalently, the problem is to partition a

set of vectors into two sets, so that the sums over each are as close as possible. Such

questions were considered by Dvoretzky, Barany and Grinberg [16], Giannopoulos [67]
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Banaszczyk [10, 9], among others. Vector balancing problems are naturally related to

notions of matrix discrepancy [93]: intuitively, the discrepancy of a matrix measures the

minimum possible imbalance between 2-partitions of its columns. Matrix discrepancy

generalizes total unimodularity, and like it, it is related to problems of approximating

real valued vectors with integral vectors [93].

1.2 Connections with Computer Science

The applications of discrepancy theory to computer science are numerous and many of

them are beautifully surveyed in the monograph of Chazelle [41]. Here we give just a

few examples, with no claims to being exhaustive.

The theory of uniformity of distribution and related discrepancy theory questions

are intimately connected to quasi-Monte Carlo methods in numerical analysis. A sur-

vey of this topic can be found in the monograph by Niederreiter [114], who covers

applications to numerical integration (via the Koksma-Hlawka inequality and similar

results), optimization, and pseudorandom number generation. Glasserman [69] gives ap-

plications of quasi-Monte Carlo methods and low discrepancy constructions in financial

engineering. Shirley [134] gives applications to computer graphics.

Discrepancy theory has many important applications in derandomization. Partic-

ularly successful has been the use of ϵ-approximations and ϵ-nets in derandomizing

algorithms in computational geometry. There has also been considerable interplay be-

tween techniques for deterministically constructing low discrepancy colorings and low

discrepancy sets, and range searching problems. These connections are surveyed by

Matoušek [100] and Chazelle [41].

Alon and Mansour [5] gave a fast deterministic interpolation algorithm for multi-

variate polynomials which relies on a construction of a low discrepancy set with respect

to exponential sums. The results of Alon and Mansour are related to the foundational

work of Naor and Naor on ϵ-biased spaces [111], i.e. low-discrepancy sets with respect

to Fourier characters. ϵ-biased spaces have numerous applications, since they allow the
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construction of very small sample spaces, on which the uniform distribution approxi-

mates a k-wise independent distribution. For example, ϵ-biased spaces have been used

in work on work on property testing [71], color coding in parametrized complexity [7],

and the construction of min-wise independent permutations [32], themselves useful in

information retrieval and streaming algorithms.

Expander graphs are another classical derandomization tool with deep links to dis-

crepancy theory. Expanders can be characterized as graphs which closely approximate

a random graph with respect to cuts. This characterization is captured in the Expander

Mixing Lemma, and its converse [25]. For general information on expander graphs see

the book of Chung [44]. Linial, and Wigderson [79], and Vadhan [140] survey applica-

tions to derandomization and metric embeddings.

Some deterministic algorithms can be interpreted as derandomizations via discrep-

ancy techniques, even though this connection may not be apparent at first. Chazelle [41]

discusses such a view of the famous linear time deterministic median algorithm [27].

This interpretation of median finding inspires Chazelle’s deterministic near-linear time

minimum spanning tree algorithm [43] (the discrepancy theory view of the algorithm

can also be found in [41]).

The above examples show that discrepancy is a useful tool for the design of efficient

(deterministic) algorithms. It also turns out that both lower bounds on discrepancy

and constructions of low-discrepancy sets are useful in understanding the limitations of

models of computation. Chazelle [42] used lower bounds from combinatorial discrepancy

theory to prove lower bounds on the size of linear circuits with bounded coefficients for

geometric range searching problems. More recently, Larsen [89] used discrepancy lower

bounds to give update time vs. query time trade-offs for dynamic range searching with

bounded coefficients in the group model. Wei and Yi [147] gave lower bounds on the

space complexity of approximate range counting data structures. The use of discrepancy

for giving lower bounds on randomized communication complexity is classical (see the

book [88]). Interestingly, in communication complexity, high complexity is certified by

low discrepancy, in contrast to all other examples so far.

A recent line of work in combinatorial optimization connects discrepancy theory
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and the design of approximation algorithms for hard combinatorial problems. These

applications have a different flavor from the applications to numerical analysis, deran-

domization, and complexity theory. Recall that the Ghouila-Houri characterization of

totally unimodular (TU) matrices [66] shows that a matrix is TU if and only if any

subset of its columns can be almost perfectly balanced. This is a low-discrepancy prop-

erty. TU matrices have considerable significance in combinatorial optimization, since

any integer linear program whose constraints can be encoded by a TU matrix can be

solved exactly using generic linear programming algorithms. Thus, extremely low dis-

crepancy matrices allow for rounding linear programming solutions without sacrificing

the quality of the solution. This is another example of how low-discrepancy objects

provide a bridge between the continuous and the discrete. It turns out that a similar

property holds in more generality: a solution of a linear program can be rounded to an

integer solution, without increasing the cost or violating the constraints by much more

than an appropriate discrepancy value associated with the constraint matrix [93]. This

connection was recently exploited by Rothvoß [128] to give an improved approximation

algorithm for the bin-packing problem. His work circumvents an earlier negative result

by Newman, Neiman, and the author [113], also proved via discrepancy.

Despite the numerous applications of discrepancy theory to computer science, until

recently relatively little was known about many central computational questions about

discrepancy itself. Many non-trivial discrepancy upper bounds were first proved us-

ing non-constructive methods: the proofs only showed existence, but did not suggest

an efficient algorithm to find a low-discrepancy set or coloring. Some exceptions are

the work of Beck and Fiala [18], which is an early example of iterative rounding, and

the work of Bohus [28] on the discrepancy of permutations (which uses similar meth-

ods). Moreover, simple randomized constructions are efficient, and also can usually be

derandomized using standard techniques.

The situation was changed by a breakthrough result of Bansal, who gave a construc-

tive version of Spencer’s Six Standard Deviations Suffice theorem, based on semidefinite

programming and randomized rounding via discretized Brownian motion [11]. Bansal’s

work still relied on the original partial coloring lemma used by Spencer. Lovett and
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Meka gave a new constructive proof of Spencer’ partial coloring lemma, with improved

parameters [95]. An exceptionally simple algorithm which makes a vector balancing

result of Giannopolous constructive, and essentially subsumes all of the above algorith-

mic results, was given recently by Rothvoß [129]. These new algorithms make a number

of nontrivial discrepancy constructions efficient, and therefore available as algorithmic

tools. Rothvoß’s work on the bin-packing problem, for example, relies on Lovett and

Meka’s algorithm. The recent progress suggests that we can expect more algorithmic

applications of deep results in discrepancy theory.

Even less was known until recently about the inherent computational complexity

of computing measures of discrepancy itself. The only result we are aware of prior

to the work presented in this thesis is Lovász’s proof that 2-coloring a hypergraph is

NP-hard [92]. As noted by Beck and Sós [21], 2-coloring a hypergraph is a special case

of computing combinatorial discrepancy.

1.3 Notions of Discrepancy

In this section we introduce the basic notions of discrepancy that will be studied in the

rest of the thesis.

1.3.1 Lebesgue Measure Discrepancy

Among the most well-studied discrepancy problems is the classical question of unifor-

mity of distribution: how “uniform” can a set of n points in [0, 1]d be, i.e. how well can

the counting measure on a finite set of n points approximate the Lebesgue measure on

[−1, 1]d with respect to a family of subsets of [0, 1]d. Here the “complicated measure”

is the continuous Lebesgue measure, and the simple measure is the counting measure

on a discrete set. Formally, let S be a family of measurable subsets of [0, 1]d. Then the

Lebesgue measure discrepancy of a point set P ⊆ [−1, 1]d of size |P | = n with respect

to S is defined as

D(P,S) , sup
S∈S

|nν(S)− |S ∩ P ||,
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where ν is the Lebesgue measure. More generally, we can define the discrepancy of P

with respect to S in terms of any measure:

D(P,S, µ) , sup
S∈S

|nµ(S)− |S ∩ P ||.

We can now define the discrepancy of S with respect to the measure µ as the optimal

discrepancy achievable by any n-point set P :

D(n,S, µ) , inf
P

D(P,S, µ),

where the infimum is taken over all subsets P of [0, 1]d of size |P | = n. When µ is the

Lebesgue measure ν, we simply use the notation D(n, P ).

1.3.2 Combinatorial Discrepancy

Another well-studied special case of the general question of approximating general mea-

sures by simple measure is combinatorial discrepancy. Combinatorial discrepancy stud-

ies how well a counting measure on a set of size n can be approximated by a counting

measure on a set of size at most n/2. Formally, let (S, U) be a family of subsets of a

set U of size |U | = n. We shall call (S, U) a set system. For X ⊆ U , define

disc(X,S) , max
S∈S

||S| − 2|X ∩ S||.

Equivalently (and this is the more common definition), for a function χ : U → {−1, 1},

we can write

disc(χ,S) , max
S∈S

|χ(S)|,

where χ(S) ,


e∈S χ(e). Analogously to Lebesgue measure discrepancy, we can define

the discrepancy of S as

disc(S) , min
χ

disc(χ,S),

where the minimum is taken over functions χ : U → {−1, 1}.

1.3.3 Hereditary Discrepancy and the Transference Lemma

It is often beneficial to consider the combinatorial discrepancy of restrictions of S,

as disc(S) turns out to be too sensitive to changes in S. In fact, any set system
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of any discrepancy can be turned into a set system of discrepancy 0 by adding new

elements to the universe. The restriction S|W of a family S to W ⊆ U is the family

S|W , {S ∩W : S ∈ S}. Then we define

herdisc(s,S) , max
W⊆U :|W |≤s

disc(S|W ),

and we define the hereditary discrepancy of S as

herdisc(S) , herdisc(|U |,S).

Note that the definition herdisc(s,S) makes sense even when U is an infinite set and S

is an infinite family of subsets of U , and so does herdisc(S) with the maximum function

substituted by the supremum function.

The two notions of discrepancy introduced above – Lebesgue measure discrepancy

and combinatorial discrepancy – are related by the transference lemma of Beck.

Lemma 1.1 ([19]). Assume that D(n,S) = o(n) and that herdisc(n,S) satisfies herdisc(2n,S) ≤

(2− ϵ) disc(n,S) for some fixed constant ϵ. Then D(n,S) = O(herdisc(n,S)).

1.3.4 Discrepancy of Matrices and Rounding Algorithms

Discrepancy and hereditary discrepancy can be extended in a natural way to matrices.

Let A be the the incidence matrix of a set system (S, U), i.e. a matrix A ∈ RS×U

so that aS,e = 1 if e ∈ S and aS,e = 0 otherwise. The discrepancy and hereditary

discrepancy of S are equal respectively to the discrepancy and hereditary discrepancy

of A, defined as

disc(A) , min
x∈{−1,1}U

∥Ax∥∞;

herdisc(s,A) , max
W⊆U :|W |≤s

disc(AW );

herdisc(A) , herdisc(|U |, A),

where AW is the submatrix of A consisting of the columns indexed by the set W . The

above definitions are valid for any matrix A, and serve as the definitions of matrix

discrepancy and hereditary discrepancy.
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An important motivation for the study of the hereditary discrepancy of matrices is

that it is related to rounding algorithms, themselves useful in approximation algorithms.

This is yet another example of how discrepancy related to questions of approximating

continuous quantities by discrete ones.

Theorem 1.1 ([93]). For any matrix A ∈ Rm×n, and any vector c ∈ [−1, 1]n, there

exists a vector x ∈ {−1, 1}n such that

∥Ax−Ac∥∞ ≤ 2 herdisc(A).

This theorem related the hereditary discrepancy of A to the linear discrepancy,

defined as the worst-case error due to rounding:

lindisc(A) , max
c∈[−1,1]n

min
x∈{−1,1}n

∥Ax−Ac∥∞.

In these terms, the theorem shows that lindisc(A) ≤ 2 herdisc(A).

1.3.5 Lp-Discrepancy

A relaxed, average notion of Lebesgue measure discrepancy has also been extensively

studied in the literature, and its importance is comparable to the worst-case discrepancy.

Given a collection of measurable subsets S of [0, 1]d, and a measure µ on S, the Lp

discrepancy of an n-points set P ⊆ U is

Dp,µ(P,S) ,


S

nν(S)− |S ∩ P |
pdµ(S)1/p

,

where ν is the d-dimensional Lebesgue measure.

A similar kind of average discrepancy can also be considered in the combinatorial

setting. Namely, for a set system (S, U), we define

discp(S) , min
χ:U→{−1,1}


1

|S|

S∈S

|χ(S)|p
1/p

.

More generally, for a non-negative weight function w S → [0,∞), not identically 0, we

similarly define

discp,w(S) , min
χ:U→{−1,1}


1

w(S)

S∈S

w(S)|χ(S)|p
1/p

.
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We can define herdiscp,w(s,S) as the maximum of discp,w(S|W ) over all restrictions of

S to sets W of size at most s, and herdiscp,w(S) as herdiscp,w(|U |,S). When w is equal

to a constant function, i.e. the weights are uniform over the sets, we use the notation

discp(S), herdiscp(s,S) and herdiscp(S).

These notions extend to matrices in the natural way.

1.4 Main Results of the Thesis

In this thesis we initiate the study of the computational complexity of central measures

of combinatorial discrepancy. Prior to our work it was known that computing combi-

natorial discrepancy exactly is NP-hard. We prove a much stronger statement, which

essentially implies that no non-trivial approximation to combinatorial discrepancy is

possible, unless P = NP. In particular, from the work of Spencer [135], it is known

that the discrepancy of a set system of m subsets of a universe of size n is at most

O(

n log(2m/n)). In Chapter 2 we show that it is NP-hard to distinguish between

set systems that achieve this maximum attainable discrepancy bound up to constants,

and set systems with the minimum possible discrepancy of 0. Our results come in two

regimes: m = O(n), in which it is NP-hard to distinguish between discrepancy 0 and

discrepancy Ω(
√
n), and m = nc for a constant c > 1, in which it is NP-hard to dis-

tinguish between discrepancy 0 and discrepancy Ω(
√
n log n). Our main technique is a

method of composing set systems achieving asymptotically maximum discrepancy with

a set system of constant size sets which either has discrepancy 0 or a constant fraction

of the sets have nonzero discrepancy, and it is NP-hard to distinguish between the two

cases. The technique is general enough that it allows us to prove optimal hardness

results for more restricted set systems: set systems with polynomially bounded primal

shatter function, which are a subset of the systems with constant VC-dimension.

We then proceed to study the hardness of computing hereditary discrepancy. Hered-

itary discrepancy looks superficially harder than discrepancy, since it is the maximum

discrepancy over an exponentially large collection of set systems (i.e. all 2n − 1 non-

trivial restrictions of the original set system). Moreover, we do not know whether the
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problem of deciding herdisc(S) ≤ t is in NP; it does naturally belong to ΠP
2 in the sec-

ond level of the polynomial hierarchy. Nevertheless, the richer structure of hereditary

discrepancy can make it more tractable. A classical example of this is that set systems

of the lowest possible hereditary discrepancy 1 are exactly the totally unimodular set

systems (by [66]) and can be recognized in polynomial time, as shown by Seymour [133].

This already contrasts with the situation with discrepancy. In Chapter 2 we show that

Seymour’s result is the best possible, in the sense that it is NP-hard to distinguish

between hereditary discrepancy at most 2 and at least 3; this also implies that it is

NP-hard to approximate hereditary discrepancy by a factor smaller than 3/2 (this was

later improved to a factor 2 hardness by Austrin, Guruswami and H̊astad [8]).

Then in Chapter 4, we give the first polynomial time approximation algorithm for

hereditary discrepancy. Our algorithm approximates the hereditary discrepancy of any

m × n matrix (and therefore any set system of m subsets of a size n universe as well)

within a factor of O(log3/2m). Our result shows that the robustness of hereditary

discrepancy does in fact make it more tractable.

The key to our approximation algorithm is a characterization of herdisc(A) by a

geometric quantity associated with the matrix A: the side length of the smallest cube

which contains an ellipsoid containing all the columns of A, seen as vectors in Rm. We

call this quantity the ellipsoid-infinity norm of A and denote it ∥A∥E∞. We show that

it is equal to the optimal value of a convex minimization problem, and therefore can be

computed in polynomial time using standard techniques. Because hereditary discrep-

ancy is not an NP optimization problem, coming up with a simple fractional relaxation

of it seems impossible. Indeed showing that ∥A∥E∞ gives upper and lower bounds on

herdisc(A) is challenging in both directions. We use a known bound by Banaszczyk [9]

for a vector balancing problem to show that herdisc(A) = O(
√
logm) · ∥A∥E∞. We

use convex programming duality and the Restricted Invertibility Principle of Bourgain

and Tzafriri [30] to show that ∥A∥E∞ = O(logm) herdisc(A). Moreover, we can find

in deterministic polynomial time a submatrix of A on which hereditary discrepancy is

approximately maximized. An algorithm of Bansal [11] and a vector balancing upper

bound we prove in Chapter 3 can be used to find a coloring of discrepancy at most
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O(logm) · ∥A∥E∞ for any submatrix of A. Here we do not quite match the best upper

bound we can prove, because Banaszczyk’s bound has so far resisted attempts to find

a constructive proof.

In the remainder of the thesis we show a number of applications of the ellipsoid-

infinity norm to fundamental questions in discrepancy theory and private data analysis.

In Chapter 6 we give new tight upper and lower bounds on the discrepancy of natural set

systems. The most prominent examples from geometry are set systems induced by axis-

aligned boxes in constant dimension, and set systems of subcubes of the Boolean cube

(i.e. axis-aligned boxes in high dimension). We also essentially determine the hereditary

discrepancy of homogeneous arithmetic progressions; doing the same for the discrepancy

remains a challenging open problem, known as the Erdős discrepancy problem. These

results use a number of favorable properties of the ellipsoid infinity norm proved in

Chapter 5: e.g. that it satisfies the triangle inequality and is multiplicative with respect

to tensor products. We use these properties, and the fact that the ellipsoid-infinity

norm approximates hereditary discrepancy, to deduce the new upper and lower bounds

from bounds for simpler set systems, which are easy to compute.

Then, in Chapter 7 we apply the ellipsoid-infinity norm and discrepancy theory to

problems in private data analysis. We study the popular model of differential privacy,

which is applicable to computing aggregate queries on databases that contain the per-

sonal information of many individuals. Differential privacy requires that the algorithm

that computes the query answers behave almost identically after adding or removing

individuals to the database. Differential privacy provides strong semantic guarantees:

it implies, for instance, that the cost (i.e. any notion of privacy risk measured by a non-

negative utility function) is not increased significantly by participating in the database.

These strong guarantees come at the price of sacrificing exact query answers. Indeed,

this is inevitable: Dinur and Nissim [48] have shown that answering any large enough

set of a simple class of queries, called counting queries, with too much accuracy allows

an adversary to recover almost the entire database, clearly violating any sensible notion

of privacy. We start our investigation of differential privacy by giving a discrepancy

theory viewpoint of this kind of reconstruction attack. We show that any algorithm that
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answers a set of counting queries with error less than (an appropriate variant of) the

hereditary discrepancy of an associated matrix allows a reconstruction attack. In par-

ticular, such an algorithm violates differential privacy, showing that the necessary error

for answering counting queries under differential privacy is bounded from below by (a

variant of) the hereditary discrepancy. On the other hand, we use the ellipsoid infinity

norm to show that there exists a simple efficient differentially private algorithm that

answers any set of counting queries with error not much more than the hereditary dis-

crepancy of the associated matrix. This exhibits an interesting threshold phenomenon:

on one hand, error less than the discrepancy allows a dramatic breach of privacy in

the form of a reconstruction attack; on the other hand, a simple efficient algorithm

has error only slightly more than the discrepancy. Our results extend the results of

Hardt and Talwar [78], who considered a stronger notion of privacy than we do; more

importantly, our algorithms are more efficient and hopefully will be practical. Since we

characterize the necessary and sufficient error to achieve differential privacy for any set

of counting queries in terms of discrepancy, we can use the results from Chapter 6 to

give nearly tight upper and lower error bounds for some natural sets of queries, such as

range queries and marginals. We also use the discrepancy-based reconstruction attacks

to prove tight lower bounds on error in a stronger model of privacy, pan-privacy, that

applies to streaming algorithms and requires that the memory state of the algorithm

itself be private. Even for simple queries, the state of the algorithm can be used to

answer many counting queries, allowing us to use a reconstruction attack.

Unfortunately, the nearly optimal algorithm from Chapter 7 may not be usable when

the database size is much smaller than the number of queries. In this case, the error

of our algorithm may exceed the database size, i.e. the algorithm provides only trivial

error guarantees. Nevertheless, it has long been known that it is possible to reduce the

error under the assumption that the database is small, and in fact non-trivial error is

achievable unless the number of queries asked is exponentially large in the size of the

database. Indeed, the reconstruction attacks that prove the optimality of our algorithm

in Chapter 7 use databases of size at least the number of queries, and are invalid if the

database is smaller. In this context, it would be desirable to have an efficient algorithm
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whose error is optimal for any pair of query set and database size bound. We achieve

such a guarantee, but with respect to a weaker average measure of error. Our main

algorithmic tool is sparse regression: we post-process the output of an algorithm very

similar to the one in Chapter 7 by performing a regression step to enforce the constraint

that the query answers must be consistent with the small database size bound. Via a

geometric argument we show that this post-processing step indeed reduces the error.

We then show that the reduced error is in fact nearly optimal, by giving a variant

of the discrepancy-based reconstruction attacks that only uses small databases. To

prove optimality we also need to extend our analysis of the ellipsoid infinity norm from

Chapter 4.

In Chapter 9 we show an interesting connection between our work on differential pri-

vacy and communication complexity. Since we have shown that approximate answers to

a set of queries allow a reconstruction attack via discrepancy, we can use Fano’s inequal-

ity to give a lower bound on the mutual information between a random database and

any random variable that allows giving approximate query answers. As an application

we give a new proof of Woodruff’s one-way distributional communication complexity

lower bound for approximating hamming distance under the uniform distribution [151].

We conclude the thesis with directions for future work. We outline some connections

between problems in computer science and discrepancy theory that seem promising: in

particular we outline a discrepancy theory view of expander graphs, compressed sensing,

and rounding algorithms for hard combinatorial optimization problems.

1.5 Basic Notation

We use the notation [n] for the set {1, . . . , n}.

We denote matrices by capital letters, for example A ∈ Rm×n is an m by n real

matrix; matrix entries are denoted as lower case letters, for example for the matrix A,

aij is understood to be the entry in the i-th row and j-th column. We use the standard

notation ∥x∥p for the ℓnp norm of a vector x ∈ Rn, i.e. ∥x∥p = (
n

i=1 |xi|p)
1/p. Moreover,

the ℓn∞ norm is, as usual, defined as ∥x∥∞ = maxni=1 |xi|.
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The tensor product (or Kronecker product) A ⊗ B of two matrices A ∈ Rm×n and

B ∈ Rp×q is a matrix whose rows are indexed by [m] × [p], columns are indexed by

[n] × [q], and the entry corresponding to pairs (i, k), (j, l) is defined as the product

A(i,k),(j,l) = aijbkl. This is a matrix representation of the tensor product of the linear

operators represented by A and B, with the basis of the image and domain of A ⊗ B

chosen in the natural way using the corresponding bases of the image and domain of A

and B. In block representation, A⊗B is

A⊗B =


a11B a12B · · · a1nB

...
...

. . .
...

am1B am2B · · · amnB

 .

For a matrix A, we use σi(A) to denote the i-th largest singular value of A. The

notationX ≽ 0 (respectivelyX ≻ 0) means hatX is positive semidefinite (resp. positive

definite). The notationX ≽ Y means thatX−Y ≽ 0, i.e.X dominates Y in the positive

semidefinite (PSD) sense.

We will use the term set system for a pair (S, U), where S is a family of subsets

of the universe U . When there is no ambiguity, we will often denote the set system

simply by S. The degree ∆S(e) of an element e ∈ U is the maximum number of sets in

S to which e belongs, i.e. ∆S(e) = ∥{S ∈ S : e ∈ S}|. The maximum degree of the set

system S is ∆S = maxe∈U ∆S(e).

For a set system (S, U), where S = {S1, . . . , Sm} and U = {e1, . . . , en}, the incidence

matrix A of the set system is defined by

Aij =


1, ej ∈ Si

0, otherwise

.

In other words, the i-th row of A is the indicator vector of Si.
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Chapter 2

Computational Hardness

2.1 Overview

One of the corner-stone results of combinatorial discrepancy theory is Spencer’s Six

Standard Deviations Suffice theorem. Using the probabilistic method, it is easy to see

that for any set system S of m subsets of a universe of size n, a random coloring χ

achieves disc(χ,S) = O(
√
n logm) with very high probability. Qualitatively, Spencer’s

theorem shows that when m = O(n) we can do much better, and the
√
logm term is

unnecessary. We state this result next.

Theorem 2.1 ([135]). For any set system (S, U) with |S| = m and |U | = n, disc(S) =

O(

n log 2m

n ).

Moreover, Spencer showed that when m = n, the constant in the asymptotic nota-

tion is at most 6, which gives the name of the paper. Besides Spencer’s proof, several

others are known: an independent geometric proof by Gluskin [70], a simplification

of Gluskin’s proof by Giannopoulos [67], and a simplification of Spencer’s proof using

an entropy argument, due to Boppana (see [6, Chap. 13]). However, all of the above

mentioned proofs crucially use a pigeonhole argument with an exponential number of

pigeons and holes, and therefore they do not easily yield efficient algorithms. Until

recently, it was not known whether any efficient algorithm can find a coloring matching

Spencer’s discrepancy bound, given a set system is input (and in fact Spencer con-

jectured otherwise). By contrast, the sub-optimal random coloring argument yields a

trivial randomized algorithm, and can be derandomized using standard techniques (see

e.g. [41] for details). Nevertheless, in a breakthrough paper, Bansal [11] showed that

there is an efficient algorithm to find a coloring matching Spencer’s bound.
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Theorem 2.2 ([11, 13]). There exists a deterministic polynomial time algorithm that,

on input a set system (S, U) with |S| = m, |U | = n, and m = O(n), outputs a coloring

χ : U → {−1, 1} such that disc(χ,S) = O(
√
n).

Bansal used the key technical lemma from Spencer’s proof as a black box. Follow-

ing his work, Lovett and Meka [95] and Rothvoß [129] gave completely constructive

arguments of Spencer’s theorem.

Bansal’s algorithm gives a coloring with discrepancy that matches (within constants)

the worst case discrepancy for all set systems with m = O(n) sets. This left open the

question: Can we achieve discrepancy bounds tailored to the optimal discrepancy of the

input instance instead of the worst case discrepancy over all instances? In particular,

can we get better guarantees for discrepancy if the optimal discrepancy for the input

instance is small? Given that the existence of an efficient algorithm for achieving worst

case discrepancy was open until recently, it is not surprising that very little is known

about these questions.

In this chapter, we show strong hardness results that rule out any better discrepancy

guarantees for efficient algorithms. We show that from the perspective of computational

efficiency, Bansal’s results are tight for general set systems. Specifically, it is NP-hard

to distinguish between set systems of discrepancy 0, and set systems of discrepancy

Ω(

n log m

n ). This means that even if the optimal solution has discrepancy zero, we

cannot hope to efficiently find a coloring with discrepancy o(
√
n). The proof goes via

composing a family of high discrepancy set systems with a family for which it is NP-

hard to distinguish instances with discrepancy zero from instances in which a constant

fraction of the sets have discrepancy Ω(1). The composition amplifies this zero versus

Ω(1) gap.

The methods are general enough that we also obtain a similar theorem for set sys-

tems with bounded shatter function. For such set systems, we show that the upper

bounds due to Matoušek [99] are tight. The proof for this latter result involves using

high discrepancy set systems that have bounded shatter function in the composition,

and proving that the resulting set system also has bounded shatter function. Thus,

our methods suggest a general framework where we can obtain computational lower
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bounds for computing the discrepancy on other restricted set systems. In particular,

our composition consists of two main steps that need to be tailored to a specified type

of restricted set system: (i) plug in a lower bound (i.e. high discrepancy) instance

for a set system with certain specified properties, and (ii) show that the final set sys-

tem maintains these specified properties. If these two steps can be carried out, the

discrepancy of the lower bound instance will be translated to computational hardness

of distinguishing between discrepancy zero and discrepancy equal to that of the lower

bound instance.

We finish the chapter with a constant hardness of approximation result for hereditary

discrepancy, which complements the approximation algorithm presented in Chapter 4.

Subsequent to publication, this result has been improved by Austrin, Guruswami and

H̊astad [8].

2.2 Preliminaries

In the proof of our hardness result, we show that using a strong discrepancy lower bound,

we can amplify a small hardness of approximation gap. The strong discrepancy lower

bound is a lower bound on a slight relaxation of discrepancy in which we allow “coloring”

with slightly larger numbers than ±1. The problem that gives a small hardness of

approximation gap for discrepancy is the Max-2− 2-Set-Splitting problem, closely

related to NAE-Sat. We introduce both ingredients in this section.

The relaxation of discrepancy we use is called b-bounded discrepancy, and is defined

for a set system (S, U) over a universe U and a positive integer b as follows:

disc
[b]
φ (S) , min

χ
max
S∈S


e∈S

χ(e),

where χ ranges over χ : U → {−b, . . . , b} such that |{e : χ(e) ̸= 0}| ≥ φ|U |. We

observe that, similarly to discrepancy, disc[b](S) is equal to the quantity

disc
[b]
φ (A) , min

x
∥Ax∥∞,

for A ∈ Rm×n the incidence matrix of S and x ranging over vectors in {−b, . . . , b}n

such that |{i : xi ̸= 0}| ≥ φn.
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Next we define the Max-2− 2-Set-Splitting problem.

Max-2− 2-Set-Splitting

Input: A set system (S, U), where each set S ∈ S contains exactly 4 elements.

Output: A coloring χ : U → {−1, 1} such that |{S ∈ S :


e∈S χ(e) = 0}| is maxi-

mized.

The following hardness result is due to Guruswami. The observation that we may

assume that any universe element in a hard instance belongs to a bounded number of

sets was made in [36].

Theorem 2.3 ([75]). There exists a positive integer B such that for any φ < 1
12 the

following holds. Given an instance (S, U) of Max-2−2-Set-Splitting with maximum

degree ∆S ≤ B, it is NP-hard to distinguish between the following two cases:

Completeness disc(S) = 0;

Soundness ∀χ : U → {−1, 1} |{S ∈ S :


e∈S χ(e) ̸= 0}| ≥ φm.

An immediate consequence of Theorem 2.3 is that it is NP-hard to decide whether

the discrepancy of a set system is 0. However, we prove a stronger result in the next

section.

For some of our hardness results we need to use the well-known notion of 4-wise

independent sample spaces. We give a definition and a basic existence and construction

result next.

Definition 2.1. A set S ⊆ {−1, 1}n, |S| = m, is a k-wise independent sample space

on {−1, 1}n if for each set T ⊆ [n] of size at most k, and each vector b ∈ {−1, 1}T ,

|{x ∈ S : xi = bi ∀i ∈ T}| = m2−k.

For any constant k, k-wise independent sample spaces can be constructed in deter-

ministic polynomial time. The following result is due to Alon, Babai, and Itai [3], and

an exposition is also given in [6].

Lemma 2.1 ([3]). For any natural number k and any n = 2t − 1, there exists k-wise

independent sample space S on {−1, 1}n of size 2(n+ 1)⌊k/2⌋. S can be constructed in

deterministic polynomial time in nk.
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2.3 Hardness for Arbitrary Set Systems

To carry out our NP-hardness reduction, we need to be able to construct instances of

set systems with high discrepancy reasonably efficiently. The next two lemmas gives

such constructions for the regimes m = O(n) and m = ω(n).

Lemma 2.2. There exists a deterministic algorithm that, for any n = 2k for a positive

integer k, outputs in time polynomial in n a set system (S, U) such that |S| = |U | = n

and disc
[b]
φ (S) ≥ 1

3

√
φn for any positive integer b and any positive φ.

Proof. Let H be the n× n Hadamard matrix, i.e. a matrix H ∈ {−1, 1}n×n such that

HᵀH = nI. Such matrices are known to exist for each n = 2k and can be constructed

in time O(n log n). We let U = [n] and let S be the system whose incidence matrix

is A = 1
2(H + J), where J is the n × n all-ones matrix. Let us fix an arbitrary

x ∈ {−b, . . . ,−1, 1, . . . , b}n such that |{i : xi ̸= 0}| ≥ φn. We have

∥Ax∥∞ ≥ 1

2
∥Hx∥∞ − 1

2
|

n
i=1

xi| ≥
1

2
∥Hx∥∞ − 1

2
∥Ax∥∞

The first inequality follows from the triangle inequality, and the second from the fact

that the all-ones vector is one of the rows of A. It follows that ∥Ax∥∞ ≥ 1
3∥Hx∥∞.

Since H is a Hadamard matrix, and using the relationships between the ℓ2 and ℓ∞

norms, we have

∥Hx∥∞ ≥ 1√
n
∥Hx∥2 =

1√
n

√
xᵀHᵀHx = ∥x∥2 ≥


φn.

The last inequality follows because for at least φ fraction of the coordinates i, |xi| ≥ 1.

Because x was arbitrary, we have disc
[b]
φ (S) = disc

[b]
φ (A) ≥ 1

3

√
n, as desired.

The following lemma is well-known.

Lemma 2.3. Let s ∈ {−1, 1}n be picked uniformly from a 4-wise independent sample

space. Then, for any vector x ∈ Rn,

Pr[|⟨s, x⟩| ≥ α∥x∥2] >
1

3
(1− α2)2.
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Proof. Let z = |⟨s, x⟩|2. We need to show that z ≥ α2∥x∥22 with probability at least

1
3(1− α2)2. Because s is sampled from a 4-wise independent sample space, Ez = ∥x∥22.

Also, we can upper bound the second moment of z as follows:

Ez2 =
n

i=1

x4i + 6
n−1
i=1

n
j=i+1

x2ix
2
j = 3∥x∥42 − 2∥x∥44 < 3∥x∥24.

Then, by the Paley-Zygmund inequality,

Pr[z ≥ α2∥x∥22] = Pr[z ≥ α2Ez] ≥ (1− α2)2
(Ez)2

Ez2
≥ 1

3
(1− α2)2.

This completes the proof.

The next lemma (i.e. the bounded discrepancy lower bound for m = ω(n)) was

(essentially) proved for b = 1 by Rabani and Shpilka, and it is easy to see that their

proof can be adapted to any b. We describe their construction and the (modified)

analysis here for completeness.

Lemma 2.4 ([121]). There exists a deterministic algorithm that, for any positive integer

k, outputs in time polynomial in n = k(2k − 1) a set system (S, U) such that |U | = n,

|S| = O(n3/ log3 n), and disc
[b]
φ (S) = Ω(φ3/2

√
n log n) for any positive integer b.

Proof. Let S ∈ {−1, 1}m0×n0 be a matrix whose rows form a 4-wise independent sample

space, and one of the rows is the all-ones row. By Lemma we can take m0 , 22k+1

and n0 , 2k − 1. Let Σ be the matrix whose rows form the set {−1, 1}k, and define

the matrix M ∈ {−1, 1}2km0×kn0 as the tensor product M , Σ ⊗ S. Moreover, for

σ ∈ {−1, 1}k, define the m0× kn0 matrix Mσ = σᵀ⊗S. Clearly, the rows of M are the

union of the rows of Mσ over all σ ∈ {−1, 1}k.

Then, the set system (S, U) is the one with incidence matrix A = 1
2(M + J), where

J is the n × n all-ones matrix. By construction, |U | = k(2k − 1) and |S| = 23k+1, as

required.

It remains to verify that disc
[b]
φ (S) = disc

[b]
φ (A) = Ω(φ3/2

√
n log n). To this end,

let us fix an arbitrary x ∈ {−b, . . . , b}n, such that |{i : xi ̸= 0}| ≥ φn. As in the

proof of Lemma 2.2, because A contains the all-ones row, it suffices to prove ∥Mx∥∞ =

Ω(φ3/2
√
n log n). Let us write x = e1 ⊗ x1 + . . .+ ek ⊗ xk, where et is the t-th standard
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basis vector in Rk and each xt is a vector in Rn0 . Pick s to be a uniformly random row

from S, and define X(t) to be the indicator random variable for the event {|⟨s, xt⟩| ≥
1
3∥x

t∥2}. By Lemma 2.3, EX(t) > 26

35
, and, by linearity of expectation,

E[
k

t=1

|⟨s, xt⟩|] ≥
k

t=1

1

3
∥xt∥2EX(t) >

26

36

k
t=1

∥xt∥2

Therefore, by averaging, there exists a row si = Si∗ of S so that
k

t=1 |⟨si, xt⟩| >

26

36
k

t=1 ∥xt∥2. Define σ ∈ {−1, 1}k by σt = sign(⟨si, xt⟩). By construction of M , we

have

∥Mx∥∞ ≥ ∥Mσx∥∞ ≥


k

t=1

σt⟨si, xt⟩

 =
k

t=1

|⟨si, xt⟩| > 26

36

k
t=1

∥xt∥2. (2.1)

To complete the proof we need to lower bound
k

t=1 ∥xt∥2. Let T be the set of block

indexes t such that |{(t − 1)n0 + 1 ≤ i ≤ tn0 : xi ̸= 0}| ≥ φn0/3. Observe that

|T | > 2φk/3; indeed, otherwise the number of zero coordinates of x would be at least

(1− 2

3
φ)(1− 1

3
φ)n0k > (1− φ)n0k = (1− φ)n,

contradicting our choice of x. For any t ∈ T , ∥xt∥2 ≥


φn0/3, and

k
t=1

∥xt∥2 ≥

t∈T

∥xt∥2 ≥
2
√
3

9
φ3/2k

√
n0 =

2
√
3

9
φ3/2

√
nk.

Since the choice of x was arbitrary, together with (2.1) this completes the proof.

The following question, which asks for an improvement of the above construction,

appears to be open.

Question 1. Is there a deterministic polynomial time algorithm which, for infinitely

many n and any constant c, constructs a set system (S, [n]) such that |S| = O(n1+c) and

disc(S) = Ω(n log n). Note that such set systems exist, by a randomized construction,

and Lemma 2.4 can be modified to give a construction of set systems of size |S| =

O(n2+c) for any c and disc(S) = Ω(n log n).

As a warm-up, we prove an easier hardness result for discrepancy of matrices with

bounded integer entries. An additional trick allows to make the hard matrix binary

(and therefore an incidence matrix of a set system) by blowing up the number of rows

slightly.
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Theorem 2.4. There exists a constant B, such that for matrices A ∈ {0, . . . , B}O(n)×n

it is NP-hard to distinguish between the cases (1) disc(A) = 0 and (2) disc(A) =

Ω(
√
n). Moreover, for matrices A ∈ {0, . . . , B}O(n3)×n, it is NP-hard to distinguish

between the cases (1) disc(A) = 0 and (2) disc(A) = Ω(
√
n log n).

Proof. We prove the theorem by reduction from Max-2− 2-Set-Splitting. We give

the proof of the first statement, and the second follows analogously. Let (S0, U), |U | =

n, be an instance of Max-2 − 2-Set-Splitting with maximum degree ∆S0 ≤ B; we

have m0 , |S0| ≤ Bn. Moreover, we can assume that m0 is a power of 2, by adding

at most Bn new elements, each appearing in a unique singleton set. Let A0 be the

incidence matrix of the resulting set system. Let (S1, U1) be the set system output

by the algorithm in Lemma 2.2 for k = log2 |S0|, and let A1 be its incidence matrix.

The reduction outputs the matrix A = A1A0. It is clear that this is a polynomial time

reduction, and that A has m0 = O(n) rows. Since each column of A0 has at most B

ones, the entries of A are non-negative integers bounded by B. It remains to analyze

disc(A).

Completeness When disc(S0) = 0, there exists an x ∈ {−1, 1}n such that A0x = 0, and therefore

Ax = A1(A0x) = 0, and disc(A) = 0.

Soundness If for all χ : U → {−1, 1}, |{S ∈ S0 :


e∈S χ(e) ̸= 0}| ≥ φm0, then for any

x ∈ {−1, 1}n, A0x ∈ {−4,−2, 0, 2, 4}m0 , and |{i : (A0x)i ̸= 0}| ≥ φm0. Then, by

the definition of 4-bounded discrepancy,

disc(A) = min
x∈{−1,1}n

∥A1(A0x)∥∞ ≥ disc
[4]
φ (A1) = Ω(

√
n).

Since, by Theorem 2.3 it is NP-hard to distinguish between the Completeness and

Soundness cases for Max-2− 2-Set-Splitting instance with maximum degree B, the

first part of the theorem follows. The second part is proved analogously, by using the

set system from Lemma 2.4 as (S1, U1).

To adapt the reduction above to output a set system (or equivalently, a binary

matrix), we need a simple technical lemma, stated and proved next.
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Lemma 2.5. Let (S, U) be a set system with maximum degree ∆S . Then S can be

partitioned in polynomial time into at most ∆S +1 parts, each of which is a set system

with maximum degree 1, i.e. no two sets share an element.

Proof. Construct a graph G = (V,E), where each vertex in V is associated with one

set in S and there is an edge between two vertices in V if the associated pair of sets

have a non-empty intersection. Each vertex in V has degree at most ∆S , and therefore

G can be colored with at most ∆S + 1 colors in polynomial time using the standard

greedy algorithm. The color classes partition V into ∆S + 1 independent sets, where

each independent set is associated with a collection of pairwise disjoint sets from S.

Therefore, we can partition S so that each part is the union of the vertices associated

to a color class of vertices in V .

We are now ready to prove our main result.

Theorem 2.5. Given a set system (S, U) with |S| = m, |U | = n and m = O(n), it is

NP-hard to distinguish between the cases (1) disc(S) = 0 and (2) disc(S) = Ω(
√
n).

Moreover, given a set system (S, U) with |S| = m, |U | = n and m = O(n3), it is NP-

hard to distinguish between the cases (1) disc(A) = 0 and (2) disc(A) = Ω(
√
n log n).

Proof. Once again we prove the first statement, and the second statement (after “More-

over”) follows analogously. Again, we use a reduction from Max-2−2-Set-Splitting.

Let (S0, U), |U | = n, and A0 be as in the proof of Theorem 2.4. Let, furthermore,

(S1, U1) again be the set system output by the algorithm in Lemma 2.2 for k = log2 |S0|,

and let A1 be its incidence matrix. By Lemma 2.5, S0 can be partitioned into B + 1

parts, each part consisting of disjoint sets; let us call the parts S1
0 , . . . ,S

B+1
0 . Let us

write A0 = A1
0 + . . . + AB+1

0 , where At
0 is a matrix whose non-zero entries form an

incidence matrix for St
0. In other words, At

0 is the projection of A0 onto the rows

corresponding to the sets in St
0. The reduction outputs the union of the set systems

S1, . . . ,SB+1, where St is the set system with incidence matrix At = A1A
t
0.

It is clear that this is a polynomial time reduction, and that S has (B+1)m0 = O(n)

sets. Since each column of At
0 for each t has at most a single 1, the entries of each At
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are binary, and therefore each At is indeed an incidence matrix. It remains to analyze

disc(S).

Completeness When disc(S0) = 0, there exists an x ∈ {−1, 1}n such that At
0x = 0 for all t,

and therefore Atx = A1(A
t
0x) = 0 for all t. Since disc(S) = maxB+1

t=1 disc(St) =

maxB+1
t=1 disc(At), we have disc(S) = 0.

Soundness If for all χ : U → {−1, 1}, |{S ∈ S0 :


e∈S χ(e) ̸= 0}| ≥ φm0, then for any x ∈

{−1, 1}n, A0x ∈ {−4,−2, 0, 2, 4}m0 , and |{i : (A0x)i ̸= 0}| ≥ φm0. But A0x =B+1
t=1 At

0x, and each At
0x is a projections of A0x onto a coordinate subspace.

Therefore, by averaging, there exists a t such that |{i : (At
0x)i ̸= 0}| ≥ 1

B+1φm0.

Then, by the definition of 4-bounded discrepancy,

disc(At) = min
x∈{−1,1}n

∥A1(A0x)∥∞ ≥ disc
[4]
φ/(B+1)(A1) = Ω(

√
n).

As noted in the Completeness case, the discrepancy of S is at least as large as

disc(St) = disc(At), and therefore, disc(S) = Ω(
√
n) in this case.

Since, by Theorem 2.3 it is NP-hard to distinguish between the Completeness and

Soundness cases for Max-2− 2-Set-Splitting instance with maximum degree B, the

first part of the theorem follows. The second part is again proved analogously, by using

the set system from Lemma 2.4 as (S1, U1).

2.4 Hardness for Set Systems with Bounded Shatter Function

For some special classes of set systems there exist bounds that improve on the guarantees

of Spencer’s theorem. For example, Matoušek [99] showed improved discrepancy bounds

for set systems whose shatter function is polynomially bounded. Such set systems arise

frequently in computational geometry and computational learning theory. Moreover,

Matoušek’s bounds can be made constructive using the work of Lovett and Meka [95]. In

this section, we show tight inapproximability results for the discrepancy of set systems

with polynomially bounded shatter function. They are proved using the same approach

that was used for proving Theorem 2.5.
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Let (U,S) be a set system on n = |U | elements and m = |S| sets. Given W ⊆ U ,

recall that the restriction of S to W is S|W = {S ∩W : S ∈ S}.

Definition 2.2. The primal shatter function πS(s) of S evaluated at s is equal to the

maximum number of distinct sets in any restriction S|W to a set W of size |W | = s.

Matoušek [105] proved that for set systems (U,S) such that πS(s) = O(sd), herdisc(S) =

O(n1/2−1/2d). The proof relies on the entropy lemma; since Lovett and Meka [95] gave

a constructive version of the lemma, Matoušek’s bound can be proved constructively

as well. We show that this is essentially best possible.

Theorem 2.6. Given a set system (U,S), with |U | = n and πS(s) = O(sd), it is

NP -hard to distinguish between the cases (1) herdisc(S) = 0, and (2) herdisc(S) =

Ω(n1/2−1/2d).

2.4.1 Generalizing Alexander’s Bound

One of the main ingredients in the proof of Theorem 2.5 is a family of high discrepancy

set systems: in the m = O(n) regime this was the Hadamard set systems, which are a

tight example for Spencer’s theorem. Analogously, in the proof of Theorem 2.6 we use a

family of high discrepancy set systems with polynomially bounded shatter function. The

family consists of systems of sets defined by halfspaces. The discrepancy lower bound

for such set systems was proved by Alexander [2]. We present the result as it appears

in Chazelle [41]. We need to extend the original result to b-bounded discrepancy, which

we do via the proof technique introduced in [40].

We first need to introduce a new definition. For a set P of points in Rd, let ∆(P ) =

maxx,y∈U ||x− y||2, and, similarly, δ(P ) = minx,y∈P ||x− y||22. I.e. ∆(P ) is the diameter

of P and δ(P ) is the distance between the closest pair of points.

Definition 2.3. A set P of n points in Rd is c-spread if ∆(P )/δ(P ) ≤ cn1/d.

Observe that the set of vertices of a regular grid inside a d-dimensional cube is

1-spread.

The following simple fact will be useful in the proof of Theorem 2.6.
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Lemma 2.6. Let P be a c-spread set of n points in Rd. If W ⊆ P and |W | ≥ φn, then

W is (c/φ1/d)-spread.

Proof. Since ∆(W ) ≤ ∆(P ) and δ(W ) ≥ dmin(P ), ∆(Y )/δ(Y ) ≤ ∆(P )/δ(P ) ≤ cn1/d.

By |W | ≥ φn we have cn1/d ≤ c
φ1/d |W |1/d, and this completes the proof.

We can now state the generalized version of Alexander’s lower bound.

Lemma 2.7. Let P be a O(1)-spread set of n points in Rd, and let S be the set system

induced by closed halfspaces on P . Then, disc
[b]
φ (S) = Ω(n1/2−1/2d) for all constant b

and φ.

Proof. First we give a lower bound on disc
[b]
1 (S) for every constant b, and then we

deduce the lower bound for every constant φ via Lemma 2.6. The bound on disc
[b]
1 (S)

follows from a small modification of the argument in [40]. We sketch the modification,

following Section 3.3. of Chazelle [41].

First, we introduce notation that closely follows Chazelle’s. Let P be a well-spread

point set in Rd, and let v = (v1, 0, . . . , 0) be a vector in Rd, where v1 is a small real

number to be specified later. We consider a union of P with t = ⌈d/2⌉ + 1 copies of

itself, each translated by a multiple of v:

Pv =
t

j=0

(P + jv).

Fix an assignment χ : P → {±1, . . . ,±b}. The coloring is extended to Pv as follows:

χ(p+ jv) = (−1)j

t

j


χ(p).

For a hyperplane h, let h+ denote the closed halfspace above h, i.e. the halfspace

bounded by h that does not contain the origin. Let D(h) denote the discrepancy of

h+ ∩ P , and let Dv(h) denote the discrepancy of h+ ∩ Pv with respect to the extended

coloring. Consider a cube that encloses P , and pick a random hyperplane through the

cube according to the measure on hyperplanes invariant under rigid motion. By aver-

aging, E[D(h)2] ≥ maxhD(h)2, where the expectation is taken over picking a random

hyperplane as described above. Chazelle [41] shows that

E[D(h)2] = Ω(E[Dv(h)
2]).
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The next step in the proof is to bound E[Dv(h)
2] from below. Define a weight function

G(p, q) as

G(p, q) ,



t
j=−t (−1)j


2t
t+j


|p− q + jv| if p ̸= q,

−

2t−2
t−1


∥v∥ if p = q.

Chazelle further proves the following facts:

E[Dv(h)
2] = −


p,q∈X

χ(p)χ(q)G(p, q); (2.2)


x ̸=y

|G(x, y)| = O(∥v∥2tn1+(2t−1)/d). (2.3)

All the statements so far are independent of the range of the assignment function χ.

Next we show how to modify the proof in order to accommodate the larger domain of

assignments.

We separate the cross terms in the expression (7.2) for E[Dv(h)
2], and show that

even if the points in P are assigned colors from {±1,±2, . . . ,±b}, the cross terms are

dominated by the remaining terms. Note that for any p, q ∈ X, |χ(p)χ(q)| ≤ b2, and

χ(p)2 ≥ 1. Then,

E[Dv(H)2] = −

p

χ(p)2G(p, p)−

p̸=q

χ(p)χ(q)G(p, q)

≥ −

p

G(p, p)− b2

p ̸=q

|G(p, q)|.

By the definition of G(p, q), and the bound (2.3), we have

E[Dv(h)
2] = Ω(n∥v∥ − b2∥v∥2tn1+(2t−1)/d).

Setting ∥v∥ = cn−1/d gives E[Dv(h)
2] = Ω((c− b2c2t)n1−1/d). Choosing c small enough

so that c > b2c2t completes the proof of disc
[b]
1 (S) = Ω(n1/2−1/2d).

It remains to deduce the lower bound for constant φ < 1. Observe that disc
[b]
φ (S)

is equal to the minimum of disc
[b]
1 (S|W ) over all W ⊆ P of size |W | ≥ φn. Since every

such W is O(1)-spread by Lemma 2.6, and S|W is equal to the set system induced

by closed halfspaces on W , we have disc
[b]
1 (S|W ) = Ω(n1/2−1/2d). This completes the

proof.
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It is a well known fact that a set system (P,S) of halfspaces in Rd has πS(s) = O(sd)

(see e.g. [105]). Thus, such set systems are a tight example for Matoušek’s upper bound.

2.4.2 The Reduction

Our proof of the hardness of approximating discrepancy on set systems with polynomi-

ally bounded shatter function follows the structure of the proof of Theorem 2.5. The

two key steps in the proof of Theorem 2.6 are using systems of halfspaces instead of

Hadamard set systems, and showing that the shatter function of the final construction

is bounded by O(sd). The following lemma is helpful in achieving this second goal.

Lemma 2.8. Let S0 be a set system of pairwise disjoint sets, with incidence matrix

A0 ∈ Rm0×n. Furthermore, let S1 be a set system such that πS1(s) = O(sd), and let

A1 ∈ Rm×m0 be its incidence matrix. Then the set system S with incidence matrix

A = A1A0 has shatter function πS(s) ≤ πS1(s) = O(sd).

Proof. Assume without loss of generality that the ground set of S0 is [n], and fix W

to be an arbitrary subset of [n] of size s. Let, furthermore, X be the subset of [m0]

indexing the non-zero rows of A0. Clearly, AW = (A1A0)W = (A1)X(A0)X,W , where

(A0)X,W is the restriction of A0 to rows indexed by X and columns indexed by W .

Moreover, |X| ≤ s because each column of A0 has at most a single nonzero entry.

Then, (A1)X has at most πS1(s) distinct rows, and, therefore, AW = (A1)X(A0)X,W

has at most as many distinct rows as well.

Proof of Theorem 2.6. Let (S0, U), |U | = n, be an instance of Max-2−2-Set-Splitting

with maximum degree at most B and m0 , |S0| ≤ Bn sets. Furthermore, let (S1, P )

be a set system induced by all closed halfspaces on a O(1)-spread point set P of size

|P | = m0. Let A0 and A1 be the incidence matrices respectively of S0 and S1. Using

Lemma 2.5, we partition S0 into B + 1 set system S1
0 , . . . ,S

B+1
0 , each consisting of

pairwise disjoint sets. As in the proof of Theorem 2.5, we write A0 = A1
0 + . . .+AB+1

0 ,

where At
0 is the projection of A0 onto the rows corresponding to sets in St

0. Then the

reduction outputs the union S of the set systems S1, . . . ,SB+1, where St is the set

system with incidence matrix At = A1A
t
0.
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The analysis of completeness and soundness is analogous to the analysis in Theo-

rem 2.5, but substituting Lemma 2.7 for Lemma 2.2. It remains to prove that S has

shatter function bounded as πS(s) = O(sd). From the definition of πS(s) and the union

bound, it is immediate that

πS(s) ≤
B+1
t=1

πSt(s),

so it suffices to show that for any t, πSt(s) = O(sd). This last bound follows from

Lemma 2.8, and this completes the proof.

2.5 Hardness of Approximating Hereditary Discrepancy

While no non-trivial approximation to discrepancy is possible (unless P = NP), we will

see in Chapter 4 that hereditary discrepancy admits a polylogarithmic approximation.

Here we show a complementary negative result: approximating herdisc better than a

factor of 3/2 is NP-hard.

Theorem 2.7. Given a set system (S, U), it is NP-hard to distinguish between the two

cases (1) herdisc(S) ≤ 2 and (2) herdisc(S) ≥ disc(S) ≥ 3.

Theorem 2.7 implies that it is NP-hard to decide if a set system has hereditary

discrepancy 2. By contrast, there exists a polynomial time algorithm that recognizes

matrices (and therefore set systems) with hereditary discrepancy 1. Matrices with

hereditary discrepancy 1 are exactly the totally unimodular matrices [66], and an effi-

cient algorithm for their recognition was given by Seymour [133].

The proof of Theorem 2.7 is a straight-forward reduction from the 2-colorability

problem for 3-uniform set systems. Recall that a set system is r-uniform if all sets in

it have size r. We also have the following definition.

Definition 2.4. A set system (S, U), is 2-colorable if and only if there exists a set

T ⊆ U such that for all S ∈ S, S ∩ T ̸= ∅ and S ∩ T ̸= S. The set T is called a

transversal of S.

The hardness of deciding whether a 3-uniform set system is 2-colorable follows from

Schaefer characterization of the hardness of binary constraint satisfaction problems.
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Lemma 2.9 ([130]). There exists a family of 3-uniform set systems such that deciding

whether a set system in the family is 2-colorable is NP-complete.

Given the lemma, the hardness reduction for hereditary discrepancy is straightfor-

ward.

Proof of Theorem 2.7. The proof is a reduction from the problem of deciding if a 3-

uniform set system is 2-colorable. We show that a 2-colorable 3-uniform set system has

hereditary discrepancy at most 2, while a set system that does not have a transversal

has discrepancy at least 3. Then the theorem follows from Lemma 2.9

Completeness If a 3-uniform set system (S, U) is 2-colorable, this is witnessed by a transversal

T ⊆ U . We define a coloring by χ(e) = 1 if e ∈ T , and χ(e) = −1 otherwise.

This coloring witnesses disc(S|W ) ≤ 2 for any W ⊆ U . Indeed, because T is a

transversal, any S ∈ S has at most two elements given the same color by χ. This

clearly holds for any subset of S as well, and, therefore, |χ(S ∩W )| ≤ 2.

Soundness If a 3-uniform set system (S, U) is not 2-colorable, then for any χ : U → {−1, 1},

disc(S, χ) ≥ 3. Indeed, if there exists a coloring such that disc(S, χ) ≤ 2, then

T , {e ∈ U : χ(e) = 1} forms a transversal.

We remark that subsequent to publishing this result, Austrin, Guruswami and

H̊astad [8] have shown an improved hardness of 2 − ε for any ε > 0. A factor of

two is a natural barrier for techniques used here and in that work, where in the low

discrepancy case, the same coloring works for all restrictions of the set system. Giving

either a constant factor approximation to hereditary discrepancy or a super-constant

hardness result remains an open problem:

Question 2. Can hereditary discrepancy be approximated within some fixed constant

in polynomial time?
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Chapter 3

Vector Discrepancy and the Komlós Problem

3.1 Overview

Vector discrepancy is a convex relaxation of discrepancy, and an important tool in con-

structive discrepancy minimization. Unlike discrepancy, vector discrepancy is efficiently

computable, since it is a convex minimization problem. We shall also see in subsequent

chapters that vector discrepancy is key in designing efficient approximation algorithms

for hereditary discrepancy, and has an interesting relationship with differential privacy.

In this chapter we lay out the background for these results. We define vector discrep-

ancy and review an important result of Bansal that relates hereditary vector discrepancy

and hereditary discrepancy. Bansal’s result reduces approximating hereditary discrep-

ancy to approximating hereditary vector discrepancy. However, to have any hope to

approximate the latter, we need an upper bound. The main new result of this chapter is

a solution to a vector discrepancy analogue of the Komlós problem, which will be used

in Chapter 4 to give near tight upper bounds on hereditary vector discrepancy. Our

upper bound on vector discrepancy uses strong duality for semi-definite programming.

3.2 Definition and Relationship with Hereditary Discrepancy

Let (S, U) be a set system. Vector discrepancy is defined analogously to discrepancy,

but we “color” U with unit n-dimensional vectors rather than ±1:

vecdisc(S) , min
χ:U→Sn−1

max
S∈S


e∈S

χ(e)


2

,

where Sn−1 is the unit sphere in Rn. Hereditary vector discrepancy is also defined

analogously, i.e. hvdisc(S) = maxW⊆U vecdisc(S|W ).
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Like discrepancy, vector discrepancy generalizes to matrices A ∈ Rm×n:

vecdisc(A) , min
u1,...,un∈Sn−1

m
max
i=1

 n
j=1

Aijuj

2
.

Notice that when A is the incidence matrix of S, the definitions agree, i.e. vecdisc(S) =

vecdisc(A). The corresponding notion of hereditary vector discrepancy of matrices is

hvdisc(A) = maxJ⊆[n] hvdisc(AJ). For the rest of the chapter we shall focus on vector

discrepancy for matrices, since this is the more general notion.

Vector discrepancy can be equivalently defined as the optimal value of a convex

program. In particular, vecdisc(A)2 can be written as the optimal solution to the

semidefinite program

Minimize D s.t. (3.1)

(AXAᵀ)ii ≤ D ∀1 ≤ i ≤ m (3.2)

xjj = 1 ∀1 ≤ j ≤ n (3.3)

X ≽ 0. (3.4)

To see the equivalence, write the vectors u1, . . . , un forming a vector coloring as the

columns of the matrix U and set X = UᵀU ≽ 0. Also, by the Cholesky decomposition

of positive semidefinite matrices, any X ≽ 0 can be written as X = UᵀU where the

columns of U are unit vectors and therefore give a vector coloring. Since semidefinite

programs can be optimized in polynomial time, vecdisc(A) can be approximated to

within an additive ϵ in time polynomial in m,n, log ϵ−1 [72] (see also the book [65]).

Vector discrepancy is a relaxation of discrepancy, i.e. vecdisc(A) ≤ disc(A) for all

matrices A: a coloring x ∈ Rn achieving disc(A) induces a vector coloring {ui = xiv}ni=1

achieving the same value for vector discrepancy, where v is an arbitrary unit vector.

An immediate corollary is that hvdisc(A) ≤ herdisc(A) for all A. A partial converse is

implied by the following result of Bansal.

Theorem 3.1 ([11]). For any matrix A ∈ Rm×n, disc(A) = O(logm) hvdisc(A). More-

over, there exists a polynomial time randomized algorithm that computes a coloring

x ∈ {−1, 1}n such that, with high probability, ∥Ax∥∞ = O(logm) hvdisc(A).
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The converse is the following corollary of Theorem 3.1.

Corollary 3.2. There exists a fixed constant C, such that for any matrix A,

hvdisc(A) ≤ herdisc(A) ≤ (C logm) · hvdisc(A).

Hereditary discrepancy is a maximum over an exponential number of NP-hard prob-

lems. Hereditary vector discrepancy is a maximum over an exponential number of con-

vex optimization problems, which is intuitively more tractable. Nevertheless, it is not

clear how to give non-trivial upper bounds on hereditary vector discrepancy. In this

chapter we develop a tool that will allow us to give such upper bounds.

An interesting question is whether the upper bound in Corollary 3.2 can be improved

to O(
√
logm). This would be tight, since the power set (2U , U) has discrepancy ⌈n/2⌉ =

Ω(logm) and vector discrepancy
√
n = O(

√
logm), as witnessed by taking X = I in

(3.1)–(3.4).

3.3 Relationship with L2-discrepancy

In a sense vector discrepancy is a relaxation of average discrepancy. This fact is captured

by the following proposition.

Proposition 3.1. For any matrix A ∈ Rm×n,

vecdisc(A) ≤ max
w

disc2,w(A).

Proof. Let us define maxw disc2,w(A) as the value of a zero-sum game. The strategy set

of the Max player is [m], and the strategy set of the Min player is {−1, 1}n. The pay-off

for a pair of strategies (i, x) is
n

j=1Aijxi
2
. It is easy to verify that maxw disc2,w(A)

is the value of this game. Then, by von Neumann’s min-max theorem,

max
w

disc2,w(A) = min
Π

max
i

Ex∼Π

 n
j=1

Aijxj
21/2

,

where Π ranges over all probability distributions on {−1, 1}n and Ex∼Π is the expec-

tation operator when x is sampled from Π. The right hand side is an upper bound on

vecdisc(A), because for each distribution Π we can define an assignment of unit vectors
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χ with the same discrepancy. It is more convenient to define the positive semidefinite

matrix X in the program (3.1)–(3.4). Let Π be a distribution on {−1, 1}n, and define

Xi,j = Ex∼Π[xixj ], i.e. the correlation matrix of Π. As a correlation matrix, X is a

PSD matrix. Moreover, Xjj = E[x2j ] = 1, and

AXAᵀ = AE[xxᵀ]Aᵀ = E[(Ax)(Ax)ᵀ],

so (AXAᵀ)ii is equal to E
n

j=1Aijxj
2
. Therefore, X for an optimal mixed strategy

Π for the Min player is a feasible solution to (3.1)–(3.4) with objective value equal to

the value of the zero sum game.

Proposition 3.1 and Corollary 3.2 together imply that

max
w

herdisc2,w(A) ≤ herdisc(A) ≤ O(logm) ·max
w

herdisc2,w(A).

There are several natural improvements to these bounds that remain open, and would

have interesting consequences. One such improvement is replacing hereditary discrep-

ancy and hereditary L2-discrepancy with discrepancy and L2-discrepancy. Another

is replacing the bond O(logm) with O(
√
logm. We are not aware of any counterex-

amples to either of these strengthenings. On the other hand, the power set example

we mentioned in relation to Corollary 3.2 shows that the factor O(
√
logm) would be

tight. Indeed (2U , U) has discrepancy ⌈n/2⌉ and L2 discrepancy
√
n for any weights

w : 2U → R. To show the latter claim, pick a coloring χ : U → {−1, 1} uniformly at

random, and observe that

E

 1

w(2U )


S∈2U

w(S)χ(S)2

 =
1

w(2U )


S∈2U

w(S)E[χ(S)2] ≤
√
n,

where the expectation is taken over the choice of χ. By averaging, there exists some χ

which achieves L2 discrepancy bounded above by the expectation.
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3.4 Duality for Vector Discrepancy

Let us first state the strong duality theorem for general semidefinite programs (SDPs).

Consider an SDP in the form:

Minimize tr(F ᵀX) s.t. (3.5)

tr(Aᵀ
iX) = bi ∀1 ≤ i ≤ k, (3.6)

tr(Cᵀ
jX) ≥ dj ∀1 ≤ j ≤ ℓ, (3.7)

X ≽ 0. (3.8)

Above A1, . . . , Ak and C1, . . . , Cℓ are matrices with the appropriate dimension so that

the matrix product is well-defined.

The dual SDP is:

Maximize bᵀy + dᵀz s.t. (3.9)

k
i=1

yiAi +

ℓ
j=1

zjCj ≼ F, (3.10)

zj ≥ 0 ∀1 ≤ j ≤ ℓ. (3.11)

The strong duality theorem of semidefinite programming identifies sufficient conditions

under which the optimal values of (3.5)–(3.8) is equal to the optimal value of (3.9)–

(3.11).

Theorem 3.3. If the optimal value of (3.5)–(3.8) is finite, and there is a feasible X ≻ 0

such that tr(Cᵀ
jX) > dj for all j ∈ [ℓ] , then the optimal value of (3.5)–(3.8) is equal

to the optimal value of (3.9)–(3.11).

For a proof see [65, Chap. 4] or [31, Sec. 5.9.1]. This is a special case of the more

general duality theory for cone programming.

Theorem 3.3 easily leads to the following dual characterization of vector discrep-

ancy. The dual given below was independently derived by Matoušek in his work on the

determinant lower bound [106].
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Proposition 3.2. For any matrix A ∈ Rm×n:

vecdisc(A)2 =max tr(Q) s.t. (3.12)

Q ≼ AᵀPA, (3.13)

P diagonal , P ≽ 0, tr(P ) ≤ 1, (3.14)

Q diagonal . (3.15)

Proof. We put (3.1)–(3.4) in the form

Minimize tr(En+1,n+1X̃) s.t.

tr(Ej,jX̃) = 1 ∀1 ≤ j ≤ n,

tr(En+1,n+1X̃)− tr(AᵀEi,iAX) ≥ 0 ∀i ≤ i ≤ m,

X ≽ 0.

Above we use Ei,j to denote a standard basis matrix, i.e. the matrix with (i, j) entry

1, and all other entries 0. The new variable X̃ should be thought of as the direct sum

of X from (3.1)–(3.4) and the variable t. Let r be the maximum ℓ2 norm of any row of

A. One can verify that that for an arbitrary ϵ > 0,

X̃ ,

 I 0

0 r2 + ϵ


is a strictly feasible positive definite solution to the above program. Moreover, the

optimal value of the program is bounded in the interval [0, r2]. The proposition then

follows directly from Theorem 3.3 if we take P to be the diagonal matrix whose entries

are the dual variables corresponding to inequality constraints, and Q to be the diagonal

matrix whose entries are the dual variables corresponding to equality constraints.

In the sequel we shall analyze a strengthening of vecdisc(A), defined by the following

SDP:

µ(A)2 ,max t s.t. (3.16)

AXAᵀ ≼ tI, (3.17)

xjj = 1 ∀1 ≤ j ≤ n. (3.18)
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It is not hard to see that vecdisc(A) ≤ µ(A), since for any matrices X and X, and any

i ∈ [m], AXAᵀ ≼ tI implies (AXAᵀ)ii = eᵀiAXAᵀei ≤ t, where ei is the i-th standard

basis vector, i.e. a vector with 1 in position i and 0s everywhere else. On the other

hand, µ(A) is more robust with respect to linear transformations of A, which will be a

crucial for giving a near tight upper bound on herdisc(A).

A derivation very similar to the proof of Proposition 3.2 gives a dual characterization

of µ(A).

Lemma 3.1. For all A ∈ Rm×n:

µ(A)2 =max tr(Q) s.t. (3.19)

Q ≼ AᵀPA, (3.20)

P ≽ 0, tr(P ) ≤ 1, (3.21)

Q diagonal. (3.22)

Proof. We can write (3.16)–(3.18) in the form

Minimize t s.t.

tI −AXAᵀ = Y,

X, Y, t ≽ 0,

xjj = 1 ∀1 ≤ j ≤ m.

The constraint tI − AXAᵀ = Y can be thought of as n2 equality constraints. This

program can then be put in standard form analogously to the proof of Proposition 3.2.

Setting X = I, t = ∥A∥22 + ϵ, and Y = tI − AAᵀ, where ϵ > 0 is arbitrary and ∥A∥2 is

the ℓ2 → ℓ2 operator norm, gives a positive definite feasible solution. The optimal value

is bounded in the interval [0, ∥A∥22]. The lemma then follows from Theorem 3.3 after

taking Q to be the diagonal matrix whose entries are the dual variables corresponding

to the constraints xii = 1, and P to be the n × n matrix whose entries correspond to

the constraints (tI −AXAᵀ)i,j = yi,j .
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3.5 The Komlós Problem

Recall that we denote the maximum degree of a set system S by ∆S . By a classical result

of Beck and Fiala [18], disc(S) ≤ 2∆S − 1. Furthermore, Beck and Fiala conjectured

that disc(S) = O(
√
∆S). Proving this conjecture remains an elusive open problem in

discrepancy theory.

Let ∥A∥1→2 be the ℓ1 → ℓ2 norm of the matrix A, equal to the maximum ℓ2 norm

of its columns. If A is the incidence matrix of S, then ∥A∥1→2 =
√
∆S . The Komlós

conjecture is a strengthening of the Beck-Fiala conjecture, stating that there exists

an absolute constant C such that disc(A) ≤ C · ∥A∥1→2 for any matrix A. While

this conjecture also remains open, a partial result due to Banaszczyk [9] shows that

disc(A) ≤ O(
√
logm) · ∥A∥1→2. The Komlós conjecture belongs to a class of vector bal-

ancing problems, considered in generality by Bárány and Grinberg [16]. These problems

ask to determine, given two norms ∥ · ∥K and ∥ · ∥L, the supremum of

min
x∈{−1,1}n

 n
i=1

xivi

L
,

over all n and all sequences v1, . . . , vn sich that ∥vi∥K ≤ 1 for all i. Beck and Fiala’s

proof in fact bounds this supremum by 2 when the sequence of vectors have ℓ1 norm at

most 1, and the goal is to bound the ℓ∞ norm of their signed combination.

The Beck-Fiala theorem and Banaszczyk’s theorem, and vector balancing upper

bounds in general, give upper bounds on hereditary discrepancy without any additional

effort. The reason is that the assumptions of such results hold for any restricted set

system, or, respectively, submatrix. I.e. ∆S′ ≤ ∆S for any S ′ = S|W , and ∥AJ∥1→2 ≤

∥A∥1→2. This makes vector balancing results useful for giving general upper bounds on

hereditary discrepancy. In the Chapter 4 we will see an application of this fact to the

design of an approximation algorithm for hereditary discrepancy.

Next we state the main new result of this chapter, which resolves a vector discrep-

ancy version of the Komlós problem. Recall the strengthening of vector discrepancy

µ(A), defined in (3.16)–(3.18).

Theorem 3.4. For any m× n real matrix A, vecdisc(A) ≤ µ(A) ≤ ∥A∥1→2.
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This upper bound is the best possible, and is tight, for example, for the identity

matrix I. Theorem 3.4 implies that if the efficient upper bound in Theorem 3.1 can be

strengthened to O(
√
logm), we would have a new and algorithmic proof of Banaszczyk’s

result. Banaszczyk’s proof itself does not seem to yield an efficient algorithm to find a

coloring matching his discrepancy upper bound.

A weaker bound of vecdisc(A) = O(
√
logm) · ∥A∥1→2 can be derived in a variety

of ways: directly from Banaszczyk’s upper bound; from the existence of constant dis-

crepancy partial colorings for the Komlós conjecture; from Matoušek’s recent upper

bound [106] on vector discrepancy in terms of the determinant lower bound of Lovász,

Spencer, and Vesztergombi [93]. An alternative proof giving vecdisc(A) ≤ C∥A∥1→2 for

a constant C > 1 was communicated to us by Oded Regev, Raghu Meka, and Shachar

Lovett. Such a bound also follows from Proposition 3.1 and a result Matoušek [101].

However, none of these proofs yield the tight constant of 1.

To prove Theorem 3.4, we need a well-known lemma, also known as the Cauchy

Interlace Theorem. It follows easily from the variational characterization of eigenvalues,

see e.g. [24, Sec. 3.1].

Lemma 3.2. Let M be a symmetric real matrix with eigenvalues λ1 ≥ . . . ≥ λn. Let

also U ∈ Rn×k be a matrix with mutually orthogonal unit columns, and let µ1 ≥ . . . ≥ µk

be the top k eigenvalues of UᵀMU . Then for any 1 ≤ i ≤ k, λn−k+i ≤ µi ≤ λi.

The following is an immediate consequence of Lemma 3.2.

Lemma 3.3. Let M ∈ Rn×n : M ≽ 0 be a symmetric real matrix with eigenvalues

λ1 ≥ . . . ≥ λn ≥ 0. Let also U ∈ Rn×k be a matrix with mutually orthogonal unit

columns. Then det(UᵀMU) ≤ λ1 . . . λk.

The final lemma we need states that if a sequence x of positive reals multiplicatively

majorizes a sequence y, then the sum of the terms in y dominates the sum of the terms

in x. We give two proofs: one based on Schur convexity and a self-contained elementary

one.

Lemma 3.4. Let x1 ≥ . . . ≥ xn > 0 and y1 ≥ . . . ≥ yn > 0 such that

∀k ≤ n : x1 . . . xk ≥ y1 . . . yk (3.23)
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Then,

x1 + . . .+ xn ≥ y1 + . . .+ yn. (3.24)

Proof. First we prove the lemma using the general tool of Schur convexity. Define the

new sequence a1 ≥ . . . ≥ an by ai = lnxi, and, similarly, b1 ≥ . . . ≥ bn by bi = ln yi.

By assumption and the monotonicity of the logarithm, a = (ai)
n
i=1 weakly majorizes

b = (bi)
n
i=1 from below, i.e.

∀1 ≤ k ≤ n :

k
i=1

ai ≥
k

i=1

bi.

This is written b ≺w a. Consider the function f(a) =
n

i=1 e
ai . Since it is symmetric

with respect to permuting the coordinates, convex, and monotonically increasing in

each coordinate, b ≺w a implies f(b) ≤ f(a) (see [98, Sec. 3.C]), which proves the

lemma.

We now give an alternative self-contained proof using a powering trick. We will

show that for all positive integers L, (x1+ . . .+xn)
L ≥ 1

n!(y1+ . . .+ yn)
L. Taking L-th

roots, we get that x1 + . . . + xn ≥ 1
(n!)1/L

(y1 + . . . + yn). Letting L → ∞ and taking

limits yields the desired result.

By the multinomial theorem,

(x1 + . . .+ xn)
L =


i1+...+in=L

L!

i1! . . . in!
xi11 . . . xinn . (3.25)

The inequalities (3.23) imply that whenever i1 ≥ . . . ≥ in, xi11 . . . xinn ≥ yi11 . . . yinn .

Therefore,

(x1 + . . .+ xn)
L ≥


i1≥...≥in

i1+...+in=L

L!

i1! . . . in!
yi11 . . . yinn . (3.26)

Given a sequence i1, . . . , in, let σ be a permutation on n elements such that iσ(1) ≥

. . . ≥ iσ(n). Since y1 ≥ . . . ≥ yn, we have that y
iσ(1)

1 . . . y
iσ(n)
n ≥ yi11 . . . yinn . Furthermore,

there are at most n! distinct permutations of i1, . . . , in (the bound is achieved exactly

when all i1, . . . , in are distinct). These observations and the multinomial theorem imply

that

(y1 + . . .+ yn)
L ≤


i1≥...≥in

i1+...+in=L

n!L!

i1! . . . in!
yi11 . . . yinn . (3.27)
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Inequalities (3.26) and (3.27) together imply (x1 + . . . + xn)
L ≥ 1

n!(y1 + . . . + yn)
L as

desired.

Proof of Theorem 3.4. We will show that for any positive semidefinite matrix P ≽ 0,

and any diagonal matrix Q such that Q ≼ AᵀPA, we have tr(Q) ≤ ∥A∥21→2tr(P ).

Together with Lemma 3.1, this implies the theorem.

We can assume, by homogeneity, that ∥A∥1→2 = 1; under this assumption, we need

to show that for P and Q feasible for (3.19)–(3.22), tr(Q) ≤ tr(P ). Let us define

qi = qii, and also define pi = λi(P ) ≥ 0 to be the i-th largest eigenvalue value of P .

Let, without loss of generality, q1 ≥ . . . ≥ qn′ > 0 ≥ qn′+1 ≥ . . . ≥ qn. Observe thatn′

i=1 qi ≥
n

i=1 qi = tr(Q). Therefore, it suffices to show

tr(Q) ≤
n′
i=1

qi ≤
n′
i=1

pi ≤
m
i=1

pi = tr(P ). (3.28)

Denote by Ak the matrix consisting of the first k columns of A, and by Qk the

diagonal matrix with q1, . . . , qk on the diagonal. We first show that

∀k ≤ n′ : det(Aᵀ
kPAk) ≤ p1 . . . pk. (3.29)

Let u1, . . . uk be an orthonormal basis for the range of Ak and let Uk be the matrix

(u1, . . . uk). Then Ak = UkU
ᵀ
kAk, since UkU

ᵀ
k acts as an orthogonal projection on the

range of Ak, and therefore it leaves the columns of Ak invariant. Each column of the

square matrix Uᵀ
kAk has norm at most ∥A∥1→2 = 1, and, by Hadamard’s inequality,

det(Aᵀ
kUk) = det(Uᵀ

kAk) ≤ 1.

Therefore,

∀k ≤ n′ : det(Aᵀ
kPAk) = det(Uᵀ

kAk)
2 det(Uᵀ

kPUk) ≤ det(Uᵀ
kPUk).

By Lemma 3.3, we have that det(Uᵀ
kPUk) ≤ p1 . . . pk, which proves (3.29).

By constraint (3.20), we have that for all k and for all u ∈ Rk, uᵀAᵀ
kPAku ≥ uᵀQku.

Then, we have that

∀k ≤ n′ : det(Aᵀ
kPAk) ≥ det(Qk) = q1 . . . qk (3.30)



45

Combining (3.29)) and (3.30), we have that

∀k ≤ n′ : p1 . . . pk ≥ q1 . . . qk (3.31)

By Lemma 3.4, (3.31) implies (3.28), and completes the proof of the theorem.

Bibliographic Remarks

A preliminary version of a weaker form of the result of the current chapter appears

in [115].
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Chapter 4

Approximating Hereditary Discrepancy

4.1 Overview

In Chapter 2 we showed that no non-trivial efficient approximation for discrepancy is

possible, unless P = NP. In this chapter we will see that the robustness of hereditary

discrepancy has a computational consequence: there exists a deterministic polynomial

time algorithm that approximates the hereditary discrepancy of any given matrix within

a polylogarithmic factor. The technical tools we develop to approximate hereditary

discrepancy have further applications. In Chapter 7 we will use them to characterize

the error of differentially private algorithms for linear queries; in Chapter 6 we give

applications to discrepancy theory, most prominently a new and near-tight lower bound

for the combinatorial discrepancy of axis-aligned boxes.

Recall that by Corollary 3.2, a factor α(m,n) approximation to hereditary vector

discrepancy implies a factor α(m,n) logm approximation to hereditary discrepancy. In

this chapter we do give such an approximation result with α(m,n) = O(logm).

Theorem 4.1. There exists a polynomial time algorithm that approximates hvdisc(A)

within a factor of O(logm) for any m × n matrix A. Moreover, the algorithm finds a

submatrix AJ of A, such that hvdisc(A) = O(logm) vecdisc(AJ).

Theorem 4.1 follows from a geometric characterization of hereditary vector discrep-

ancy. We show that, up to a factor of O(logm), hvdisc(A) is equal to the smallest value

of ∥E∥∞ over all 0-centered ellipsoids that contain the columns of A. Here, ∥E∥∞ is

just the maximum ℓm∞ norm of all points in E, or, equivalently, the maximum width of

E in the directions of the standard basis vectors e1, . . . , em. For a given matrix A, we

denote the minimum achievable value of ∥E∥∞ over ellipsoids E containing the columns
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of A by ∥A∥E∞ and call it the ellipsoid infinity norm of A. A priori, it is not clear

how to relate this quantity in either direction to the hvdisc(A), as it is not a fractional

“relaxation” in the traditional sense. It is in fact non-trivial to prove either of the two

inequalities relating ∥A∥E∞ to hvdisc(A).

Proving that the ellipsoid infinity norm is an upper bound on hereditary vector

discrepancy relies on the upper bound for the Komlós problem proved in Theorem 3.4.

We apply a linear transformation T to the containing ellipsoid E achieving ∥A∥E∞, so

that TE is the unit ball. Then Theorem 3.4 applies; because of the transformation, we

need to make sure that in the transformed space the vector discrepancy is low in a set of

directions different from the standard basis. This is where it is crucial that Theorem 3.4

gives an upper bound on µ(A), rather than merely on the vector discrepancy. While, on

the face of things, this argument only gives an upper bounds on the vector discrepancy

of A, it in fact also works for any submatrix as well, because if E contains all columns

of A, it also contains all the columns of any submatrix of A. This simple observation

is crucial to the success of our arguments.

To show that ∥A∥E∞ also gives a lower bound on hvdisc(A), we analyze the convex

dual of the optimization problem defining ∥A∥E∞. We can transform dual certificates

for this problem to dual certificates for vector discrepancy of some submatrix of A.

The dual of the problem of minimizing ∥E∥∞ over ellipsoids E containing the columns

of A is a problem of maximizing the nuclear norm (i.e. the sum of singular values)

over re-weightings of the columns and rows of A. To get dual certificates for vector

discrepancy for some submatrix, we need to be able to extract a submatrix with a large

least singular value from a matrix of large nuclear norm. We accomplish this using the

restricted invertibility principle of Bourgain and Tzafriri [30]: a powerful theorem from

functional analysis which states, roughly, that any matrix with many approximately

equal singular values contains a large well-conditioned submatrix. Using a constructive

proof of the theorem by Spielman and Srivastava [137], we can also find the well-

conditioned submatrix in deterministic polynomial time; this gives us a submatrix of A

on which hereditary vector discrepancy is approximately maximized.
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Theorem 4.1 immediately implies a O(log2m) approximation of herdisc via Corol-

lary 3.2. However, we can improve this bound to an O(log3/2m) approximation:

Theorem 4.2. There exists a polynomial time algorithm that approximates herdisc(A)

within a factor of O(log3/2m) for any m× n matrix A. Moreover, the algorithm finds

a submatrix AJ of A, such that herdisc(A) ≤ O(log3/2m) vecdisc(AJ).

To prove Theorem 4.2, we retain the same lower bound on hereditary discrepancy,

but prove a new upper bound. Rather than bounding vector discrepancy from above in

terms of ∥A∥E∞, and then bounding discrepancy in terms of vector discrepancy, we give

a direct upper bound on discrepancy in terms of ∥A∥E∞. For this purpose, we use a

general form of Banaszczyk’s upper bound for the Komlós problem that we mentioned

in Chapter 3. Banaszczyk’s general result [9] shows that for any convex body K of

large Gaussian volume, and a matrix A with columns of at most unit Euclidean norm,

there exists a x ∈ {−1, 1}n such that Ax ∈ CK for a constant C. We use this theorem

analogously to the way we used Theorem 3.4: we find a linear transformation T that

maps the ellipsoid E achieving ∥A∥E∞ to the unit ball, and we specify a body K such

that if some ±1 combination of the columns of TA is in K, then the corresponding

combination of the columns of A is in the infinity ball scaled by O(
√
logm).

Lovász, Spencer and Vesztergombi [93] defined the following quantity, commonly

called the determinant lower bound :

detlb(A) = max
k

max
B

|det(B)|1/k,

where for each k, B ranges over k × k submatrices of A. They proved that detlb(A)

gives a lower bound on hereditary discrepancy.

Theorem 4.3 ([93]). For any matrix A, detlb(A) ≤ 2 herdisc(A).

Matoušek [106] showed that this lower bound is tight up to O(log3/2m). These re-

sults do not immediately yield an approximation algorithm for hereditary discrepancy,

as the determinant lower bound is a maximum over exponentially many quantities and

not known to be efficiently computable. We show that ∥A∥E∞ approximates detlb(A)

up to a factor of O(logm) via a determinant-based version of the restricted invertibility
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principle. We give an elementary self-contained proof of this version of the princi-

ple. This provides also an elementary proof (without using the restricted invertibility

principle) of the lower bound in Theorem 4.2.

In Chapter 5 we give some useful properties of the ellipsoid infinity norm, and we

prove that there exist examples for which our upper and lower on bounds herdisc(A) in

terms of ∥A∥E∞ are tight (such examples were discovered independently by Matoušek.

The properties of ∥ · ∥E∞ will be later used in Chapter 6 to prove upper and lower

bounds on the discrepancy of natural set systems.

4.2 Preliminaries

In this section we review the tools that will be needed in the proof of our approximation

result.

4.2.1 Restricted Invertibility

For a matrix M , we denote by ∥M∥2 = ∥M∥2→2 = σmax(M) the spectral norm of

M and ∥M∥HS =


i σ
2
i (M) =


i,j a

2
i,j the Hilbert-Schmidt (or Frobenius) norm

of M . Recall that the ℓ1 → ℓ2 norm ∥M∥1→2 is equal to the maximum Euclidean

length of the columns of the matrix M = (ai)
n
i=1, i.e. ∥M∥1→2 = maxx:∥x∥1=1 ∥Mx∥2 =

maxi∈[n] ∥Mi∥2.

A matrix M trivially contains an invertible submatrix of k columns as long as

k ≤ rank(M). An important result of Bourgain and Tzafriri [30] (later strengthened by

Vershynin [146], and Spielman and Srivastava [137]) shows that when k is strictly less

than the robust rank ∥M∥2HS/∥M∥22 of M , we can find k columns of M that form a well-

invertible submatrix. This result is usually called the restricted invertibility principle.

Next we state a tight algorithmic version of it, due to Spielman and Srivastava.

Theorem 4.4 ([137]). Let ϵ ∈ (0, 1), and let M be an m by n real matrix. For any

integer k such that k ≤ ϵ2
∥M∥2HS

∥M∥22
there exists a subset J ⊆ [n] of size |J | = k such that

σmin(MJ)
2 ≥ (1− ϵ)2

∥M∥2HS
n . Moreover, J can be computed in deterministic polynomial

time.
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We will need the following weighted version of Theorem 4.4, which can be proved

by a slight modification of the argument of Spielman and Srivastava.

Theorem 4.5. Let ϵ ∈ (0, 1), let M be an m × n real matrix, and let W be an n × n

diagonal matrix such that W ≽ 0 and tr(W ) = 1. For any integer k such that k ≤

ϵ2
∥MW 1/2∥2HS

∥MW 1/2∥22
there exists a subset J ⊆ [n] of size |J | = k such that σmin(MJ)

2 ≥

(1− ϵ)2∥MW 1/2∥2HS. Moreover, J can be computed in deterministic polynomial time.

For completeness, we also give a reduction from Theorem 4.5 to Theorem 4.4. The

reduction is based on the following simple lemma.

Lemma 4.1. Let W ≽ 0 be a diagonal matrix with rational entries, such that tr(W ) =

1. Then for any m by n matrix M , there exists a m × ℓ matrix L such that LLᵀ =

ℓMWMᵀ. Moreover, all columns of L are columns of M .

Proof. Let ℓ be the least common denominator of all diagonal entries of W , i.e. ℓW = D

for an integral diagonal matrix D. Denote the j-th column of M by vj , and let L be a

matrix with djj copies of the j-th column of vj . Clearly,

LLᵀ =
n

j=1

djjvjv
ᵀ
j = MDMᵀ = ℓAWAᵀ.

Observe, finally, that the number of columns of L is equal to
n

j=1 djj = ℓ
n

j=1wjj = ℓ,

since tr(W ) = 1 by assumption.

Proof. Proof of Theorem 4.5 By introducing a tiny perturbation to W , we can make it

rational while changing ∥MW 1/2∥HS and ∥MW 1/2∥2 by an arbitrarily small amount.

Therefore, we may assume that W is rational. Then, by Lemma 4.1, there exists a

matrix L with ℓ columns all of which are columns of M , such that LLᵀ = ℓMWMᵀ.

Let k be an integer such that

k ≤ ϵ2
∥MW 1/2∥2HS

∥MW 1/2∥22
= ϵ2

tr(MWMᵀ)

λmax(MWMᵀ)
= ϵ2

ℓtr(LLᵀ)

ℓλmax(LLᵀ)
= ϵ2

∥L∥2HS

∥L∥22
,

where λmax(MWMᵀ is the largest eigenvalue of MWMᵀ. By Theorem 4.4, there exists

a set J of size k, such that

σmin(LJ)
2 ≥ (1−ϵ)2

∥L∥2HS

ℓ
= (1−ϵ)2

tr(LLᵀ)

ℓ
= (1−ϵ)2tr(MWMᵀ) = (1−ϵ)2∥MW 1/2∥2HS .



51

But since all columns of L are also columns of M , and no column in LJ can be repeated

or otherwise σmin(LJ) = 0, there exists a set K ⊆ [n] of size k such that σmin(MK)2 ≥

(1− ϵ)2∥MW 1/2∥2HS .

We also use an elementary lemma which can be thought of as a version of the

restricted invertibility principle for determinants. This result is much easier to prove.

A similar argument was used in [106].

Lemma 4.2. Let M be an k × n matrix, and let W be an n× n diagonal matrix such

that W ≽ 0 and tr(W ) = 1. Then there exists a k-element set J ⊆ [n] such that

|det(MJ)|1/k ≥

k/e · | det(MWMᵀ)|1/2k.

Proof. Applying the Binet–Cauchy formula to the matrix MW 1/2 and slightly simpli-

fying, we have

det(MWMᵀ) =

J

det(MJ)
2

j∈J

wjj .

Now


J


j∈J wjj ≤ 1

k!

n
j=1wjj

k
= 1

k! , because each term of the left-hand side

appears k!-times on the right-hand side (and the weights wjj are nonnegative and sum

to 1). Therefore

det(MWMᵀ) ≤

max
J

det(MJ)
2


J


j∈J

wjj

≤ 1

k!
max
J

det(MJ)
2.

So there exists a k-element J with

| det(MJ)|1/k ≥ (k!)1/2k| det(MWMᵀ)|1/2k ≥

k/e · | det(MWMᵀ)|1/2k,

where the last inequality follows from the estimate k! ≥ (k/e)k.

4.2.2 Geometry

We review some basic notions from convex geometry.

A convex body is a convex compact subset of Rm. For a convex body K ⊆ Rm, the

polar body K◦ is defined by K◦ = {y : ⟨y, x⟩ ≤ 1 ∀x ∈ K}. A basic fact about polar
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bodies is that for any two convex bodies K and L, K ⊆ L ⇔ L◦ ⊆ K◦. A related

fact is that for any convex bodies K and L, (K ∩ L)◦ = conv{K◦ ∪ L◦}. Moreover, a

symmetric convex body K and its polar body are dual to each other, in the sense that

(K◦)◦ = K.

A convex body K is (centrally) symmetric if −K = K. The Minkowski norm ∥x∥K

induced by a symmetric convex body K is defined as ∥x∥K , min{r ∈ R : x ∈ rK}.

The Minkowski norm induced by the polar body K◦ of K is the dual norm of ∥x∥K

and also has the form ∥y∥K◦ = maxx∈K ⟨x, y⟩. It follows that we can also write ∥x∥K

as ∥x∥K = maxy∈K◦ ⟨x, y⟩. For a vector y of unit Euclidean length, ∥y∥K◦ is the

width of K in the direction of y, i.e. half the Euclidean distance between the two

supporting hyperplanes of K orthogonal to y. For symmetric body K, we denote by

∥K∥ = maxx∈K ∥x∥ the radius of K under the norm ∥ · ∥.

Of special interest are the ℓmp norms, defined for any p ≥ 1 and any x ∈ Rm by

∥x∥p = (
m

i=1 |x|p)
1/p. The ℓm∞ norm is defined for as ∥x∥∞ = maxmi=1 |xi|. The norms

ℓmp and ℓmq are dual if and only if 1
p +

1
q = 1, and ℓm1 is dual to ℓm∞. We denote the unit

ball of the ℓmp norm by Bm
p = {x : ∥x∥p ≤ 1}. As with the unit ball of any norm, Bm

p

is convex and centrally symmetric for p ∈ [1,∞].

An ellipsoid in Rm is the image of the ball Bm
2 under an affine map. All ellipsoids

we consider are symmetric, and therefore, are equal to an image FBm
2 of the ball Bm

2

under a linear map F . A full dimensional ellipsoid E = FBd
2 can be equivalently defined

as E = {x : xᵀ(FF ᵀ)−1x ≤ 1}. The polar body of a symmetric ellipsoid E = FBd
2 is

the ellipsoid E◦ = {x : xᵀFF ᵀx ≤ 1}. It follows that for E = FBm
2 and for any x,

∥x∥E =

xᵀ(FF ᵀ)−1x and for any y, ∥y∥E◦ =


yᵀ(FF ᵀ)y.



53

4.2.3 Convex Duality

Here we review the theory of Lagrange duals for convex optimization problems. Assume

we are given the following optimization problem:

Minimize f0(x) (4.1)

s.t.

∀1 ≤ i ≤ m : fi(x) ≤ 0. (4.2)

The Lagrange dual function associated with (4.1)–(4.2) is defined as g(y) = infx f0(x)+m
i=1 yifi(x), where the infimum is over the intersection of the domains of f1, . . . , . . . fm,

and y ∈ Rm, y ≥ 0. Since g(y) is the infimum of affine functions, it is a concave upper-

semicontinuous function.

For any x which is feasible for (4.1)–(4.2), and any y ≥ 0, g(y) ≤ f0(x). This fact is

known as weak duality. The Lagrange dual problem is defined as

Maximize g(y) s.t. y ≥ 0. (4.3)

Strong duality holds when the optimal value of (4.3) equals the optimal value of (4.1)–

(4.2). Slater’s condition is a commonly used sufficient condition for strong duality. We

state it next.

Theorem 4.6 (Slater’s Condition). Assume f0, . . . , fm in the problem (4.1)–(4.2) are

convex functions over their respective domains, and for some k ≥ 0, f1, . . . , fk are affine

functions. Let there be a point x in the relative interior of the domains of f0, . . . , fm,

so that fi(x) ≤ 0 for 1 ≤ i ≤ k and fj(x) < 0 for k + 1 ≤ j ≤ m. Then the minimum

of (4.1)–(4.2) equals the maximum of (4.3), and the maximum of (4.3) is achieved if

it is finite.

For more information on convex programming and duality, we refer the reader to

the book by Boyd and Vandenberghe [31].

4.3 Ellipsoid Upper Bounds on Discrepancy

In this section we show that ellipsoids of small infinity norm provide upper bounds on

both hereditary vector discrepancy and hereditary discrepancy. Giving such an upper
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bound is in general challenging because it must hold for all submatrices simultaneously.

The proofs use Theorem 3.4, and Banaszczyk’s general vector balancing result, stated

next.

Theorem 4.7 ([9]). There exists a universal constant C such that the following holds.

Let A be an m by n real matrix such that ∥A∥1→2, and let K be a convex body in

Rm such that Pr[g ∈ K] ≥ 1/2 where g ∈ Rm is a standard m-dimensional Gaussian

random vector, and the probability is taken over the choice of g. Then there exists

x ∈ {−1, 1}n such that Ax ∈ CK.

We start our argument with the main technical lemmas.

Lemma 4.3. Let A = (aj)
n
j=1 ∈ Rm×n, and let F ∈ Rm×m be a rank m matrix

such that ∀j ∈ [n] : aj ∈ E = FBm
2 . Then there exists a matrix X ≽ 0 such that

∀j ∈ [n] : Xjj = 1 and AXAᵀ ≼ FF ᵀ.

Proof. Observe that, aj ∈ E ⇔ F−1aj ∈ Bm
2 . This implies ∥F−1A∥1→2 ≤ 1, and, by

Theorem 3.4, there exists an X with Xjj = 1 for all j such that (F−1A)X(F−1A)ᵀ ≼ I.

Multiplying on the left by F and on the right by F ᵀ, we have AXAᵀ ≼ FF ᵀ, and this

completes the proof.

Lemma 4.3 is our main tool for approximating hereditary vector discrepancy. By the

relationship between vector discrepancy and discrepancy established by Bansal (Corol-

lary 3.2), this is sufficient for a poly-logarithmic approximation to hereditary discrep-

ancy. However, to get tight upper bounds on discrepancy (and improved approximation

ratio), we give a direct argument using Banaszczyk’s theorem.

Lemma 4.4. Let A = (aj)
n
j=1 ∈ Rm×n, and let F ∈ Rm×m be a rank m matrix such

that ∀j ∈ [n] : aj ∈ E = FBm
2 . Then, for any set of vectors v1, . . . , vk ∈ Rm, there

exists x ∈ {±1}n such that ∀i ∈ [k] : |⟨Ax, vi⟩| ≤ C

(vᵀi FF ᵀvi) log k for a universal

constant C.

Proof. Let P , {y : |⟨y, vi⟩| ≤


vᵀi FF ᵀvi ∀i ∈ [k]}. We need to prove that there

exists an x ∈ {−1, 1}n such that Ax ∈ (C
√
log k)P for a suitable constant C. Set
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a1
a2

a3

a4
a5

E = FB2

P

0

F−1a1

F−1a2 F−1a3

F−1a4

F−1a5B2

K = F−1P

0

Figure 4.1: A linear transformation allows to apply Banaszczyk’s theorem.

K , F−1P . To show that there exists an x such that Ax ∈ (C
√
log k)P , we will show

that there exists an x ∈ {−1, 1}n such that F−1Ax ∈ (C
√
log k)K. For this, we will

use Theorem 4.7. As in the proof of Lemma 4.3, ∥F−1A∥1→2 ≤ 1. To use Theorem 4.7,

we also need to argue that for a standard Gaussian g, Pr[g ∈ (C
√
log k)K] ≥ 1

2 .

For an intuitive explanation of the proof, see Figure 4.1. When the vectors vi are

unit length, the quantity


vᵀi FF ᵀvi is just half the width of E in the direction of vi,

and the bounding halfspaces of the polytope P are supporting hyperplanes of E. It

follows that P contains E, which contains the columns of A. The map F−1 transforms

E to a ball Bm
2 , and P to the polytope K which contains Bm

2 . The lower bound

Pr[g ∈ (C
√
log k)K] ≥ 1

2 follows from standard facts about Gaussians: either Sidak’s

lemma, or the Chernoff bound.

Let us first derive a representation of K as the intersection of slabs:

tK = tF−1P = {tF−1y : |⟨y, vi⟩| ≤

vᵀi FF ᵀvi ∀i ∈ [k]}

= {z : |⟨Fz, vi⟩| ≤ t

vᵀi FF ᵀvi ∀i ∈ [k]}

= {z : |⟨z, F ᵀvi⟩| ≤ t

vᵀi FF ᵀvi ∀i ∈ [k]}.

Let g be a standard m-dimensional Gaussian vector. Then Eg|⟨g, F ᵀvi⟩|2 = viFF ᵀvi; by

standard concentration bounds, Pr[|⟨g, F ᵀvi⟩|2 > t2(viFF ᵀvi)] < exp(−t2/2). Setting

t =
√
2 ln 2k and taking a union bound over all i ∈ [k] gives us that Pr[g ̸∈

√
2 ln 2k K] <

1/2. By Theorem 4.7, this implies that there exists an x ∈ {−1, 1}n such that F−1Ax ∈

C
√
2 ln 2k K, and, by multiplying on both sides by F , it follows that Ax ∈ C

√
2 ln 2k P .
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The property that all columns of a matrix A are contained in E is hereditary : if it

is satisfied for A, then it is satisfied for any submatrix of A. This elementary fact lends

the power of Lemmas 4.3 and 4.4: the bound given by ellipsoids is universal in the

sense that the discrepancy bound for any direction vi holds for all submatrices AJ of A

simultaneously. This fact makes it possible to upper bound hereditary discrepancy in

arbitrary norms, and in the rest of the chapter we do this for ℓm∞, which is the norm of

interest for standard definitions of discrepancy. We consider ellipsoids E that contain

the columns of A and minimize the quantity ∥E∥∞: the largest ℓ∞ norm of the points

of E. Note that ∥E∥∞, for an ellipsoid E = FBm
2 , can be written as

∥E∥∞ = max
x∈E,y:∥y∥1=1

⟨x, y⟩ = max
y:∥y∥1=1

∥y∥E◦ = max
i∈[n]


eᵀiFF ᵀei, (4.4)

where the first identity follows since ℓ1 is the dual norm to ℓ∞, and the final identity

follows from the formula for ∥ · ∥E◦ and the fact that a convex function over the ℓ1 ball

is always maximized at a vertex, i.e. a standard basis vector ei (ei has 1 in the i-th

coordinate and 0s everywhere else). The next definition and theorem give our main

upper bound on hereditary (vector) discrepancy, which is in terms of ∥E∥∞.

Definition 4.1. For a matrix A = (ai)
n
i=1 ∈ Rm×n, the ellipsoid-infinity norm of A is

defined as

∥A∥E∞ = min{∥E∥∞ : ai ∈ E ∀i ∈ n}.

For a set system S with incidence matrix A, we define ∥S∥E∞ = ∥A∥E∞.

Theorem 4.8. For any matrix A ∈ Rm×n, hvdisc(A) ≤ ∥A∥E∞, and herdisc(A) =

O(
√
logm) · ∥A∥E∞.

Proof. Let ϵ ≥ 0 be arbitrarily small and let F be a rank m matrix such that the

ellipsoid E = FBm
2 contains the columns of A and satisfies ∥E∥∞ ≤ ∥A∥E∞ + ϵ. Let

AJ be an arbitrary submatrix of A (J ⊆ [n]). Since all columns of A are contained

in E, this holds for all columns of AJ as well, and by Lemma 4.3, we have that there

exists X ≽ 0 with Xjj = 1 for all j ∈ J , and AJXAᵀ
J ≼ FF ᵀ. Therefore, for all i ∈ [m],

eᵀiAJXAᵀ
Jei ≤ eiFF ᵀei ≤ ∥E∥2∞, by (4.4). Since J was arbitrary and ϵ can be made
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as small we as we like, this implies the bound on hvdisc(A). To bound herdisc(A), in

Lemma 4.4 set k = m and vi = ei for i ∈ [m] and ei the i-th standard basis vector.

4.4 Lower Bounds on Discrepancy

In Section 4.3 we showed that the hereditary (vector) discrepancy of a matrix A can be

bounded from above in terms of the ∥A∥E∞. In this section we define ∥A∥E∞ as a convex

optimization problem, and show that it provides lower bounds for discrepancy as well.

We use convex duality and the restricted invertibility theorem for this purpose. The

lower bound we derive is new in discrepancy theory and we give further applications of

it in Chapter 6.

4.4.1 The Ellipsoid Minimization Problem and Its Dual

Recall that for a block matrix

X =

 A B

Bᵀ C

 ,

the Schur complement of an invertible block C in X is A − BᵀC−1B. When C ≻ 0,

X ≽ 0 if and only if A−BᵀC−1B ≽ 0.

To formulate the problem of minimizing ∥E∥∞ = maxx∈E ∥x∥∞ as a convex op-

timization problem we need the following well-known lemma, which shows that the

matrix inverse is convex in the PSD sense. We give a proof for completeness.

Lemma 4.5. For any two m × m matrices X ≻ 0 and Y ≻ 0 and any α ∈ [0, 1],

(αX + (1− α)Y )−1 ≼ αX−1 + (1− α)Y −1.

Proof. Define the matrices

U =

 X−1 I

I X

 V =

 Y −1 I

I Y

 .

The Schur complement of X in U is 0, and therefore U ≽ 0, and analogously V ≽ 0.

Therefore αU + (1 − α)V ≽ 0, and the Schur complement of αX + (1 − α)Y in αU +

(1−α)V is also positive semidefinite, i.e. αX−1+(1−α)Y −1− (αX+(1−α)Y )−1 ≽ 0.

This completes the proof, after re-arranging terms.
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Consider a matrix A = (aj)
n
j=1 ∈ Rm×n of rank m. Let us formulate ∥A∥E∞ as a

convex minimization problem. The problem is defined as follows

Minimize t s.t. (4.5)

X ≻ 0 (4.6)

∀i ∈ [m] : eᵀiX
−1ei ≤ t (4.7)

∀j ∈ [n] : aᵀjXaj ≤ 1. (4.8)

Lemma 4.6. For a rank m matrix A = (aj)
n
j=1 ∈ Rm×n, the optimal value of the

optimization problem (4.5)–(4.8) is equal to ∥A∥E∞. Moreover, the objective function

(4.5) and constraints (4.7)–(4.8) are convex over t ∈ R and X ≻ 0.

Proof. Let λ be the optimal value of (4.5)–(4.8). Given a feasible X for (4.5)–(4.8),

set E = X−1/2Bm
2 (this is well-defined since X ≻ 0). Then for any j ∈ [n], ∥aj∥E =

aᵀjXaj ≤ 1 by (4.8), and, therefore, aj ∈ E. Also, by (4.4), ∥E∥2∞ = maxmi=1 e
ᵀ
iXei ≤ t.

This shows that ∥A∥E∞ ≤ λ. In the reverse direction, let E = FBm
2 be such that

∀j ∈ [n] : aj ∈ E. Then, because A is full rank, F is also full rank and invertible, and

we can define X = (FF ᵀ)−1 and t = ∥E∥2∞. Analogously to the calculations above, we

can show that X and t are feasible, and therefore λ ≤ ∥A∥E∞.

The objective function and the constraints (4.8) are affine, and therefore convex.

To show (4.7) are also convex, let X1, t1 and X2, t2 be two feasible solutions and let

α ∈ [0, 1]. Then, Lemma 4.5 implies that for any i, eᵀi (αX1 + (1 − α)X2)
−1ei ≤

αX−1
1 + (1− α)X−1

2 ≤ αt1 + (1− α)t2, so constraints (4.7) are convex as well.

The Schatten 1-norm of a matrix M , also known as the trace norm or the nuclear

norm, is equal to ∥M∥S1 =


i σi(M) = tr((MMᵀ)1/2), where X1/2 denotes the pos-

itive semidefinite root of the matrix X ≽ 0. The dual of (4.5)–(4.8) is a problem of

maximizing the nuclear norm over re-weightings of the columns and rows of A. Before

we prove this fact, let us cite a theorem from convex analysis, which will be used in our

proof.

Lemma 4.7 (Corollary 7.5.1. in [124]). Let f : Rn → R∪{−∞} be an upper-semicontinuous

concave function. Then for any x and y in the effective domain of f (i.e. f(x), f(y) >
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−∞),

f(x) = lim
λ↑1

f(λx+ (1− λ)y).

Lemma 4.7 states that an upper semi-continuous concave function is continuous

along any segment in its effective domain. More general statements are known, but we

will not need them.

We now state the dual characterization of (4.5)–(4.8).

Theorem 4.9. Let A = (aj)
n
j=1 ∈ Rm×n be a rank m matrix. Then,

∥A∥2E∞ =max ∥P 1/2AQ1/2∥2S1
s.t. (4.9)

tr(P ) = tr(Q) = 1 (4.10)

P,Q ≽ 0;P,Q diagonal. (4.11)

Proof. We shall prove the theorem by showing that the convex optimization problem

(4.5)–(4.8) satisfies Slater’s condition, and its Lagrange dual is equivalent to (4.9)–

(4.11). Let us first verify Slater’s condition. We define the domain for constraints

(4.7) as the open cone {X : X ≻ 0}, which makes the constraint X ≻ 0 implicit. Let

d = ∥A∥1→2, X = 1
dI, and t = d+ε for some ε > 0. Then the affine constraints (4.8) are

satisfied exactly, and the constraints (4.7) are satisfied with slack since ε > 0. Moreover,

by Lemma 4.6, all the constraints and the objective function are convex. Therefore,

(4.5)–(4.8) satisfies Slater’s condition, and consequently strong duality holds.

The Lagrange dual function for (4.5)–(4.8) is by definition

g(p, r) = inf
t,X≻0

t+
m
i=1

pi(e
ᵀ
iX

−1ei − t) +

n
j=1

rj(a
ᵀ
jXaj − 1),

with dual variables p ∈ Rm and r ∈ Rn, p, r ≥ 0. Equivalently, writing p as a diagonal

matrix P ∈ Rm×m, P ≽ 0, r as a diagonal matrix R ∈ Rn×n, R ≽ 0, we have

g(P,R) = inft,X≻0 t+ tr(PX−1)− tr(tP ) + tr(ARAᵀX)− tr(R). If tr(P ) ̸= 1, then

g(P,R) = −∞, since we can take t to −∞ while keeping X fixed. On the other hand,

for tr(P ) = 1, the dual function simplifies to

g(P,R) = inf
X≻0

tr(PX−1) + tr(ARAᵀX)− tr(R). (4.12)



60

Since X ≻ 0 implies X−1 ≻ 0, g(P,R) ≥ −tr(R) > −∞ whenever tr(P ) = 1. Therefore,

the effective domain {(P,R) : g(P,R) > −∞} of g(P,R) is the set of pairs of diagonal

non-negative matrices (P,R) such that tr(P ) = 1.

Let us first consider the case when P and ARAᵀ are both invertible. After differen-

tiating the right hand side of (4.12) with respect to X, we get the first-order optimality

condition

X−1PX−1 = ARAᵀ. (4.13)

Multiplying by P 1/2 on the left and the right and taking square roots gives the equiv-

alent condition P 1/2X−1P 1/2 = (P 1/2ARAᵀP 1/2)1/2. This equation has a unique so-

lution, since P and ARAᵀ were both assumed to be invertible. Since tr(PX−1) =

tr(P 1/2X−1P 1/2) and also, by (4.13), tr(ARAᵀX) = tr(X−1P ) = tr(PX−1), we sim-

plify g(P,R) to

g(P,R) = 2tr((P 1/2ARAᵀP 1/2)1/2)− tr(R) = 2∥P 1/2AR1/2∥S1 − tr(R). (4.14)

We will now use Lemma 4.7 to argue that equation (4.14) holds also when P and and

ARAᵀ are not invertible. Fix any non-negative diagonal matrices P and R such that

tr(P ) = 1 (i.e. any P and R in the domain of g), and for λ ∈ [0, 1] define P (λ) ,

λP + (1 − λ) 1
mI and R(λ) , λR + (1 − λ)I. Observe that for any λ ∈ [0, 1), P (λ)

is invertible, and, because AAᵀ ≻ 0 by the assumption that A is of full row-rank m,

AR(λ)Aᵀ is also invertible. Then, by Lemma 4.7 and (4.14), we have

g(P,R) = lim
λ↑1

g(P (λ), R(λ)) = lim
λ↑1


2∥P (λ)1/2AR(λ)1/2∥S1 − tr(R(λ))


= 2∥P 1/2AR1/2∥S1 − tr(R).

where the last equality follows since the nuclear norm and the trace function are con-

tinuous.

We showed that (4.5)–(4.8) satisfies Slater’s condition and therefore strong duality

holds, so by Theorem 4.6 and Lemma 4.6, ∥A∥2E∞ = max{g(P,R) : tr(P ) = 1, P,R ≽

0, diagonal}. Let us define new variables Q and c, where c = tr(R) and Q = R/c.

Then we can re-write g(P,R) as

g(P,R) = g(P,Q, c) = 2∥P 1/2A(cQ)1/2∥S1 − tr(cQ) = 2
√
c∥P 1/2AQ1/2∥S1 − c.
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From the first-order optimality condition dg
dc = 0, we see that maximum of g(P,Q, c)

is achieved when c = ∥P 1/2AQ1/2∥2S1
and is equal to ∥P 1/2AQ1/2∥2S1

. Therefore, max-

imizing g(P,R) over diagonal positive semidefinite P and R such that tr(P ) = 1 is

equivalent to the optimization problem (4.9)–(4.11). This completes the proof.

4.4.2 Spectral Lower Bounds via Restricted Invertibility

In this subsection we relate the dual formulations of the min-ellipsoid problem from

Section 4.4.1 to the dual of vector discrepancy. The connection is via the restricted

invertibility principle and gives our main lower bounds on hereditary (vector) discrep-

ancy.

Let us first derive a simple lower bound on vecdisc(A) from the dual (3.12)–(3.15).

Lemma 4.8. For any m × n matrix A, and any m × m diagonal matrix P ≥ 0 with

tr(P ) = 1, we have

vecdisc(A) ≥
√
nσmin(P

1/2A).

Proof. Observe that the solution (P,Q), where Q , σmin(P
1/2A)2I, is feasible for

(3.12)–(3.15). By Proposition 3.2, vecdisc(A)2 ≥ tr(Q) = nσmin(P
1/2A)2.

We define a spectral lower bound based on Lemma 4.8.

specLB(A) ,
n

max
k=1

max
J⊆[n]:|J |=k

max
P

√
kσmin(P

1/2AJ),

where P ranges over positive (i.e. P ≽ 0) m×m diagonal matrices satisfying tr(P ) = 1.

Lemma 4.8 implies immediately that hvdisc(A) ≥ specLB(A).

The next lemma relates the dual characterization of ∥A∥E∞ to the spectral lower

bound

Lemma 4.9. Let M be an m by n real matrix, and let W ≽ 0 be a diagonal matrix such

that tr(W ) = 1 and r , rank MW 1/2. Then there exists a submatrix MJ of M , |J | ≤ r,

such that |J |σmin(MJ)
2 ≥

c2∥MW 1/2∥2S1
(log r)2

, for a universal constant c > 0. Moreover, given

M as input, J can be computed in deterministic polynomial time.
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Proof. By homogeneity of the nuclear norm and the smallest singular value, it suffices

to show that if ∥MW 1/2∥2S1
= 1, then |J |σmin(MJ)

2 ≥ c2

(log r)2
for a set J ⊆ [n] of size

at most r. Let us define M̃ , MW 1/2.

Let Kt , {i ∈ [r] : 2−t−1 ≤ σi(M̃) ≤ 2−t} for an integer 0 ≤ t ≤ log2 r, and

T = {i ∈ [r] : 0 < σi(M̃) ≤ 1
2r}. Then

log2 r
t=0


i∈Kt

σi(M̃) = 1−

i∈T

σi(M̃) ≥ 1/2,

since |T | ≤ r. Therefore, by averaging, there exists a t∗ such that


i∈Kt∗
σi(M̃) ≥

1
2 log2 r

; for convenience, let us define K , Kt∗ , k , |K| ≤ r, and α , 1
2 log2 r

.

Next, we define a suitable k × n matrix with singular values σi, i ∈ K. Let M̃ =

UΣV ᵀ be the singular value decomposition of M̃ , with U and V orthogonal, and Σ

diagonal with σ1(M̃), . . . , σm(M̃) on the main diagonal. Set UK to be the submatrix

of U whose columns are the left singular vectors corresponding to σi(M̃) for i ∈ K,

and define the projection matrix Π , UKUᵀ
K . The nonzero singular values of ΠM̃ =

UKΣKV ᵀ are exatly those σi(M̃) for which i ∈ K, as desired. We have ∥ΠM̃∥S1 ≥ α

by the choice of K, and ∥ΠM̃∥2 ≤ 2α/k because all values of ΠM̃ are within a factor of

2 from each other. Finally, applying Cauchy-Schwarz to the singular values of ΠM̃ , we

have that ∥ΠM̃∥HS ≥ α/k1/2. By Theorem 4.5, applied to M and W with ϵ = 1
2 , there

exists a set J of size r ≥ k ≥ |J | ≥ k/16 such that σmin(ΠMJ)
2 ≥ α2/4k, implying that

|J |σmin(MJ)
2 ≥ |J |σmin(ΠMJ)

2 ≥ 1

64
α2.

Finally, J can be computed in deterministic polynomial time, by Theorem 4.5.

Theorem 4.10. For any rank m matrix A ∈ Rm×n,

∥A∥E∞ = O(logm) hvdisc(A).

Moreover, we can compute in deterministic polynomial time a set J ⊆ [n] such that

∥A∥E∞ = O(logm) vecdisc(AJ).

Proof. Let P and Q be optimal solutions for (4.9)-(4.11). By Theorem 4.9, ∥A∥E∞ =

∥P 1/2AQ1/2∥S1 . Then, by Lemma 4.9, applied to the matrices M = P 1/2A and W = Q,
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there exists a set J ⊆ [n], computable in deterministic polynomial time, such that

specLB(A) ≥

|J |σmin(P

1/2AJ) ≥
c∥P 1/2AQ1/2∥S1

logm
=

c∥A∥E∞
logm

. (4.15)

By a similar argument, but using Lemma 4.2 in the place of Theorem 4.5, we show

that ∥A∥E∞ approximates detlb(A).

Theorem 4.11. There exists a constant C such that for any m×n matrix A of rank r

detlb(A) ≤ ∥A∥E∞ = O(log r) · detlb(A).

Proof. For the inequality detlb(A) ≤ ∥A∥E∞, we first observe that if B is a k × k

matrix, then

|detB|1/k ≤ 1

k
∥B∥S1 (4.16)

Indeed, the left-hand side is the geometric mean of the singular values of B, while the

right-hand side is the arithmetic mean.

Now let B = AI,J be a k × k submatrix of A, with rows indexed by the set I and

columns indexed by the set J , with detlb(A) = |det(B)|1/k. Define P = 1
k diag(1I) and

Q = 1
k diag(1J), where 1I and 1J are, respectively, the indicator vectors of the sets I

and J . By Theorem 4.9,

detlb(A) = |det(B)|1/k ≤ 1

k
∥B∥S1 = ∥P 1/2AQ1/2∥S1 ≤ ∥A∥E∞.

For the second inequality ∥A∥E∞ ≤ O(logm) ·detlb(A), we use a strategy analogous

to the proof of Lemma 4.9. By homogeneity, we can again assume, without loss of

generality, that ∥A∥E∞ = 1. Let P and Q be optimal solutions to (4.9)-(4.11), so that

∥P 1/2AQ1/2∥S1 = 1 by Theorem 4.9. For brevity, let us write Ã , P 1/2AQ1/2, and let

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 be the nonzero singular values of Ã.

By an argument analogous to the one we used in the proof of Lemma 4.9, there is

some integer t such that if we set K , {i ∈ [m] : 2−t−1 ≤ σi < 2−t}, then


i∈K

σi ≥ α ,
1

2 log2 r



64

Let us set k , |K|.

As in Lemma 4.9, we define a k × n matrix with singular values σi, i ∈ K. Let

Ã = UΣV ᵀ be the singular-value decomposition of Ã. Set UK to be the submatrix of U

whose columns are the left singular vectors corresponding to σi for i ∈ K. The singular

values of B , Uᵀ
KÃ = UKΣKV ᵀ are exatly those σi for which i ∈ K, as desired. As all

σi for i ∈ K are within a factor of 2 from each other, we have, by the choice of K,

|det(BBᵀ)|1/2k =

i∈K

σi

1/k
≥ 1

2k


i∈K

σi ≥
1

2k
α.

It remains to relate detBBᵀ to the determinant of a square submatrix of A, and

this is where Lemma 4.2 is applied—actually applied twice, once for columns, and once

for rows.

First we set C , Uᵀ
KP 1/2A; then B = CQ1/2. Applying Lemma 4.2 with C in the

role of M and Q in the role of W , we obtain a k-element index set J ⊆ [n] such that

|det(CJ)|1/k ≥

k/e · | det(BBᵀ)|1/2k.

Next, we set DJ , P 1/2AJ , and we claim that det(Dᵀ
JDJ) ≥ (detCJ)

2. Indeed, we have

CJ = Uᵀ
KDJ , and, since U is an orthogonal transformation, (UᵀDJ)

ᵀ(UᵀDJ) = Dᵀ
JDJ .

Then, by the Binet–Cauchy formula,

det(Dᵀ
JDJ) = det((UᵀD)ᵀ(UᵀD)) =


L

det(Uᵀ
LDJ)

2

≥ det(Uᵀ
KDJ)

2 = (detCJ)
2.

The next (and last) step is analogous. We have Dᵀ
J = Aᵀ

JP
1/2, and so we apply

Lemma 4.2 with Aᵀ
J in the role ofM and P in the role ofW , obtaining a k-element subset

I ⊆ [m] with | detAI,J |1/k ≥

k/e · | det(Dᵀ

JDJ)|1/2k (where AI,J is the submatrix of

A with rows indexed by I and columns by J).

Following the chain of inequalities backwards, we have

detlb(A) ≥ | det(AI,J)|1/k ≥


k/e · | det(Dᵀ
JDJ)|1/2k ≥


k/e · | det(CJ)|1/k

≥ (k/e)| det(BBᵀ)|1/2k ≥ 1

2e
α,

and the theorem is proved.
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4.5 The Approximation Algorithm

We are now ready to give our approximation algorithm for hereditary vector discrepancy

and hereditary discrepancy. In fact, the algorithm is a straightforward consequence of

the upper and lower bounds we proved in the prior sections.

Theorem 4.12. Given a real matrix A ∈ Rm×n, ∥A∥E∞ can be approximated to within

any degree of accuracy in deterministic polynomial time, and satisfies the inequalities

1

O(logm)
∥A∥E∞ ≤ hvdisc(A) ≤ ∥A∥E∞,

1

O(logm)
∥A∥E∞ ≤ herdisc(A) ≤ O(log1/2m) · ∥A∥E∞,

1

O(logm)
∥A∥E∞ ≤ detlb(A) ≤ ∥A∥E∞.

Moreover, the algorithm finds a submatrix AJ of A, such that 1
O(logm)∥A∥E∞ ≤ vecdisc(AJ).

Proof. We first ensure that the matrix A is of rank m by adding a tiny full rank

perturbation to it, and adding extra columns if necessary1. By making the perturbation

small enough, we can ensure that it affects herdisc(A) and hvdisc(A) negligibly. The

approximation guarantees follow from Theorems 4.8 and 4.10, and S is computed as in

Theorem 4.10.

To compute ∥A∥E∞ in polynomial time, we solve (4.5)–(4.8). By Lemma 4.6, this is

a convex minimization problem, and as such can be solved using the ellipsoid method

up to an ϵ-approximation in time polynomial in the input size and in log ϵ−1 [72]. The

optimal value is equal to ∥A∥E∞ by Lemma 4.6, and, therefore, we can compute an

arbitrarily good approximation to ∥A∥E∞ in polynomial time.

Observe that Theorem 4.12 implies Theorems 4.1 and 4.2.

Bibliographic Remarks

The first polynomial time approximation algorithm for hereditary discrepancy with a

polylogarithmic approximation guarantee was published in [118], and was a corollary

1There are other, more numerically stable ways to reduce to the full rank case, e.g. by projecting A
onto its range and modifying the norms we consider accordingly. We choose the perturbation approach
for simplicity.
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of work in differential privacy. The approach in the current chapter is more direct,

achieves an improved approximation ratio, and make explicit the central quantity of

interest: the ellipsoid infinity norm. The material in the chapter is the result of joint

work with Kunal Talwar, and a preliminary version appears at [116].
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Chapter 5

More on the Ellipsoid Infinity Norm

5.1 Overview

In this chapter we prove that the ellipsoid infinity norm satisfies a number of nice

properties. We show that it is invariant under transposition, satisfies the triangle

inequality (and, therefore, is a matrix norm), and is multiplicative with respect to

tensor products. Moreover, we prove strengthenings of the triangle inequality in some

special cases when the matrices have disjoint support. These properties will be exploited

in Chapter 6, where we use them to give remarkably easy proofs of new and classical

upper and lower bounds on the discrepancy of natural set systems.

We additionally give examples for which each of the upper and lower bounds in

Theorem 4.12 are tight.

5.2 Properties of the Ellipsoid-Infinity Norm

Here we give several useful properties of the ellipsoid infinity norm. These properties

make it possible to reason about the the ellipsoid infinity norm of a complicated matrix

by decomposing it as the sums of simple matrices. Since the ellipsoid infinity norm

approximates hereditary discrepancy, the properties hold approximately for herdisc

too, and we will see a number of applications of them in Chapter 6.

5.2.1 Transposition and Triangle Inequality

Two properties of ∥A∥E∞ that are not obvious from the definition, but follows easily

from Theorem 4.9, are that ∥Aᵀ∥E∞ = ∥A∥E∞ and ∥A + B∥E∞ ≤ ∥A∥E∞ + ∥B∥E∞.

We prove both next.
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Proposition 5.1. For any real matrix ∥A∥E∞ = ∥Aᵀ∥E∞.

Proof. It is easy to see that the nuclear norms ∥M∥S1 and ∥M tr∥S1 are equal. Indeed,

M andMᵀ have the same nonzero singular values, and, therefore, the respective sums of

singular values are also equal. Now, given A, let P , and Q be such that ∥P 1/2AQ1/2∥S1 ,

as in Theorem 4.9. We have

∥A∥E∞ = ∥P 1/2AQ1/2∥S1 = ∥(Q1/2)TAT (P 1/2)T ∥S1 = ∥Q1/2ATP 1/2∥S1 ≤ ∥AT ∥E∞.

The opposite inequality follows symmetrically.

Proposition 5.2. For any two m×n real matrices A,B, ∥A+B∥E∞ ≤ ∥A∥E∞+∥B∥E∞

Proof. Let P,Q be such that ∥P 1/2(A + B)Q1/2∥S1 = ∥A + B∥E∞. Since ∥ · ∥S1 is a

matrix norm and satisfies the triangle inequality (see [24, Sec. IV.2]), we have

∥A+B∥E∞ = ∥P 1/2(A+B)Q1/2∥S1 = ∥P 1/2AQ1/2 + P 1/2BQ1/2∥S1

≤ ∥P 1/2AQ1/2∥S1 + ∥P 1/2BQ1/2∥S1 ≤ ∥A∥E∞ + ∥B∥E∞.

5.2.2 Unions and Direct Sums

The next proposition sometimes strengthens the triangle inequality when the ranges of

the matrices A and B lie in orthogonal coordinate subspaces. Unlike the previous two

propositions, this one appears easier to prove from the definition of ∥ ·∥E∞, rather than

the dual characterization. We recall (4.4), which states that for any ellipsoid E = FBm
2 ,

∥E∥∞ =
m

max
i=1


eᵀiFF ᵀei,

where ei is the i-th standard basis vector.

Proposition 5.3. Let A1, . . . , Ak be real matrices, each with n columns. For the matrix

A =


A1

...

Ak

 ,
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we have

∥A∥E∞ ≤
√
k

k
max
i=1

∥Ai∥E∞.

Proof. Let each Ai have mi rows, and let m , m1 + . . .+mk. Let also Ei = FiB
mi
2 be

the ellipsoid that achieves ∥Ai∥E∞. Define a new ellipsoid E as E , FBm
2 where

F =
√
k



F1 0 . . . 0

0 F2 . . . 0

...
...

. . .
...

0 0 . . . Fk


.

I.e., F is the direct sum of F1, . . . , Fk. It is clear from (4.4) that ∥E∥∞ =
√
kmaxki=1 ∥Ei∥∞.

To finish the proof, we need to show that any column a of A is contained in E. Let Πi be

the projection onto the coordinate subspace corresponding to the rows of Ai. Then, Πia

is a column of Ai. Let us write the ellipsoid E in the form E = {x : xᵀ(FF ᵀ)−1x ≤ 1},

where

(FF ᵀ)−1 =
1

k



(F1F
ᵀ
1 )

−1 0 . . . 0

0 (F2F
ᵀ
2 )

−1 . . . 0

...
...

. . .
...

0 0 . . . (FkF
ᵀ
k )

−1


,

and, analogously, write Ei = {x : xᵀ(FiF
ᵀ
i )

−1x ≤ 1}. By the choice of the Ei, Πia ∈ Ei,

so aᵀΠi(FiF
ᵀ
i )

−1Πia ≤ 1 for all i. It follows that,

aᵀ(FF ᵀ)−1a =
1

k

k
i=1

aᵀΠi(FiF
ᵀ
i )

−1Πia ≤ 1,

and, therefore a ∈ E, as desired. This finishes the proof.

We remark that for the setting of Proposition 5.3, Matoušek [107] proved the

stronger bound

∥A∥E∞ ≤

∥A1∥2E∞ + . . .+ ∥Ak∥2E∞.

An even stronger bound is possible when we take the direct sum of matrices.

Proposition 5.4. If A is the block-diagonal matrix

A =

 A1 0

0 A2

 ,
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where A1 and A2 are real matrices, then then ∥A∥E∞ = max(∥A1∥E∞, ∥A2∥E∞).

Proof. Let, as in the proof of Proposition 5.3, each Ai have mi rows, and let m ,

m1 + m2. Let also Ei = FiB
mi
2 be the ellipsoid that achieves ∥Ai∥E∞. Define a new

ellipsoid E as E , FBm
2 where

F =

 F1 0

0 F2

 .

It is clear from (4.4) that ∥E∥∞ = max{∥E1∥∞, ∥E2∥∞}. To finish the proof, we need

to show that any column a of A is contained in E. Let us write the ellipsoid E in the

form E = {x : xᵀ(FF ᵀ)−1x ≤ 1}, where

(FF ᵀ)−1 =

 (F1F
ᵀ
1 )

−1

0 (F2F
ᵀ
2 )

−1

 ,

and, analogously, write Ei = {x : xᵀ(FiF
ᵀ
i )

−1x ≤ 1}. Notice that for any column a of

A, aᵀ(FF ᵀ)−1a is equal to bᵀ(FiF
ᵀ
i )

−1b for some column b of Ai, i ∈ {1, 2}. By the

choice of Ei, b ∈ Ei, and, therefore,

aᵀ(FF ᵀ)−1a = bᵀ(FiF
ᵀ
i )

−1b ≤ 1.

This finishes the proof.

5.3 Tensor product

Here we show that ∥ · ∥E∞ is multiplicative with respect to tensor products. This fact

is going to prove very useful in analyzing the combinatorial discrepancy of axis-aligned

boxes in Chapter 6.

5.3.1 Properties of Tensor Products

The tensor product of matrices (a.k.a. Kronecker product) exhibits a number of useful

properties with respect to matrix multiplication and addition. In an abstract setting,

these properties are often used as the definition of the tensor product. We list them

next. The properties hold for any complex matrices for which the operations make
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sense given the dimensions; we write them in terms of matrices, but since they hold for

single row or single column matrices, they are valid for vectors as well.

1. Bilinearity

A⊗B +A⊗ C = A⊗ (B + C);

A⊗B + C ⊗B = (A+ C)⊗B.

2. Scaling For any constant c:

c(A⊗B) = (cA)⊗B = A⊗ (cB).

3. Conjugate Transpose

(A⊗B)∗ = A∗ ⊗B∗.

4. Mixed Products

(A⊗B)(C ⊗D) = (AC)⊗ (BD).

The following well-known (and simple) lemma characterizes the singular value de-

composition of tensor products.

Lemma 5.1. For any two matrices A ∈ Cm×n and B ∈ Cp×q, with singular value

decompositions A = UAΣAV
∗
A and B = UBΣBV

∗
B, the matrix A⊗B has singular value

decomposition A⊗B = (UA ⊗ UB)(ΣA ⊗ ΣB)(VA ⊗ VB)
∗.

Proof. The lemma follows easily from the properties of tensor products. We first verify

that the claimed decomposition indeed equals A⊗B:

(UA ⊗ UB)(ΣA ⊗ ΣB)(VA ⊗ VB)
∗ = ((UAΣA)⊗ (UBΣB))⊗ (VA ⊗ VB)

∗

= ((UAΣA)⊗ (UBΣB))⊗ (V ∗
A ⊗ V ∗

B)

= (UAΣAV
∗
A)⊗ (UBΣBV

∗
B) = A⊗B.

Then it remains to verify that this is indeed a singular value decomposition. The matrix

ΣA ⊗ ΣB is easily seen to be diagonal. Also,

(UA ⊗ UB)
∗(UA ⊗ UB) = (U∗

A ⊗ U∗
B)(UA ⊗ UB) = (U∗

AUA)⊗ (U∗
BUB) = I ⊗ I = I,
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and, therefore, UA ⊗ UB is orthonormal. By an analogous argument, VA ⊗ VB is or-

thonormal, and this completes the proof.

5.3.2 Multiplicativity of the Ellipsoid Infinity Norm

Theorem 5.1. For any A ∈ Rm×n and B ∈ Rr×s, ∥A⊗B∥E∞ = ∥A∥E∞∥B∥E∞.

Proof. Let us first prove that ∥A ⊗ B∥E∞ ≤ ∥A∥E∞∥B∥E∞. We can approximate A

and B arbitrarily well by matrices with ranks m and r, respectively; for the rest of

the proof we shall assume that A and B do each have ful row-rank. Let EA = FAB
m
2

achieve ∥A∥E∞, and EB = FBB
r
2 achieve ∥B∥E∞. Consider the matrix F = FA ⊗ FB;

using the mixed product property of the tensor product, we can verify that FF ᵀ =

(FAFA)⊗(FBFB). (FF ᵀ)−1 = (FAF
ᵀ
A)

−1⊗(FBF
ᵀ
B)

−1. Then we can write the ellipsoids

EA, EB, and E = FBmr
2 as

EA = {x : xᵀ(FAF
ᵀ
A)

−1x ≤ 1},

EB = {x : xᵀ(FBF
ᵀ
B)

−1x ≤ 1},

E = {x : xᵀ(FF ᵀ)−1x ≤ 1}.

Each column of A⊗ B is the tensor product a⊗ b of a column a of A and a column b

of B; then, using the mixed product property again,

(a⊗ b)ᵀ(FF ᵀ)−1(a⊗ b) = (aᵀ(FAF
ᵀ
A)

−1a)(bᵀ(FBF
ᵀ
B)

−1b) ≤ 1,

where the last inequality follows since a ∈ EA and b ∈ EB. Therefore, the ellipsoid E

contains the columns of A⊗B, and has infinity norm, by (4.4),

∥E∥∞ = max
i∈[m],j∈[r]

eᵀi,jFF ᵀei,j

= max
i∈[m],j∈[r]

(ei ⊗ ej)
ᵀ(FAF

ᵀ
A ⊗ FBF

ᵀ
B)(ei ⊗ ej)

= (max
i∈[m]

eᵀiFAF
ᵀ
Aei)(max

i∈[r]
eᵀiFBF

ᵀ
Bei) = ∥A∥2E∞∥B∥2E∞

Above ei,j is the standard basis vector corresponding to the pair of coordinates (i, j).

Taking square roots, this proves that ∥A⊗B∥E∞ ≤ ∥A∥E∞∥B∥E∞.
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To prove ∥A ⊗ B∥E∞ ≥ ∥A∥E∞∥B∥E∞, we use the dual characterization in Theo-

rem 4.9. Let PA, QA and PB, QB be such that ∥P 1/2
A AQ

1/2
A ∥S1 = ∥A∥E∞ and ∥P 1/2

B AQ
1/2
B ∥S1 =

∥B∥E∞, as in Theorem 4.9. Then PA ⊗ PB is a non-negative diagonal matrix, and

tr(PA ⊗ PB) =

i,j

(pA)ii(pB)jj = tr(PA)tr(PB) = 1.

Analogously, QA⊗QB is a non-negative diagonal matrix and tr(QA⊗QB) = tr(QA)tr(QB) =

1. It is also straightforward to verify that

(PA ⊗ PB)
1/2(A⊗B)(QA ⊗QB)

1/2 = (P
1/2
A AQ

1/2
A )⊗ (P

1/2
B BQ

1/2
B ).

Let C = P
1/2
A AQ

1/2
A and D = P

1/2
B BQ

1/2
B . Then, to bound ∥A⊗ B∥E∞ from below, it

is enough to show ∥C ⊗D∥S1 = ∥C∥S1∥D∥S1 . Given Lemma 5.1, this is shown by the

following simple calculation

∥C ⊗D∥S1 = tr(ΣC ⊗ ΣD)

=

i,j

σi(C)σj(D)

=


i

σi(C)


i

σi(D)



= ∥C∥S1∥D∥S1 .

The above proves that ∥A ⊗ B∥E∞ ≥ ∥A∥E∞∥B∥E∞, and finished the proof of the

theorem.

5.4 Tight Examples

In this section we give examples for which our bounds in Theorem 4.12 are tight. Both

examples are simple and natural. The lower bounds on discrepancy in terms of the

ellipsoid infinity norm are tight for the incidence matrix of prefix intervals of [n]. The

upper bounds are tight for the incidence matrix of a power set.

5.4.1 The Ellipsoid Infinity Norm of Intervals

Let In be the set system of all initial intervals {1, 2, . . . , i}, i = 1, 2, . . . , n, of [n].

Its incidence matrix is Tn, the n × n matrix with 0s above the main diagonal and 1s
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everywhere else.

It is well known, and easy to see, that herdisc(Tn) = herdisc(In) = 1. Indeed, any

restriction of In is isomorphic to a subset of In, and the coloring χ(i) = (−1)i mod 2

achieves discrepancy 1. This implies that hvdisc(Tn) = 1, since vector discrepancy is a

relaxation of discrepancy. Since the matrices with hereditary discrepancy 1 are exactly

the totally unimodular matrices [66], we also have detlb(Tn) = 1.

We will prove that ∥Tn∥E∞ is of order log n. This shows that the ellipsoid-infinity

norm can be logn times larger than the hereditary discrepancy, as well as the hereditary

vector discrepancy and the determinant lower bound.

Moreover, this example and Theorem 5.1 are the key ingredients in our near-tight

lower bound for Tusnády’s problem in Chapter 6.

Proposition 5.5. For Tn the 0-1 matrix with 1s on the main diagonal and below, we

have ∥Tn∥E∞ = Θ(log n).

The lower bound in Proposition 5.5 can be proved by relating Tn to a circulant

matrix, whose singular values can be estimated using Fourier analysis. Observe that if

we put four copies of Tn together in the following wayTn T ᵀ
n

T T
n Tn

 ,

we obtain a circulant matrix, which we denote by Cn+1,2n; for example, for n = 3, we

have

C4,6 =



1 0 0 1 1 1

1 1 0 0 1 1

1 1 1 0 0 1

1 1 1 1 0 0

0 1 1 1 1 0

0 0 1 1 1 1


.

We show the following technical lemma, which will then imply Proposition 5.5.

Lemma 5.2. For natural numbers s ≤ n, let cs,n be the vector consisting of s ones

followed by n − s zeros, and let Cs,n be the n × n circulant matrix whose jth column
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is the cyclic shift of cs,n by j − 1 positions to the right. Then, for n
s ≥ 4

3 , we have

∥Cs,n∥∗ = Ω(n log s).

Proof. Let ω = e−i2π/n, where i =
√
−1 is the imaginary unit, and let us write C := Cs,n

and c := cs,n. It is well known that the eigenvalues of a circulant matrix with first

column c are the Fourier coefficients ĉ0, . . . , ĉn−1 of c:

ĉj =
s−1
k=0

ωjk =
ωjs − 1

ωj − 1
.

Since C is a normal matrix (i.e., CTC = CCT ), its singular values are equal to the

absolute values of its eigenvalues. Therefore, ∥C∥∗ =
n−1

j=0 |ĉj |, so we need to bound

this sum from below. The sum can be estimated analogously to the well-known estimate

of the L1 norm of the Dirichlet kernel. We give the details of the computation next.

To give a lower bound for |ĉj | (for appropriately chosen values of j), we give a lower

bound for |ωjs − 1| and an upper bound for |ωj − 1|. Let {x} be the fractional part of

a real number x. If 1
8 ≤ { js

n } ≤ 7
8 , then ℜ(ωjs) ≤

√
2
2 , and, therefore, |ωjs − 1| ≥ 2−

√
2

2 .

So, we have the implication

1

8
≤

js

n


≤ 7

8
=⇒ |ĉj | ≥

2−
√
2

2|ωj − 1|
. (5.1)

We have ωj = cos

2πj
n


− i sin


2πj
n


, and, therefore,

|ωj − 1|2 =

cos


2πj

n


− 1

2

+ sin


2πj

n

2

= 2


1− cos


2πj

n


.

From the Taylor approximation of the cosine function, for −π/2 ≤ φ ≤ π/2, 1−cos(φ) ≤

φ2/2. Therefore,

|ωj − 1| ≤


2πj
n , 0 ≤ j ≤ n

4

2π(n−j)
n , 3n

4 ≤ j ≤ n− 1

. (5.2)

Let S be the set of integers j such that 1
8 ≤


js
n


≤ 7

8 . Let further S1 := S ∩ [0, n4 ]

and S2 = S ∩ [3n4 , n− 1]. By (5.1) and (5.2),

n
j=1

|ĉi| ≥
(2−

√
2)n

2π


j∈S1

1

j
+

j∈S2

1

n− j

 .
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Notice that S is the union of disjoint intervals of size at least ⌊3n4s ⌋ ≥ 1, separated by

intervals of size at most ⌈ n
4s⌉. Therefore, for any interval [a, b) where b− a ≥ ⌈ns ⌉+ 1,

|S ∩ [a, b)| = Ω(b− a). We have the estimate


j∈S1

1

j
≥

⌊log2(n/4)⌋−1
t=⌈log2(n/s)⌉

1

2t
· |S ∩ [2t, 2t+1)|

= Ω(log(n)− log(n/s)) = Ω(log s).

An analogous argument shows that


j∈S2

1
n−j = Ω(log s), and this completes the

proof.

Proof of Proposition 5.5. The upper bound ∥Tn∥E∞ = O(log n) can be directly proved

in a number of ways. Here we simply observe that it follows from Theorem 4.12 and

herdisc(A) = 1.

For the lower bound, we can take P = Q = 1
nI in Theorem 4.9, and then it suffices

to show ∥Tn∥S1 = Ω(n log n). We prove this by relating ∥Tn∥S1 to ∥Cn+1,2n∥S1 : since

the nuclear norm is invariant under adding zero rows and columns and transposition,

by the triangle inequality we have ∥Cn+1,2n∥S1 ≤ 4∥Tn∥S1 . The proposition is then

proved by Lemma 5.2.

We remark that the singular values of Tn are in fact exactly known and are equal

to

1

2 sin (2j−1)π
4n+2

,

for j ∈ [n]. One way to show this is to observe that the inverse of TnT
T
n is the matrix

of the second difference operator with 1 in the lower right corner:

2 −1 0 0 0 . . . 0 0 0

−1 2 −1 0 0 . . . 0 0 0

0 −1 2 −1 0 . . . 0 0 0

...
...

...
...

...
. . .

...
...

...

0 0 0 0 0 . . . −1 2 −1

0 0 0 0 0 . . . 0 −1 1


.
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The singular values of this matrix can be computed by deriving a recurrence for the

characteristic polynomial, and observing that it can be as the difference of Chebyshev

polynomials of the second kind.

5.4.2 The Ellipsoid Infinity Norm of Power Sets

It is easy to find matrices A for which detlb(A) = hvdisc(A) = ∥A∥E∞: for example,

take the identity matrix or a Hadamard matrix. The next proposition gives a matrix

A for which herdisc(A) ≥ 1
2


log2(m+ 1)∥A∥E∞.

Proposition 5.6. Let A be the incidence matrix of the power set 2[n], not including

the empty set. Then herdisc(A) ≥ n
2 , while ∥A∥E∞ ≤

√
n.

Proof. By Proposition 5.1, ∥A∥E∞ = ∥Aᵀ∥E∞. But every column of A has ℓ2 norm

at most
√
n, so ∥Aᵀ∥E∞ ≤ ∥

√
n · Bn

2 ∥ =
√
n. On the other hand, for any coloring

x ∈ {−1, 1}n, one of the sets {i : xi = 1} and {i : xi = −1} has cardinality at least n
2 .

Let the row a of A be the indicator vector of this set; then |⟨a, x⟩| ≥ n
2 .

While Propositions 5.5 and 5.6 imply that our analysis of the ellipsoid infinity norm

is tight, there are natural strengthenings of this quantity for a better approximation

guarantee is plausible. For example, the argument that we used to prove Lemma 4.4

also proves the inequality

herdisc(A) ≤ Cmax{Eg∥Fg∥∞ : a1, . . . an ∈ FBm
1 }. (5.3)

for C an absolute constant, g a standard gaussian in Rm, and A the m × n matrix

A = (ai)
n
i=1. It is also straightforward to see that the right hand side is bounded from

above by O(
√
logm)∥A∥E∞ (by the Chernoff bound) and from below by Ω(1)∥A∥E∞

(by the Jensen inequality). We leave the following question open.

Question 3. Is the right hand side of (5.3) efficiently computable? Is it approximable

up to a fixed constant? Does it provide an assymptotically tighter approximation to

herdisc(A) than ∥A∥E∞?
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We remark that any quantity that satisfies Proposition 5.3 (even if the right hand

side is multiplied by a constant) cannot approximate hereditary discrepancy better

than a factor of Ω(log n). The reason is that there exist examples of a pair of set

systems S1,S2 each of hereditary discrepancy 1, whose union S = S1∪S2 has hereditary

discrepancy Ω(log n) [113]. The proof of Proposition 5.3 can be adapted for the quantity

in (5.3), so the best approximation we can hope for is O(log n). These observations

suggest the natural conjecture that hereditary discrepancy may be hard to approximate

within o(log n).

Bibliographic Remarks

The results in this chapter come from joint work with Jǐŕı Matoušek. A preliminary

version is available as [103]. The Fourier analytic proof of Proposition 5.5 was discovered

independently and appears in full for the first time in this thesis.
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Chapter 6

Applications to Discrepancy Theory

6.1 Overview

The properties of the ellipsoid-infinity norm established in Chapter 5 can be seen as

“composition theorems”. I.e. they show us how we can deduce upper and lower bounds

on ∥A∥E∞ for some matrix A by decomposing A into simpler matrices for which the

ellipsoid-infinity norm can be analyzed directly. Since ∥A∥E∞ approximates hereditary

discrepancy, in effect we show how to estimate the hereditary discrepancy of a matrix

(or set system) in terms of the discrepancies of simpler matrices (resp. set systems). In

this chapter we provide a number of examples of this technique. Most prominently, we

show a near-tight lower bound on the discrepancy of axis-aligned boxes in d dimensions.

This nearly settles the high-dimensional version of the Tusnády problem.

6.2 General Results for Discrepancy

The following “composition results” for discrepancy are immediate consequences of the

properties established in Chapter 5 and Theorem 4.12.

To state the first general result, let us recall the definition of the dual set system.

Definition 6.1. For a set system (S, U), the dual set system (S∗,S) has a set S∗
e for

each e ∈ U , defined as S∗
e = {S ∈ S : e ∈ S}.

An easy observation is that if the incidence matrix of S is A, then Aᵀ is the incidence

matrix of S∗. It follows from Theorem 4.12 and Proposition 5.1 that the hereditary

discrepancy of S and S∗ are the same, up to polylogarithmic factors. We state the

result next.
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Theorem 6.1. For any set system S of m sets on a universe of size n, and its dual

S∗,

herdisc(S) = O(log3/2mn) · herdisc(S∗).

This theorem also follows from Matoušek’s result that the determinant lower bound

is nearly tight [106]. There exist set systems for which disc(S) = Ω(logn) · herdisc(S∗).

For example, for a permutation π of [n], let Iπ be the set system of initial intervals

{π1, . . . , π(i)} for all i ∈ [n]. There exist three permutations π1, π2, π3 such that S ,

Iπ1 ∪ Iπ2 ∪ Iπ3 has discrepancy Ω(log n) [113]. On the other hand, each set in S∗ is

isomorphic to the disjoint union of three initial segments of the form {1, . . . , i}. Since

the set system of initial segments I has hereditary discrepancy 1 (see Section 5.4.1), it

follows that S∗ has hereditary discrepancy at most 3.

The following theorem about unions of set systems was also proved by Matoušek

via the determinant lower bound [106]. Here we give a different proof based on the

ellipsoid infinity norm.

Theorem 6.2. Let S =
k

i=1 Si, where S and S1, . . . ,Sk are set systems on the same

universe, and |S| = m. Then

herdisc(S) ≤ O((logm)3/2) ·
√
k

k
max
i=1

herdisc(Si).

Proof. Follows immediately from Theorem 4.12 and Proposition 5.3 applied to the

incidence matrices A of S and Ai of Si, and the observation that |Si| ≤ |S| for all i.

There is an example of two set systems S1 and S2 of hereditary discrepancy 1,

such that S1 ∪ S2 has discrepancy Ω(log n). In fact we can use essentially the same

example as the one mentioned above for dual set systems. Let, again π1, π2, π3 be

three permutations such that the discrepancy of S , Iπ1 ∪ Iπ2 ∪ Iπ3 is Ω(log n), and

define S1 , Iπ1 ∪ Iπ2 and S2 , Iπ3 . The hereditary discrepancy of Iπ3 is equal to

the hereditary discrepancy of the set system I of initial segments, since the two set

systems are isomorphic. As already observed, the hereditary discrepancy of I is 1. The

hereditary discrepancy of Iπ1 ∪ Iπ2 is 1 for any two permutations π1 and π2; this was

first observed by Beck; see e.g. [136, Lecture 5].
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The next general result we state follows from the triangle inequality for the ellipsoid-

infinity norm.

Theorem 6.3. Suppose there exist set systems S1, . . . ,Sk and T1, . . . , Tk such that each

set S in a set system S can be written as

S = ((S1 \ T1) ∪ S2) \ T2) . . .) ∪ Sk) \ Tk,

where Si ∈ Si, Ti ∈ Ti, each set union is on disjoint sets, and each set difference

removes a set from a set that contains it. Then

herdisc(S) ≤ O(log3/2m) ·
k

i=1

(herdisc(Si) + herdisc(Ti)),

where m = |S|.

Proof. Observe that, since at most one set from each Si and Ti is used in the expression

for each S ∈ S, we can assume that |Si|, |Ti| ≤ m, for any i. Then, after re-arranging

and possibly duplicating or removing some sets, we can write

A = A1 −B1 + . . .+Ak −Bk,

where A is the incidence matrix of S and Ai, Bi are the incidence matrices of, re-

spectively, Si and Ti. Then the theorem follows from Theorem 4.12, and the triangle

inequality in Proposition 5.2.

The final general result we state gives upper and lower bounds on the hereditary

discrepancy of products of set systems. Given two set systems (S1, U1 and (S2, U2), the

product set system S1 × S2 is a set system on the Cartesian product U1 × U2 of the

universes, and is defined as

S1 × S2 , {S1 × S2 : S1 ∈ S1, S2 ∈ S2}.

It is straightforward to verify that the incidence matrix of S1×S2 is the tensor (i.e. Kro-

necker) product A1 ⊗A2 of the incidence matrices A1, A2 of S1 and S2.

Product set systems were considered by Doerr et al. [49], where the authors gave an

example in which disc(S1×S2) = 0 for two set systems S1 and S2 of nonzero discrepancy.
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Therefore, no bound of the form disc(S1×S2) ≥ α disc(S1) disc(S2) is possible in general

for α > 0. By contrast, using the ellipsoid-infinity norm we can show approximate

multiplicativity of hereditary discrepancy with respect to the taking products of set

systems. The following theorem is an immediate consequence of Theorems 4.12 and 5.1.

Theorem 6.4. For any two set systems S1 and S2, we have the inequalities

herdisc(S1 × S2) = O(log5/2m) · herdisc(S1) herdisc(S2),

and

herdisc(S1 × S2) = Ω


1

log2m


· herdisc(S1) herdisc(S2),

where m , |S1| · |S2|.

6.3 Tusnády’s Problem

In this section we use the ellipsoid infinity norm to give near tight upper and lower

bounds for the higher-dimensional Tusnády’s Problem, which asks for the discrepancy

of axis-aligned boxes in Rd.

6.3.1 Background

In 1980, Tusnády asked whether every finite set U of points in the plane can be bi-

colored so that no axis-aligned rectangle contains more than a constant number of

points of one color in excess of the other. Let B2 be the set of all axis-aligned rectangles

[a1, b2) × [a2, b2) in the plane, and let B2(P ) , {B ∩ P : B ∈ B2}, where P ⊂ R2 is

a finite set of points. Let disc(N,B2) be the maximum of disc(B2(P )) over all n-point

sets P ⊂ R2. Tusnády’s problem then asks whether disc(N,B2) remains bounded as N

goes to infinity. In 1981, Beck established the transference lemma (Lemma 1.1, which

implies that

disc(N,B2) = O(1) ·D(N,B2),

where D(N,B2) is the Lebesgue-measure discrepancy of N -point sets with respect to

axis-aligned rectangles. Classical work by Schmidt [131], improving on a result by

Roth [126], shows thatD(N,B2) = Ω(logN), which implies that disc(N,B2) = Ω(logN)
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as well. Beck also showed an upper bound of O(log4N), which has subsequently been

improved by Srinivasan [138] to O(log2.5N).

There is a natural generalization of Tusnády’s question to higher dimensions. Let

Bd be the set of all axis-aligned boxes in Rd, i.e. all cross products [a1, b1), . . . , [ad, bd),

and let Bd(P ) = {B ∩ P : B ∈ Bd} be the set system induced by axis aligned boxes

on a finite point set P . The combinatorial discrepancy of axis-aligned boxes in Rd for

size N point sets is denoted disc(N,Bd) and is equal to the maximum of disc(Bd(P ))

over sets P ⊂ Rd, |P | = N . The quantitative, higher-dimensional version of Tusnády’s

problem asks how disc(N,Bd) grows as N → ∞. Using the transference lemma, and

the results of Roth and Schmidt, Beck showed that for any constant d,

disc(N,Bd) = Ω(max{logN, log(d−1)/2N}),

where the constant hidden in the asymptotic notation depends on d.

The problem of determining the worst-case discrepancy of axis-aligned boxes has

been one of the central problems of combinatorial discrepancy theory. After a long

line of work, the current best upper bound is O(logd+0.5N), due to Larsen [89], using

a deep result of Banaszczyk. A slightly weaker bound using Beck’s partial coloring

lemma [20] was proved previously by Matoušek [102]. Nevertheless, the best known

lower bound has remained the one due to Beck cited above, which uses lower bounds

on Lebesgue-measure discrepancy. Closing the significant gap between upper and lower

bounds has been an open problem dating at least as far back as the foundational work

of Beck from 1981.

6.3.2 Tight Upper and Lower Bounds

In this paper, we nearly resolve Tusn’ady’s problem for any constant dimension d, using

an argument that applies directly to combinatorial discrepancy.

Theorem 6.5. The discrepancy of axis-aligned boxes in Rd is bounded as

(logN)d−1

(Cd)d
≤ disc(N,Bd) ≤ (C logN)d+1/2,

for a large enough constant C.
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Our proof of the upper bound is somewhat different, and arguably simpler, than

the one given by Larsen.

Proof of Theorem 6.5. Let Ad ⊆ Bd be the set of all anchored axis-parallel boxes,

i.e. boxes of the form [0, b1)× · · · × [0, bd). Clearly disc(n,Ad) ≤ disc(n,Bd), and since

every box R ∈ Bd can be expressed as a signed combination of at most 2d anchored

boxes, we have disc(N,Bd) ≤ 2d disc(n,Ad).

Let us consider the d-dimensional grid [n]d ⊂ Rd (with N , nd points), and let

Gd,n = Ad([n]
d) be the subsets induced on it by anchored boxes. It suffices to prove

that herdisc(Gd,n) ≥ (c1 logn)d

C1 logN
, for absolute constants c1, C1. For this, in view of Theo-

rem 4.12, it is enough to show that ∥Gd,n∥E∞ ≥ (c1 log n)
d.

Now Gd,n is (isomorphic to) the d-fold product Id
n of the system of initial segments

in {1, 2, . . . , n}, and so has incidence matrix T⊗d
n , where Tn is the lower triangular

binary matrix with 1s on and below the main diagonal. Then, by Theorem 5.1 and

Proposition 5.5,

∥Gd,n∥E∞ = ∥T⊗d
n ∥E∞ = ∥Tn∥dE∞ ≥ (c1 log n)

d.

This finishes the proof of the lower bound. To prove the upper bound, we consider

an arbitrary N -point set P ⊂ Rd. Since the set system Ad(P ) is not changed by a

monotone transformation of each of the coordinates, we may assume P ⊆ [N ]d, and

Ad(P ) is a subset of at most N sets of Gd,N . Hence, by Theorems 4.12 and Theorem 5.1,

and Proposition 5.5, there exist constants C2 and C3 such that

disc(Ad(P )) ≤ C2


logN · ∥Gd,N∥E∞ ≤ C2


logN(C3 logN)d.

Taking C suitable large with respect to 1
c1
, C1, C2, C3 finishes the proof.

6.4 Discrepancy of Boolean Subcubes

Chazelle and Lvov [39, 38] investigated the hereditary discrepancy of the set system

Cd := Bd({0, 1}d), i.e. the set system induced by axis-parallel boxes on the d-dimensional

Boolean cube {0, 1}d. In other words, the sets in Cd are subcubes of {0, 1}d. We can
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specify each set Cv ∈ Cd by a vector v ∈ {0, 1, ∗}, as

Cv = {u ∈ {0, 1}d : vi ̸= ∗ ⇒ ui = vi}.

Unlike for Tusnády’s problem where d was considered fixed, here one is interested in

the asymptotic behavior as d → ∞.

Chazelle and Lvov proved herdisc Cd = Ω(2cd) for an absolute constant c ≈ 0.0477,

which was later improved to c = 0.0625 in [117] (in relation to the hereditary discrepancy

of homogeneous arithmetic progressions). Here we obtain an optimal value of the

constant c:

Theorem 6.6. The system Cd of subcubes of the d-dimensional Boolean cube satisfies

herdisc(Cd) = 2c0d+o(d),

where c0 = log2(2/
√
3) ≈ 0.2075. The same bound holds for the system Ad({0, 1}d) of

all subsets of the cube induced by anchored boxes.

Proof. The number of sets in Cd is 3d, and so, by Theorem 4.12, it suffices to prove

∥Cd∥E∞ = ∥Ad({0, 1}d)∥E∞ = 2c0d.

The system Cd is the d-fold product Cd
1 , and so by Theorem 5.1, ∥Cd∥E∞ = ∥C1∥dE∞.

The incidence matrix of C1 is

A =


1 1

1 0

0 1

 .

To get an upper bound on ∥A∥E∞, we exhibit an appropriate ellipsoid; it is more

convenient to do it for AT , since this is a planar problem. The optimal ellipse containing

the rows of A is {x ∈ R2 : x21+x22−x1x2 ≤ 1}; here is the ellipsoid and the dual matrix:

(1, 0)

(1, 1)(0, 1)

D =

4
3

1
3

1
3

4
3

 .

Hence ∥A∥E∞ ≤ 2/
√
3. The same ellipse also works for the incidence matrix of the

system A1({0, 1}), which is the familiar lower triangular matrix T2.
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There are several ways of bounding ∥T2∥E∞ ≤ ∥A∥E∞ from below. For example,

we can use Theorem 4.9 with

P =

 1
3 0

0 2
3

 , Q =

 2
3 0

0 1
3

 .

One can compute the characteristic polynomial of P 1/2T2Q
1/2 and check that the sin-

gular values are 1√
3
± 1

3 , and hence the nuclear norm is 2/
√
3 as needed.

Alternatively, one can also check the optimality of the ellipse above by elementary

geometry.

6.5 Discrepancy of Arithmetic Progressions

In this section we prove several results on the discrepancy of arithmetic progressions.

Irregularities of distribution with respect to arithmetic progressions have been the focus

of a long line of research dating back at least as far as van der Waerden’s famous

theorem from 1927. Van der Waerden’s theorem implies that for any k, any n large

enough with respect to k, and any coloring χ : [n] → {−1, 1}, there exist an arithmetic

progression on [n] of size k which is monochromatic with respect to χ. This is one

extreme case of imbalanced arithmetic progressions with respect to colorings: we look

for short arithmetic progressions (with respect to n) with maximum discrepancy. At

the other end is the problem of analyzing imbalances in long arithmetic progressions.

This direction was started by the beautiful work of Roth [127]. Roth’s 1/4-theorem

shows that the discrepancy of the set system APn of all arithmetic progressions on [n]

is disc(APn) = Ω(n1/4). After pioneering work by Beck [20] and later improvements,

Matoušek and Spencer [104] showed that Roth’s lower bound is the best possible up to

constants.

We complement these classic results and show that ∥APn∥E∞ = Θ(n1/4). This

implies, via Theorem 4.12, a discrepancy upper bound that is worse than Matoušek and

Spencer’s by a factor of O(
√
log n). Arguably, our proof is simpler. Via Theorem 5.1,

we also get upper and lower bounds on the hereditary discrepancy of multidimensional

arithmetic progressions, which generalize (at the cost of slightly suboptimal bounds)
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results of Doerr et al. [49].

We also consider a subset of APn: the set system HAPn of all homogeneous arith-

metic progressions on [n], i.e. all arithmetic progressions of the type {a, 2a, . . . , ka} for

a ≤ n and k ≤ ⌊n/a⌋. Circa 1932, Erdős asked whether disc(HAPn) = ω(1). This

problem is now known as the Erdős Discrepancy Problem, and stands as a major open

problem in discrepancy theory and combinatorial number theory. Much better discrep-

ancy is possible than for general arithmetic progressions: the coloring χ which takes

value χ(i) = −1 if and only if the last nonzero digit of i in ternary representation is

2 has discrepancy O(log n). As far as lower bounds are concerned, Konev and Lisitsa

recently reported [87] that the discrepancy of HAPn is at least 3 for large enough n,

and this remains the best known lower bound (a lower bound of 2 for n ≥ 12 was well

known).

Via a reduction from the discrepancy of Boolean subcubes we show that the hered-

itary discrepancy of HAPn is at least n1/O(log logn). This is tight up to the constant in

the exponent, as shown by Alon and Kalai [83]. For completeness, we reproduce Alon

and Kalai’s argument, with a slightly different proof using the ellipsoid infinity norm.

In relation to the above mentioned results, it is worth mentioning that arithmetic

progressions are not hereditary, i.e. a restriction of an arithmetic progression on [n]

to some W ⊂ [n] is not necessarily an arithmetic progression. This makes the Erdős

discrepancy problem significantly more challenging than the hereditary discrepancy

question that we essentially resolve.

6.5.1 General Arithmetic Progressions

We prove the following proposition.

Proposition 6.1. ∥AP∥E∞ = Θ(n1/4).

Before embarking on a proof, let us recall a basic tool in algorithms and combina-

torics: the canonical (dyadic) intervals trick.

Definition 6.2. A canonical interval is an interval of the form (a2i, (a + 1)2i] ∩ N,

where a and i are non-negative integers.
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The following lemma is easy, well-known, and remarkably useful.

Lemma 6.1. Any initial interval {1, . . . , j}, can be written as the disjoint union of at

most 1 + ⌈log2 j⌉ canonical intervals, each of different size.

Proof. We prove the lemma by induction on j. The base case j = 1 is trivial, since {1}

is a canonical interval. For the inductive step, assume the lemma is true for all k ≤ j−1;

we will prove that the lemma holds for j under this assumption. Let i = ⌊log2 j⌋. We

can write {1, . . . , j} = {1, . . . , 2i}∪{2i+1, . . . , j}. Notice that the first set is a canonical

interval (for a = 0 and i as chosen above). The second set is an interval of size less

than 2i, since i was chosen maximal so that 2i ≤ j; it follows that j − 2i < j/2. By

shifting the integers {2i + 1, . . . , j} left by 2i, using the inductive hypothesis, and then

shifting right by 2i, we have that {2i +1, . . . , j} can be written as the disjoint union of

at most 1+ ⌈log2(j−2i)⌉ < ⌈log2 j⌉ canonical intervals, all of different sizes. Moreover,

all these intervals must have sizes less than 2i. This finishes the inductive step.

With this basic tool in hand, we are ready to prove the proposition.

Proof of Proposition 6.1. The lower bound ∥APn∥E∞ = Ω(n1/4) is implied by Lovász’s

proof of Roths’s 1/4-theorem via semidefinite programming [94]. Lovász showed that

vecdisc(APn) = Ω(n1/4). By Theorem 4.12, ∥APn∥E∞ ≥ hvdiscAPn = Ω(n1/4).

Next, we prove the upper bound. For an interval I ⊆ [n], let M be the set of all

inclusion-maximal arithmetic progressions in [n]. We claim that

∥M|I∥E∞ ≤
√
2|I|1/4. (6.1)

where |I| , |b− a| is the size of the interval I = [a, b).

Before proving (6.1), let us see why it implies ∥AP∥E∞ = O(n1/4). Let Mi be the

union of the set systemsM|I over all canonical intervals I of size 2i. SinceMi is a union

of set systems with disjoint supports, by Proposition 5.4 and (6.1) ∥Mi∥E∞ ≤ 2
i
4
+ 1

2 .

Every arithmetic progression A on [n] can be written as M ∩ J , where M is a

maximal arithmetic progression and J is an interval in [n]. J can be written as the set

difference of two nested initial intervals J1 ⊂ J2. By Lemma 6.1, J1 and J2 can each be
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written as the disjoint union of canonical intervals of different sizes. Intersecting each

of these canonical intervals with M , we have that

A = (M0 ∪ . . . ∪Mk) \ (M ′
0 ∪ . . . ∪M ′

k),

where k ≤ 1 + ⌈log2 n⌉, Mi,M
′
i ∈ Mi ∪ {∅}, all set unions are disjoint, and M ′

0 ∪

. . . ∪ M ′
k ⊂ M0 ∪ . . . ∪ Mk. The triangle inequality in Proposition 5.2 then gives

∥AP∥E∞ ≤
k

i=0 2 · 2
i
4
+ 1

2 = O(n1/4).

It remains to prove (6.1). Let us split M|I as M′ ∪ M′′, where the arithmetic

progressions in M′ have difference at most |I|1/2, and those in M′′ have difference

larger than |I|1/2. By Proposition 5.3, ∥M|I∥E∞ ≤
√
2max{∥M′∥E∞, ∥M′′∥E∞}, so it

suffices to show that ∥M′∥E∞, ∥M′′∥E∞ ≤ |I|1/4.

Given a difference d, each c ∈ I belongs to exactly one maximal arithmetic progres-

sion with difference d, because such an arithmetic progression is entirely determined

by the congruence class of c mod d. Therefore, each integer in I belongs to at most

|I|1/2 arithmetic progressions in M′, i.e. ∆M′ ≤ |I|1/2. It follows that each column of

the incidence matrix of M′ has ℓ2 norm at most |I|1/4, and, by the definition of the

ellipsoid infinity norm, ∥M′∥E∞ ≤ |I|1/4.

On the other hand, every arithmetic progression in M′′ has size at most |I|1/2,

so each row of the incidence matrix of M′′ has ℓ2 norm at most |I|1/4. Then, by

Proposition 5.1 and the definition of the ellipsoid-infinity norm, we have ∥M′′∥E∞ ≤

|I|1/4, as desired. This implies ∥M|I∥E∞ ≤
√
2|I|1/4, as we argued above, and finishes

the proof.

Proposition 6.1 and Theorem 4.12 imply herdisc(APn) = O(n1/4
√
log n), which is

a factor O(
√
log n) larger than the optimal bound.

6.5.2 Multidimensional Arithmetic Progressions

Doerr, Srivastav, and Wehr [49] considered the discrepancy of the system APd of d-

dimensional arithmetic progressions in [n]d, which are d-fold Cartesian products of

arithmetic progressions. They showed that discAPd = Θ(nd/4).
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Their upper bound was proved by a simple product coloring argument, which does

not apply to hereditary discrepancy (since the restriction of APd to a subset of [n]d

no longer has the structure of multidimensional arithmetic progressions). By Proposi-

tion 6.1 and Theorem 5.1, we have ∥APd∥E∞ = Θ(nd/4) for any constant d, and we

thus obtain the (probably suboptimal) upper bound herdisc(APd) = O(nd/4
√
log n) by

Theorem 4.12.

6.5.3 Homogeneous Arithmetic Progressions

In this subsection we characterize the hereditary discrepancy of homogeneous arithmetic

progressions.

Theorem 6.7. We have herdisc(HAPn) = n1/Θ(log logn).

We first prove the lower bound. The upper bound in was proved by Alon and Kalai;

we reproduce a version of their argument at the end of the section.

Proof of the lower bound in Theorem 6.7. For each positive integer d, we will construct

a set of integers Jd such that the hereditary discrepancy of homogeneous arithmetic

progressions restricted to Jd is lower bounded by the hereditary discrepancy of Cd.

Then the lower bound in Theorem 6.7 will follow from Theorem 6.6.

Let p1,0 < p1,1 < . . . < pd,0 < pd,1 be the first 2d primes. We define Jd to be the

following set of square free integers

Jd = {
d

i=1

pi,ui : u ∈ {0, 1}d}.

In other words, Jd is the set of all integers that are divisible by exactly one prime pi,b

from each pair (pi,0, pi,1) and no other primes. By the prime number theorem1, the

largest of these primes satisfies pd,1 = Θ(d log d). Let n = n(d) be the largest integer

in Jd. The crude bound n(d) = 2O(d log d) will suffice for our purposes. Notice that

d = Ω(log n/ log logn).

There is a natural one to one correspondence between the set Jd and the set {0, 1}d:

to each u ∈ {0, 1}d we associate the integer ju =
d

i=1 pi,ui . By this correspondence, we

1Chebyshev’s assymptotic estimate suffices.
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can think of any coloring χ : {0, 1}d → {−1,+1} as a colorings χ : Jd → {−1,+1}. We

also claim that each set in the set system Cd corresponds to a homogeneous arithmetic

progression restricted to Jd. With any Cv ∈ Cd (where v ∈ {0, 1, ∗}d) associate the

integer av =


i:vi ̸=∗ pi,vi . Observe that for any ju ∈ Bd, av divides ju if and only if

u ∈ Cv. We have the following implication for any coloring χ, any U ⊆ {0, 1}d, and the

corresponding J = {ju : u ∈ U}:

∃Cv ∈ Cd : |


u∈Cv∩U
χ(u)| ≥ D ⇔ ∃a ∈ N : |


j∈J
a|j

χ(j)| ≥ D. (6.2)

Notice again that we treat χ as a coloring both of the elements of {0, 1}d and of the

integers in Jd by the correspondence u ↔ bu. Theorem 6.6 guarantees the existence of

some U such that the left hand side of (6.2) is satisfied with D = 2Ω(d) = n1/O(log logn)

for any χ. The lower bound in Theorem 6.7 follows from the right hand side of (6.2).

For completeness, we also give a version of Alon and Kalai’s upper bound argument.

Proof of the upper bound in Theorem 6.7. We will represent each set in HAPn as the

sum of a logarithmic number of sets from small-degree set systems. The ideas here

are similar to the ones used in the proof of the upper bound in Proposition 6.1, and

canonical intervals will make an appearance again.

Observe that, by Theorem 4.12, it is sufficient to show that ∥HAPn∥E∞ ≤ nC/ log logn

for an absolute constant C. Let M be the set of all inclusion-maximal homogeneous

arithmetic progressions on [n]. We claim that,

∥M∥E∞ ≤

∆M ≤ nC0/2 log logn.

The first inequality is by the definition of ∥M∥E∞. For the second inequality, observe

that the degree ∆M(j) for any j ∈ [n] is equal to the number d(j) of distinct integer

divisors of j. It is well-known that d(j) ≤ nC0/ log logn.

Let us define Mi, for i ∈ {0, . . . , ⌈log2 n⌉}, as the union of the restrictions


I M|I ,

where I runs over canonical intervals of size 2i. Since the ellipsoid-infinity norm is non-

increasing under restrictions, ∥M|I∥E∞ ≤ ∥M∥E∞ ≤ nC0/2 log logn; moreover, Mi is the

union of disjoint restrictions, and so, by Proposition 5.4, ∥Mi∥E∞ ≤ nC0/2 log logn. Each
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set H in HAPn can be written as H ∩ J for some initial interval J . By Lemma 6.1, J

can be written as the disjoint union of canonical intervals of different sizes. Intersecting

each of these interval with H, we have that H can be written as the the disjoint union of

at most one set from each Mi. Therefore, by the triangle inequality (Proposition 5.2),

∥HAPn∥E∞ ≤ (1 + ⌈log2 n⌉)nC0/2 log logn, which is bounded by nC/ log logn for a large

enough constant C.

Bibliographic Remarks

Together with the material in the previous chapter, the near-tight lower bound for the
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Chapter 7

Discrepancy and Differential Privacy

7.1 Overview

7.1.1 The Central Problem of Private Data Analysis

Datasets containing personal information have become common; moreover, as data col-

lection and storage capacity have improved, such datasets have become richer. Some

examples include medical studies, census data, marketing or sociological surveys, friend-

ship or followers data from social networking sites. Performing statistical analysis on

these datasets holds significant promise: the discovered knowledge can be useful for the

life sciences, for policy making, for marketing. Therefore, many such datasets are of

interest to the data mining community. However, analyzing them is limited by concerns

that private information about individuals represented in the data may be disclosed.

Such disclosure can lead to concrete adverse consequences for an individual, for exam-

ple an increase in insurance premiums, or discriminatory actions. Moreover, the threat

of possible disclosure decreases trust in the organization performing the analysis, and

discourages participation in studies, thus hurting the validity of the results. Finally,

class action law suites prompted by disclosure of private information can pose a legal

barrier to conducting further studies. The central question of private data analysis then

is whether it is possible to perform a reasonably accurate analysis of sensitive data while

meaningfully limiting the disclosure of private information.

Many naive approaches to this problem fail due to the abundance of publicly avail-

able information about individuals. For example, declaring a subset of data attributes

as “personally identifying” and removing them from the data is vulnerable to linkage at-

tacks. A prominent example is the Netflix de-anonymization attack [112], which showed
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that the identities of persons in the anonymized Netflix movie ratings dataset can be

recovered by linking the dataset with public Internet Movie Database (IMDb) profiles.

Protecting from re-identification itself is not sufficient; for example if we know that our

neighbor visited a particular doctor’s office, and we receive the anonymized records of

visitors for that day, then we have a very short list of possible diseases that our neighbor

can be suffering from. Yet we have not identified the neighbor in the records. Finally,

restricting analysis to aggregate statistics is also not sufficient, because differencing at-

tacks can be used to infer personal information from simple compositions of aggregate

information. These examples illustrate the difficulty of the private data analysis prob-

lem and the need for formal definitions, that make guarantees in the face of rich and

arbitrary auxiliary information.

Differential privacy [50] is a rigorous mathematical definition introduced to address

these issues. The definition requires that the result of the analysis, as a probability

distribution on possible outputs, remains almost unchanged if a single individual is

added or removed from the data. Semantically, this requirement corresponds to the

following guarantee to any participant: regardless of what other studies have been

performed, and regardless of what public information is available, participating in the

study does not pose a significantly larger privacy threat than not participating. Such

a guarantee encourages participation in the data collection process.

7.1.2 Characterizing Optimal Error

In a seminal paper, Dinur and Nissim [48] showed that there are limitations to the accu-

racy of private analyses of statistical databases, even for very weak notions of privacy.

Imagine that a database D consists of n private bits, each bit giving information about

one individual (e.g. whether the individual tested positive for some disease). Dinur and

Nissim showed that answering slightly more than O(n) random subset sum queries on

D with additive error o(
√
n) per query allows an attacker to reconstruct an arbitrarily

good approximation to D. Thus there is an inherent trade-off between privacy and

accuracy when answering a large number of queries, and our main contribution in this

chapter is a characterization of this trade-off for linear queries, in essentially all regimes
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considered in the literature.

The first step towards our characterization is a new view of Dinur and Nissim’s

reconstruction attack using discrepancy. Assume again that the private database is a

vector of n private bits, one per individual. Assume also that we are given a set system

S of subsets of [n], and each set in the system encodes a subset sum (i.e. counting)

query on D. I.e. for a set S ∈ S, we want to know how many bits in D|S are equal to

1. We will show that if some algorithm answers all queries in S with additive error per

query upper bounded by an appropriate notion of discrepancy, then we can reconstruct

an arbitrarily good approximation to D. The intuition for why this should be the case

is that an adversary can “weed out” databases that are far away from D whenever they

give sufficiently different answers from D on the queries in S. Therefore, the only reason

why an adversary might fail to reconstruct a good approximation to D is that there is

a way for the differences between two far-away databases to balance and cancel each

other out; this kind cancellation however is limited by the discrepancy of S. This new

approach to reconstruction attacks can be used to re-derive Dinur and Nissim’s result

as well as a number of other known and new results. But more importantly, it gives

a general tool to understand privacy-accuracy trade-offs for arbitrary sets of counting

queries.

In order to relate this reconstruction attack to more standard discrepancy notions,

we need to give slightly more power to the adversary. Assume that for some set J ⊂ [n],

we give the adversary the bits Dj for j ̸∈ J . I.e. the adversary is given the knowledge

of the private information of a subset of the individuals. Intuitively, under a reasonable

notion of privacy, the adversary should not be able to use this auxiliary knowledge to

learn the bits Dj for j ∈ J from the output of a private algorithm. An immediate

consequence of the discrepancy-based reconstruction attack we introduce is that if an

algorithm answers all queries in S with additive error per query o(hvdisc(S)), then

there exists some set J such that, given D|[n]\J , the adversary can learn most of DJ

from the output of the algorithm. Recall that hvdisc(S) is equal to herdisc(S) up to

polylogarithmic factors (Corollary 3.2).

As a final step, we show that discrepancy in fact characterizes the necessary and
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sufficient error to answer queries of the above type. As a motivation, let us consider two

edge cases. In one extreme, Dinur and Nissim’s argument (strengthened in [52]) shows

that error Ω(
√
n) is necessary for Θ(n) random subset sum queries in order to achieve

any reasonable notion of privacy. This argument is tight, and there are differentially

private algorithms that achieve error approximately O(
√
n log n)). As a comparison, the

(vector) discrepancy of the corresponding set system of Θ(n) random sets is Ω(
√
n). In

the other extreme, we can achieve significantly better error guarantees and satisfy the

stringent restrictions of differential privacy when the set of queries has a lot of structure.

For example, if all our queries ask about the number of bits in D1, . . . , Dj set to 1 for

some j ∈ [n] (also known as range queries), then we know of private algorithms that

achieve error O(log3/2 n) [53, 35, 152]. As a comparison, the corresponding set system

has hereditary discrepancy 1.

The discussion above suggests that hereditary discrepancy may characterize the

necessary and sufficient error for privately answering subset sum queries up to polylog-

arithmic factor. In fact, we are able to show a striking threshold behavior:

• If an algorithm answers subset sum queries S with error Ω̃(1) ·herdisc(S), then an

adversary can reconstruct most of the private database (given the right auxiliary

information).

• There exists an efficient algorithm which answers all queries S with error Õ(1) ·

herdisc(S), and achieves a strong level of privacy (differential privacy).

The notation Õ, Ω̃ above hides factors polylogarithmic in the size of a natural rep-

resentation of the queries and the database. The efficient algorithm mentioned above is

based on computing an ellipsoid E achieving ∥S∥E∞. The algorithm simply computes

the true answers to the queries and adds Gaussian noise correlated according to E.

7.2 Preliminaries on Differential Privacy

Here we introduce the basic definitions and results from differential privacy that will

be used in the remainder of the chapter.
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7.2.1 Basic Definitions and Composition

A database is defined as a multiset D ∈ Un of n rows from the data universe U of size

|U |. The notation |D| , n denotes the size of the database. Each row represents the

information belonging to a single individual. The universe U depends on the domain;

a natural example to keep in mind is U = {0, 1}d, i.e. each row of the database gives

the values of d binary attributes for some individual.

Two databases D and D′ are neighboring if they differ in the data of at most a

single individual, i.e. |D△D′| ≤ 1.

Differential privacy formalizes the notion that an adversary should not learn too

much about any individual as a result of a private computation. The formal definition

follows.

Definition 7.1 ([50]). A randomized algorithm M satisfies (ε, δ)-differential privacy if

for any two neighboring databases D and D′ and any measurable event S in the range

of M,

Pr[M(D) ∈ S] ≤ eεPr[M(D′) ∈ S] + δ.

Above, probabilities are taken over the internal coin tosses of M.

Differential privacy guarantees to a data owner that allowing her data to be used

for analysis does not risk much more than she would if she did not allow her data to

be used.

Let us remark on the parameters. Usually, ε is set to be a small constant so that

eε ≈ 1+ε, and δ is set to be no bigger than n−2 or even n−ω(1). The case of δ = 0 often

requires different techniques from the case δ > 0; as is common in the literature, we

shall call the two cases pure differential privacy and approximate differential privacy.

An important basic property of differential privacy is that the privacy guarantees

degrade smoothly under composition and are not affected by post-processing.

Lemma 7.1 ([50, 51]). Let M1 and M2 satisfy (ε1, δ1)- and (ε2, δ2)-differential privacy,

respectively. Then the algorithm which on input D outputs the tuple (M1(D),M2(M1(D), D))

satisfies (ε1 + ε2, δ1 + δ2)-differential privacy.
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7.2.2 Query Release

In the query release problem we are given a set Q of queries (called a workload), where

each q ∈ Q is a function q : Un → R. Our goal is to design a differentially private

algorithm M which takes as input a database D and outputs a list of answers to the

queries in Q. We shall call such an algorithm a (query answering) mechanism; this

motivates our choice of the notation M for differentially private algorithms. Here we

treat the important special case of query release for sets of linear queries. A linear

query q is specified by a function q : U → [−1, 1]; slightly abusing notation, we define

the value of the query as q(D) ,


e∈D q(e). When q : U → {0, 1} is a predicate, q(D)

is a counting query : it simply counts the number of rows of D that satisfy the predicate.

7.2.3 Histograms and Matrix Notation

It will be convenient to encode the query release problem for linear queries using matrix

notation. A common and very useful representation of a database D ∈ Un is the

histogram representation: the histogram of D is a vector x ∈ PU (P is the set of non-

negative integers) such that for any e ∈ U , xe is equal to the number of copies of e in

D. Notice that ∥x∥1 = n and also that if x and x′ are respectively the histograms of

two neighboring databases D and D′, then ∥x − x′∥1 ≤ 1 (here ∥x∥1 =


e |xe| is the

standard ℓ1 norm). Linear queries are a linear transformation of x. More concretely,

let us define the query matrix A ∈ [−1, 1]Q×U associated with a set of linear queries

Q by aq,e = q(e). Then it is easy to see that the vector Ax gives the answers to the

queries Q on a database D with histogram x. Notice also that when Q is a set of

counting queries, then A is the incidence matrix of the set system containing the sets

Sq , {e ∈ U : q(e) = 1}.

Since this does not lead to any loss in generality, for the remainder of this chapter

we will assume that databases are given to mechanisms as histograms, and workloads of

linear queries are given as query matrices. We will identify the space of size-n databases

with histograms in the scaled ℓ1 ball BU
1 (n) , {x : ∥x∥1 ≤ n}, and we will identify

neighboring databases with histograms x, x′ such that ∥x−x′∥1 ≤ 1. Definition 7.1 can
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be slightly generalized as follows.

Definition 7.2. A randomized algorithm M satisfies (ε, δ)-differential privacy if for

any two histograms x, x′ ∈ RU such that ∥x− x′∥1 ≤ 1, and any measurable event S in

the range of M,

Pr[M(D) ∈ S] ≤ eεPr[M(D′) ∈ S] + δ.

Probabilities are taken over the internal coin tosses of M.

Definition 7.1 and Definition 7.2 are equivalent when all histograms considered are

integral and non-negative. While all our algorithms will work in a more general setting

in which they can take fractional histograms, all our negative results (i.e. lower bounds

on error) will be for histograms whose coordinates are non-negative integers, and can,

therefore, be interpreted as regular databases.

7.2.4 Measures of Error

In this chapter we study the necessary and sufficient error incurred by differentially

private mechanisms for approximating workloads of linear queries. As our basic notions

of error, we will consider worst-case and average error. Here we define these notions.

For a mechanism M and a subset X ⊆ RU , let us define the worst case error with

respect to the query matrix A ∈ RQ×U as

err(M, X,A) , sup
x∈X

E∥Ax−M(A, x)∥∞,

where the expectation is taken over the random coins of M. Another notion of interest

is average (L2)-error, defined as

err2(M, X,A) , sup
x∈X


E

1

|Q|
∥Ax−M(A, x)∥22

1/2

.

We also write err(M, nBU
1 , A) as err(M, n,A), and err(M,RU , A) as err(M, A).

The optimal error achievable by any (ε, δ)-differentially private algorithm for queries A

and databases of size up to n is

optε,δ(n,A) , inf
M

err(M, n,A),
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where the infimum is taken over all (ε, δ)-differentially private mechanisms. When no

restrictions are placed on the size n of the database, the appropriate notion of optimal

error is

optε,δ(A) , sup
n

optε,δ(n,A) = inf
M

err(M, A),

where the infimum, as before, is over all (ε, δ)-differentially private mechanisms. The

optimal average error opt
(2)
ε,δ (n,A) and opt

(2)
ε,δ (A) are defined analogously using err2.

In order to get tight dependence on the privacy parameter ε in our analyses, we will

use the following relationship between optε,δ(n,A) and optε′,δ′(n,A).

Lemma 7.2. For any ε > 0 and δ < 1, any integer k, and for all δ′ ≥ ekε−1
eε−1 δ,

optε,δ(kn,A) ≥ k optkε,δ′(n,A).

The same holds for opt
(2)
ε,δ .

Proof. Let M be an (ε, δ)-differentially private mechanism. We will use M as a black

box to construct a (kε, δ′)-differentially private mechanism M′ which satisfies the error

guarantee err(M′, n,A) ≤ 1
k err(M, A, kn), which proves the lemma.

On input x satisfying ∥x∥1 ≤ n, the mechanism M′ outputs 1
kM(kx). We need

to show that M′ satisfies (kε, δ′)-differential privacy. Let x and x′ be two neighboring

inputs to M′, i.e. ∥x − x′∥1 ≤ 1, and let S be a measurable subset of the output

M′. Denote p1 = Pr[M′(x) ∈ S] and p2 = Pr[M′(x′) ∈ S]. We need to show that

p1 ≤ ekεp2+δ′. To that end, define x0 = kx, x1 = kx+(x′−x), x2 = kx+2(x′−x), . . .,

xk = kx′. Applying the (ε, δ)-privacy guarantee ofM to each of the pairs of neighboring

inputs x0, x1, x1, x2, . . ., xk−1, xk in sequence gives us

p1 ≤ ekεp2 + (1 + eε + . . .+ e(k−1)ε)δ = ekεp2 +
ekε − 1

eε − 1
δ.

This finishes the proof of privacy for M′. It is straightforward to verify that the errors

of the mechanisms are related as err(M′, n,A) ≤ 1
k2

err(M, A, kn).

We emphasize again that, while the definitions above are stated for general real-

valued histograms, defining err and opt in terms of integer histograms (i.e. taking

err(M, n,A) , err(M, BU
1 ∩ PU , A) and modifying the other definitions accordingly)

does not change the asymptotics of our theorems.
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7.2.5 The Main Result

The following theorem is our main result of this chapter and shows the existence of an

efficient nearly optimal differentially private algorithm.

Theorem 7.1. There exists an (ε, δ)-differentially private algorithm M that runs in

time polynomial in |D|, |Q|, and |U |, and has error err(M, A) = O(log3/2 |Q|


log 1/δ)·

optε,δ(A) for any query matrix A ∈ RQ×A, any small enough ε, and any δ small enough

with respect to ε. Moreover, we have the inequalities

1

O(log |Q|)
1

ε
∥A∥E∞ ≤ optε,δ(A) ≤ O(


(log |Q|)(log 1/δ)) · 1

ε
∥A∥E∞.

Hardt and Talwar [78] proved a theorem analogous to Theorem 7.1 in the δ = 0

case, which requires somewhat different techniques. Their algorithm is a factor of

O(log3/2 |Q|) away from optimal, assuming the hyperplane conjecture from convex ge-

ometry. Subsequently, Bhaskara et al. [23] improved the competitiveness ratio was to

O(log |Q|), and made the result unconditional, using Klartag’s proof of the isomorphic

hyperplane conjecture [86]. We note that, at the cost of a small relaxation in the privacy

guarantee, the algorithm in Theorem 7.1 is significantly simpler and more efficient than

the known nearly optimal algorithms in the δ = 0 case. Indeed, our algorithm simply

computes an ellipsoid E that approximately achieves ∥A∥E∞, and then adds Gaussian

noise correlated to have the shape of E. By contrast, the algorithms of [78, 23] involve

sampling from high-dimensional convex bodies, at a minimum.

7.3 Reconstruction Attacks from Discrepancy

In this section we prove a lower bound on optε,δ(A) in terms of hvdisc(A). The main

result follows.

Theorem 7.2. There exists a constant c, such that for any query matrix A ∈ RQ×U

we have

optε,δ(A) ≥ c

ε
hvdisc(A),

for all small enough ε and any δ sufficiently small with respect to ε.
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We prove the theorem in two steps. First we show that the output of any private

algorithm must be far away from the input in every coordinate. Then we show that

this implies a lower bound on optε,δ(A) for small constant ε and δ via a reconstruction

attack. We finish the proof for all ε and small enough δ using Lemma 7.2.

The first lemma shows that any private algorithm should fail to guess each coordi-

nate of its input with constant probability.

Lemma 7.3. Assume M is an (ε, δ)-differentially private algorithm whose output range

is RW for some W ⊆ U . Let x be uniformly distributed among vectors in {0, 1}U

supported on W , and define x̃ , M(x). Then, for every e ∈ W ,

PrM,x[x̃e ̸= xe] ≥
e−ε − δ

1 + e−ε
.

where the probability is taken over the coin tosses of M and the choice of x.

Proof. For each x ∈ {0, 1}U and some e ∈ U , define x(e) to by

x
(e)
f ,


xf ⊕ 1 f = e

xf f ̸= e

.

Let x̃(e) , M(x(e)). By the definition of (ε, δ)-differential privacy, since ∥x(e)−x∥1 ≤ 1,

for each x we have

PrM[x̃e = xe ⊗ 1] ≥ e−εPrM[x̃(e)e = xe ⊗ 1]− δ.

Observe that when x is distributed uniformly over the vectors in {0, 1}U supported on

W , and e ∈ W , x(e) is distributed identically to x. Then, taking probabilities over the

choice of x, we have

PrM,x[x̃e ̸= xe] = PrM,x[x̃e = xe ⊗ 1]

PrM,x[x̃e = xe] = PrM,x[x̃
(e)
e = x(e)e ] = PrM,x[x̃

(e)
e = xe ⊗ 1]

Combining the above equations, by the law of total probability we conclude that

PrM,x[x̃e ̸= xe] ≥ e−ε(1− PrM,x[x̃e ̸= xe])− δ.

Re-arranging the terms gives the claimed bound.
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The second lemma is the reconstruction result: it shows that if a mechanism has

error substantially less than hvdisc(A), then it can be used to guess its input accurately.

Lemma 7.4. Let A ∈ RQ×U be a query matrix, let W ⊆ U be such that vecdisc(AW ) =

hvdisc(A), and define X , {x ∈ {0, 1}U : xi = 0 ∀e ∈ U \W}. Let M be a mechanism

such that err(M, A,X) ≤ α hvdisc(A). Then, there exists an assignment q : W → R

of non-negative reals to W , and a deterministic algorithm R with range {0, 1}U such

that, for any x supported on W

E


1

q(W )


e∈W

q(e)(x̃e − xe)2 ≤ 2α, (7.1)

where x̃ , R(M(x)), q(W ) ,


e∈W q(e), and the expectation is taken over the ran-

domness of M.

Proof. Recall the dual formulation (3.12)–(3.15) of vector discrepancy. Let P ∈ RQ×Q

and Q ∈ RW×W give an optimal feasible solution for (3.12)–(3.15), i.e. they are diagonal

matrices such that Aᵀ
WPAW ≽ Q, P is non-negative and satisfies tr(P ) = 1, and Q

satisfies hvdisc(A)2 = vecdisc(AW )2 = tr(Q). We claim that Q is non-negative. Indeed,

otherwise we can take W ′ to be the set {e ∈ U : qee > 0}, and the solution P,QW ′,W ′

(i.e. the submatrix of Q given by the rows and columns in W ′) is feasible for (3.12)–

(3.15) and has strictly higher value than vecdisc(AW )2 = hvdisc(A)2, a contradiction.

Let us then define q to be the function that maps e to qee.

On input y, we define R(y) as

R(y) , argmin
x̃∈X

∥Ax̃− y∥∞.

For any x ∈ X, let y , M(x) and x̃ , R(y). By the triangle inequality, we have the

following guarantee:

E∥Ax̃−Ax∥∞ ≤ E∥Ax̃− y∥∞ + E∥y −Ax∥∞.

The second term on the right hand side is bounded by assumption by err(M, A, {0, 1}U ) ≤

α hvdisc(A). The first term satisfies

Emin
x̃

∥AW x̃− y∥∞ ≤ E∥Ax− y∥∞ ≤ err(M, A, {0, 1}U ) ≤ α hvdisc(A),
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since x is one of the possible values for x̃ that the minimum is taken over. Define

z , (x̃ − x)W , and observe that Ax̃ − Ax = AW z since x̃ and x are supported on W .

Observe further that for any v ∈ RQ, since tr(P ) = 1 and P is a non-negative diagonal

matrix,
√
vᵀPv =


q∈Q

pqqv2q ≤ ∥v∥∞.

Indeed, the left hand side of the inequality is the square root of an average of the values

v2q , while the right hand side is the square root of the maximum. Then, using this fact

and Q ≼ Aᵀ
WPAW , we have

E


zᵀQz ≤ E

zᵀAᵀ

WPAW z ≤ E∥AW z∥∞.

Combining the inequalities derived so far, we get E
√
zᵀQz ≤ 2α hvdisc(A) = 2α


tr(Q).

Expanding the terms on both sides of the inequality proves the lemma.

Let us give some interpretation to Lemma 7.4. The right-hand side of (7.1) is

an L2 distance (with respect to weights proportional to q(e)) between x and x̃. We

have that this L2 distances is bounded by 2α, so, if the error of M is much less than

hvdisc(A), then x and x̃ would be proportionally close. In this sense the lemma gives

a reconstruction attack. The requirement that x be supported on W can be simulated

with unrestricted x by giving the reconstruction algorithm R the coordinates of x not

in W .

We are now ready to finish the proof of Theorem 7.2.

Proof of Theorem 7.2. We first show that for ε0 ≤ 1 and δ0 ≤ 1
2e , optε0,δ0(A) ≥

1
2(1+e) hvdisc(A). The theorem will then follow from Lemma 7.2.

Let M be an arbitrary (ε0, δ0)-differentially private mechanism with err(M, A) ≤

α hvdisc(A). Let W ,q, and R be as in Lemma 7.4, and let x be distributed uniformly

among vectors in {0, 1}U supported on W , and define x̃ , R(x). Then, by Lemma 7.4,

EM,x
1

q(W )


e∈W

q(e)|x̃e − xe| ≤ EM,x


1

q(W )


e∈W

q(e)(x̃e − xe)2 ≤ 2α.

The first inequality is by the convexity of the square root function (Jensen’s inequality).

We use the notation q(W ) ,


e∈W q(e). Because x and x̃ are both binary, |x̃e − xe| is
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1 if x̃e = xe and 0 otherwise. By Lemma 7.3 and linearity of expectation,

EM,x
1

q(W )


e∈W

q(e)|x̃e − xe| =
1

q(W )


e∈W

q(e)Pr[x̃e ̸= xe] ≥
e−ε0 − δ

1 + e−ε0
≥ 1

2(1 + e)
.

The last inequality is by the choice of ε0 and δ0. It follows that, α ≥ 1
2(1+e) , which

implies that optε0,δ0 ≥ 1
2(1+e) hvdisc(A).

To finish the proof observe that, by Lemma 7.2, optε,δ(A) ≥ ⌊1/ε⌋ optε0,δ0(A), as

long as ε ≤ 1 and δ ≤ e−1
2(e1/ε−1)

.

7.4 Generalized Gaussian Noise Mechanism

In this section we show an efficient mechanism for answering linear queries with error

only a polylogarithmic factor larger than the optimal error. The algorithm is a natural

modification of the basic Gaussian noise mechanism, once the latter is viewed in a

geometric way. Roughly, our algorithm adds correlated Gaussian noise to the true query

answers, where the noise is correlated according to the ellipsoid achieving ∥A∥E∞ for

the query matrix A. The results on ∥A∥E∞ from Chapter 4 let us relate the amount of

noise added to hvdisc(A), which is itself related to optε,δ(A) via Theorem 7.2.

7.4.1 The Basic Gaussian Mechanism

The Gaussian noise mechanism [48, 57, 50], which adds appropriately scaled indepen-

dent Gaussian noise to each query answer, is one of the simplest but most useful tools

in differential privacy. In this section we recall the formulation of this mechanism and

its privacy guarantee. We give a geometric view of the mechanism, which will allow us

to generalize it and derive a near-optimal algorithm.

Recall that ∥A∥1→2 equals the largest ℓ2 norm of the matrix A. Let us use the

notationN(µ, σ2)Q for the distribution of a vector of identically distributed independent

Gaussian random variables indexed by Q, each with mean µ and variance σ2. The

mechanism is given as Algorithm 1.

To give some geometric intuition for the Gaussian mechanism, let us consider the

following symmetric convex body, defined for any query matrix A.
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Algorithm 1 Gaussian Mechanism

Input: (Public) Query matrix A ∈ RQ×U ;
Input: (Private) Histogram x ∈ RU .

Sample a vector w from N(0, c2ε,δ∥A∥21→2)
Q, where cε,δ =

0.5
√
ε+
√

2 ln(1/δ)

ε ;
Output: Vector of query answers Ax+ w.

Definition 7.3. The sensitivity polytope KA of a query matrix A ∈ RQ×U is the

convex hull of the columns of A and the columns of −A. Equivalently, KA , ABU
1 ,

i.e. the image of the unit ℓ1 ball in RU under multiplication by A.

The crucial property of the sensitivity polytope is that if x and x′ are histograms

of neighboring databases, i.e. ∥x − x′∥1 ≤ 1, then Ax − Ax′ ∈ KA. Moreover, it is

easy to see that KA is the smallest convex body with this property. Because a private

mechanism must “hide” whether the input is x or x′, the mechanism’s output must not

allow an observer to distinguish too accurately between Ax and Ax′. So, if a mechanism

simply adds noise to the true answers, this noise must be “spread out” over KA.

The Gaussian mechanism is one concrete realization of this intuition. The mech-

anism adds independent Gaussian noise with standard deviation cε,δσ to each query

answer, where σ is such that KA ⊂ BQ
2 (σ) (the ball centered at 0 with radius σ). The

following lemma shows that this is sufficient noise in order to preserve (ε, δ)-differential

privacy

Lemma 7.5 ([48, 57, 50]). The Gaussian mechanism in Algorithm 1 is (ε, δ)-differentially

private.

Proof. Let σ , ∥A∥1→2, and also let p be the probability density function ofN(0, c2ε,δσ
2)Q,

and KA be the sensitivity polytope of A. Define

Dv(w) , ln


p(w)

p(w + v)


.

We will prove that when w ∼ N(0, c2ε,δσ
2)Q, for all v ∈ KA, Pr[|Dv(w)| > ε] ≤ δ. This

suffices to prove (ε, δ)-differential privacy. Indeed, let the algorithm output Ax+w and

fix any x′ s.t. ∥x− x′∥1 ≤ 1. Let v = A(x− x′) ∈ KA and S = {w : |Dv(w)| > ε}. For



107

any measurable T ⊆ RQ we have

Pr[Ax+ w ∈ T ] = Pr[w ∈ T −Ax]

= Pr[w ∈ S ∩ (T −Ax)] + Pr[w ∈ S̄ ∩ (T −Ax)]

≤ δ + eεPr[w ∈ T −Ax′] = δ + eεPr[Ax′ + w ∈ T ].

We fix an arbitrary v ∈ KA and proceed to prove that |Dv(w)| ≤ ε with probability

at least 1− δ. Recall that p(w) ∝ exp(− 1
2c2ε,δσ

2 ∥w∥22). We have

Dv(w) =
∥v + w∥22 − ∥w∥22

2c2ε,δσ
2

=
∥v∥2 + 2vTw

2c2ε,δσ
2

. (7.2)

To complete the proof, we bound |vTw|, which suffices to bound |Dv(w)|. Since KA is

the convex hull of the columns of A and −A by definition, and each of these columns has

ℓ2 norm at most σ, we have KA ⊂ σBQ
2 . Because v ∈ KA, it follows that ∥v∥2 ≤ σ. By

standard properties of Gaussian random variables, vTw ∼ N(0, c2ε,δ∥v∥22σ4). A Chernoff

bound gives us

Pr

|vTw| > cε,δσ

2

2 ln(1/δ)


< δ.

Substituting back into (7.2), we have that with probability at least 1− δ the following

bounds hold

−

2 ln(1/δ)

cε,δ
≤ Dv(w) ≤

1

2c2ε,δ
+


2 ln(1/δ)

cε,δ
.

Substituting cε,δ ≥
0.5

√
ε+
√

2 ln(1/δ)

ε completes the proof.

For the remainder of the thesis, we fix the notation

cε,δ ,
0.5

√
ε+


2 ln(1/δ)

ε
.

7.4.2 The Generalization

While a very useful tool, the Gaussian mechanism can, in general, however, be rather

wasteful when the sensitivity polytope KA occupies only a small portion of the ball of

radius σ. Consider, for example, the all-ones query matrix J . KJ is just a line segment

of length 2

|Q|; the Gaussian noise mechanism would add noise roughly


|Q| in every

direction, but it is easy to see that noise O(1) is achievable by outputting Jx+gj where
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g ∼ N(0, c2ε,δ) and j is the all-ones vector. This second mechanism adds Gaussian noise

that is still well-spread over KJ but fits the shape of the sensitivity polytope much

better.

Motivated by this example, our next step is to find a correlated Gaussian distri-

bution which fits KJ as tightly as possible. Any correlated Gaussian distribution is

“shaped” according to some ellipsoid E, in the sense that it is equivalent to the uniform

distribution over E scaled by a random value drawn from the chi distribution. This,

and the example of the basic Gaussian mechanism, suggest the Generalized Gaussian

Mechanism presented in Algorithm 2.

Algorithm 2 Generalized Gaussian Mechanism ME

Input: (Public) Query matrix A; ellipsoid E = F ·BQ
2 such that all columns of A are

contained in E.
Input: (Private) Histogram x.

Sample a vector w from N(0, c2ε,δ)
Q.

Output: Vector of query answers Ax+ Fw.

The following lemma shows that the generalized Gaussian mechanism is (ε, δ)-

differentially private by a simple reduction to the standard Gaussian mechanism.

Lemma 7.6. The generalized Gaussian mechanism ME in Algorithm 2 satisfies (ε, δ)-

differential privacy for any ellipsoid E = FBQ
2 that contains the columns of A.

Proof. Define Ã = F+A, where F+ is the Moore-Penrose pseudo-inverse of F . The

columns of Ã are contained in F+E = F+FBQ
2 = ΠBQ

2 , where Π is the orthogonal

projection operator onto the span of the row vectors of F . Since ΠBQ
2 is also a ball

of radius 1, this implies ∥Ã∥1→2 ≤ 1, and, by lemma 7.5, the mechanism that outputs

Ãx+w for w ∼ N(0, c2ε,δ)
Q is (ε, δ)-differentially private. The output of the generalized

mechanism in Algorithm 7.6 is distributed identically to F (Ãx + w), which is a post-

processing of the basic Gaussian mechanism and is also (ε, δ)-differentially private by

Lemma 7.1.

An immediate consequence of Lemma 7.6 (and a standard concentration of measure

argument) is an upper bound on optε,δ(A) in terms of ∥A∥E∞. This is excellent news,

since ∥A∥E∞ approximates hvdisc(A), which itself gives a lower bound on optε,δ(A).
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Proof of Theorem 7.1. Let E = FBQ
2 be an ellipsoid that (approximately) achieves

∥A∥E∞. As in the proof of Theorem 4.12, such E can be computed in time polynomial

in |Q| and |U | by solving the convex optimization problem (4.5)–(4.8). The gener-

alized Gaussian mechanism ME instantiated with E is (ε, δ)-differentially private by

Lemma 7.6. Once E is computed, the mechanism only needs to sample |Q| Gaussian

random variables and perform elementary linear algebra operations, so it runs in poly-

nomial time as well. The error of ME is equal to E∥Fw∥∞ = Emaxq∈Q |eᵀqFw|, where

w ∼ N(0, c2ε,δ)
Q and eq is the standard basis vector corresponding to query q. For any

q, eᵀqFw is a Gaussian random variable with mean 0 and variance equal to

E(eᵀqFw)2 = EeᵀqFwwᵀF ᵀeq = c2ε,δe
ᵀ
qFF ᵀeq.

Therefore, for any q ∈ Q, the variance of eᵀqFw is at most c2ε,δ maxq∈Q eᵀqFF ᵀeq =

c2ε,δ∥E∥2∞ = c2ε,δ∥A∥2E∞, where the first equality is by (4.4). By a Chernoff bound, for

any q ∈ Q and any t > 0, Pr[(eᵀqFw)2 ≥ tc2ε,δ∥A∥2E∞] ≤ e−t/2. By the union bound,

Pr[max
q∈Q

(eᵀqFw)2 ≥ (t+ ln |Q|)c2ε,δ∥A∥2E∞] ≤ e−t/2,

and we can bound the error of ME as

err(ME , A) = Emax
q∈Q

|eᵀqFw|

≤

Emax

q∈Q
(eᵀqFw)2

1/2

=

 ∞

0
Pr[max

q∈Q
(eᵀqFw)2 ≥ x]dx

2

≤

(ln |Q|)c2ε,δ∥A∥2E∞ +

 ∞

0
exp(−x/(2c2ε,δ∥A∥2E∞))dx

1/2

= O(

log |Q| log 1/δ) · 1

ε
∥A∥E∞,

where the first inequality is by Jensen. On the other hand, by Theorems 4.12 and 7.2,

for all sufficiently small ε and δ,

1

ε
∥A∥E∞ = O(log |Q|) · 1

ε
hvdisc(A) = O(log |Q|) · optε,δ(A).

Combining the bounds finishes the proof of the theorem.

We leave the following question open.
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Question 4. What is the largest gap between 1
ε hvdisc(A) and optε,δ(A)?

A particularly interesting question is to develop general lower bound techniques

that give bounds which grow with 1/δ. A first step in this direction was taken by Bun,

Ullman, and Vadhan [33], who showed that on a natural query matrix A, optε,δ(A) is

strictly larger for δ = o(|D|−1) than for δ = Ω(1).

The approach of minimizing error over ellipsoids E to use in the generalized Gaussian

mechanism is related to work on the Matrix Mechanism [91]. Instead of the geometric

presentation we chose, the matrix mechanism is usually given as a matrix factorization:

the query matrix A is written as A = FÃ and the basic Gaussian mechanism is used

to compute noisy answers Ãx + w, which are then multiplied by the matrix F . An

inspection of the proof of Lemma 7.6 shows that this is equivalent to the generalized

Gaussian mechanism ME instantiated with the ellipsoid E = FBQ
2 . In the matrix

mechanism one usually optimizes over factorizations that minimize the L2 error, while

we analyze the stronger worst-case error guarantee. Nevertheless, we can prove an

analogue of Theorem 7.1 for L2 error as well. Thus, Theorem 7.1 can be interpreted as

showing that (a natural variant of) the matrix mechanism is nearly optimal among all

differentially private mechanisms.

7.5 Bounds on Optimal Error for Natural Queries

Theorem 7.1 and estimates of the ellipsoid infinity norm from Chapter 6 give near tight

bounds on the optimal error for natural sets of linear queries. Here we give the more

interesting results.

Geometric range counting queries are a natural class of linear queries. In a range

counting query the data universe is U ⊂ Rd, i.e. the database is a multiset of d-

dimensional points. One may assume, for example that U = [N ]d for a large enough

d. The counting queries are given by a collection S of subsets of U , usually induced by

some natural family of geometric sets. Each query qS for S ∈ S asks how many points

in the database belong to S. I.e. qS(p) is the indicator of p ∈ S for any p ∈ U . For

such queries, let us write QS to denote the class of counting queries induced by the set
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system S.

For example, when d is fixed, and U = [N ]d, the queries given by the family Bd of

axis-aligned boxes [a1, b1), . . . , [ad, bd) in R
d are known as orthogonal range queries. Us-

ing various methods (Haar wavelets, decompositions into canonical boxes), it is known

that optε,δ(QBd
) = O(cε,δ log

d+1/2N). In the next theorem gives a different derivation

of this upper bound via our more general results, and, more importantly, also shows a

nearly-matching lower bound.

Theorem 7.3. For any constant dimension d, the optimal error for d-dimensional

orthogonal range queries is bounded as

Ω((logN)d−1)

ε
≤ optε,δ(QBd

) ≤ O(cε,δ(logN)d+1/2),

for a large enough constant C.

Proof. Follows immediately from Theorems 7.1 and the fact that ∥Bd∥E∞ = Θ((logN)d)

for any constant d. This fact was established in the proof of Theorem 6.5

When instead of Bd we consider the queries induced by the family of boolean sub-

cubes Cd, we get another interesting set of queries: the marginal queries Qd
marg. The

data universe U for this class of queries is {0, 1}d, i.e. each individual is characterized

by d binary attributes. A marginal query qv is specified by a vector v ∈ {1, 0, ∗}d,

and the result is the count of the number of people in the database whose attributes

agree with v except at the ∗ coordinates, where they can be arbitrary. Marginal queries

are a ubiquitous and important subclass of queries, constituting contingency tables in

statistics and OLAP cubes in databases. Official agencies such as the Census Bureau,

the Internal Revenue Service, and the Bureau of Labor Statistics all release certain sets

of low dimensional marginals for the data they collect.

From the description above it is clear that the marginal queries are equivalent to

the queries QCd induced by boolean subcubes. From prior work it was known that

answering all marginal queries requires error on the order of 2Ω(d). Our methods allow

us to determine the precise constant in the exponent up to lower order terms. Moreover,

we show that the same error bound holds for the more restricted class of conjunction



112

queries Qd
conj, which are all queries qv for v ∈ {1, ∗}d. Conjunction queries are equivalent

to the queries induced by anchored subcubes of the Boolean cube. Our result follows.

Theorem 7.4. The optimal error for d-dimensional conjunction and marginal queries

is bounded as

1

ε
2c0d−o(d) ≤ optε,δ(Qd

conj) ≤ optε,δ(Qd
marg) ≤ cε,δ2

c0d+o(d).

where c0 = log2(2/
√
3) ≈ 0.2075.

Proof. Follows from the observations that Qd
conj = QAd({0,1}d) and Qd

marg = QCd , The-

orems 6.6, 4.12, and 7.1, since |Qd
conj| = 3d. Alternatively to using Theorems 6.6 and

4.12, observe that in the proof of Theorem 6.6 we showed that ∥Ad({0, 1}d)∥E∞ =

∥Cd∥E∞ = 2c0d.

7.6 Error Lower Bounds for Pan-Privacy

In this section we extend the reconstruction attack-based lower bounds on error to a

stronger notion of privacy. We show a strong separation between this stronger notion

and ordinary differential privacy.

7.6.1 Pan Privacy: Motivation and Definition

The original definition of differential privacy implicitly assumes that the database itself

is secured against intrusion, and the privacy risk comes from publishing query answers.

This is a reasonable assumption, as it allows us to separate the issues of security, such

as access control and protection against tampering with the data, and privacy issues

which cannot be addressed with traditional cryptographic tools because an adversary

and a legitimate user of the statistical analysis cannot be separated. However, if the

security of the system is compromised, and the sensitive data is leaked in the clear,

all hope of further privacy protection is lost. This may happen because a malicious

intruder hacks the system. But more subtly, this may happen because an insider with

access, such as a systems administrator, may turn curious or crooked; data analysis

may be outsourced to far away countries where people and laws are less stringent; or
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the contents of the registers may be subpoenaed by law or security officials. Traditional

encryption will not work in such cases, because a breach will reveal the hash function

or the encrypting key.

To protect privacy in the face of this kind of security breach, we need to store

the data itself in a privacy-preserving manner. Dwork, Naor, Pitassi, Rothblum, and

Yekhanin introduced pan-privacy to formally capture this stronger level of security

protection. Intuitively, pan-privacy applies to algorithms that process a stream of data

updates, and requires that the pair of internal state of the algorithm and output are

jointly differentially private. More formally, we model a streaming algorithm as a pair

M = (A,O), where A and O are each randomized algorithms. Assume that the input

sequence σ̄ , (σ1, . . . , σm) arrives online, i.e. at time step t we receive the symbol

σt ∈ Σ. We can think of each σt as the ID of a user visiting a website, for example. At

each time step t, M is in a state Xt ∈ X (X is called the state space); it is initialized

to a special initial state X0, and after the symbol σt arrives at time t, the state is

changed to M(Xt−1, σt). After the input sequence is processed, M outputs O(Xm).

(It is possible to modify the definitions so that the algorithm produces multiple outputs;

we restrict the discussion to a single output produced at the end for simplicity.) We

use the shorthand A(X, σ̄) for Xm = A(Xm−1, σm) where Xm−1 = A(Xm−2, σm−1),

. . ., X1 = A(X,σ1); when X is the initial state X0, we just write A( ¯sigma). In this

setting, pan privacy is defined as follows:

Definition 7.4 ([54]). Two input sequences σ̄ = (σ1, . . . , σm) and σ̄′ = (σ′
1, . . . , σ

′
m′)

are neighboring if there exists a symbol σ ∈ Σ so that σ̄′ can be derived from σ̄ by only

adding and removing occurrences of σ. An algorithm M = (A,O) with state space X

is (ε, δ)-pan private against a single intrusion if for

• all pairs of neighboring streams σ̄ = σ̄1·σ̄2, and σ̄′ = σ̄′
1·σ̄′

t where · is concatenation

and σ̄1, σ̄
′
1 are also neighboring and differ on the same symbol as σ̄, σ̄′,

• all sets X ⊆ X ,

• all subsets S of the range of O,
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we have

Pr[(A(σ̄1),O(A(σ̄))) ∈ X × S] ≤ eεPr[(A(σ̄′
1),O(A(σ̄′))) ∈ X × S] + δ,

where the probability is taken over the randomness of A and O.

The intention of the definition is that an intrusion occurs after σ1 has been processed,

after which the intruder can wait to also observe the output of the algorithm. The

definition can be generalized to multiple intrusions. However if there are more than

two unannounced intrusions, Dwork et al. showed that even simple functions of the

stream cannot be approximated with any non-trivial error. On the other hand, if

the breach is discovered before a second breach occurs, the algorithm’s state can be

re-randomized at the cost of a slight increase in error.

While the pan-privacy model is very strong, Dwork et al. designed a number of

non-trivial pan-private algorithms for statistics on streams. Recall the notion of a

frequency vector f ∈ NΣ associated with a stream σ̄, and defined by fσ , |{t : σt =

σ}|. The k-th frequency moment of the stream is defined as Fk ,


σ∈Σ fk
σ ; the 0-th

moment, also known as the distinct count, is equal to the number of distinct symbols

in the stream, i.e. F0 , |{σ ∈ Σ : fσ ̸= 0}|. Besides the distinct count, all other

frequency moments have unbounded sensitivity, i.e. the value of the moment can differ

by an arbitrary amount between two neighboring streams. This easily implies that the

worst-case error under differential privacy has to be unbounded. To address this issue,

Dwork et al. introduced the cropped moments: the k-th moment Fk(τ) is equal to

Fk(τ) ,


σ∈Σmin{fk
σ , τ}. They gave an (ε, 0)-pan private algorithm for distinct count

that achieves additive error O(

|Σ|/ε) with constant probability, and an algorithm

for F1(τ) that achieves error O(τ

|Σ|/ε). In this section we use a discrepancy-based

reconstruction attack, similar to the one in Section 7.3, to show that these algorithms

are optimal:

Theorem 7.5. For any small enough ε and any δ small enough with respect to ε, for any

(ε, δ)-pan private algorithm M = (A,O), there exists a stream σ̄ of length m = Θ(|Σ|)

such that with probability at least α, |F0 − O(A(σ̄))| = Ω(

|Σ| log(1/α)/ε). Simi-

larly, there exists a stream σ̄ such that with probability at least α |F1(τ)−O(A(σ̄))| =
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Ω(τ

|Σ| log(1/α)/ε).

Note that under (ε, 0)-differential privacy, F0 can be computed with error only O(1ε )

and F1(τ) can be computed with error O(1ετ) via the Laplace noise mechanism [50].

Theorem 7.5 therefore shows that pan privacy can have significantly larger cost in

terms of error compared with differential privacy, even in the presence of only a single

unannounced intrusion.

7.6.2 Reconstruction Attack against Pan- Privacy

Our lower bound argument is based on the observation that the state of a pan-private

algorithm can be used to answer many queries privately, by updating it with different

continuations of the stream. If the algorithm is accurate with constant probability for

any stream, then most of the query answers we get in this manner will be accurate.

We can use this to derive a reconstruction attack via a robust notion of discrepancy.

The main ideas of the attack itself, together with Fano’s inequality, will also be used in

Chapter 9 to prove lower bounds in the one-way communication model, as well as to

bound the minimax rate of statistical estimators.

Let us introduce the following “norm” for x ∈ Rm: ∥x∥α,∞ , min{t : |{i : |xi| >

t}| ≤ αm}. Equivalently, if x(1), . . . , x(m) are the coordinates of x in non-increasing

order with respect to the absolute value, then ∥x∥α,∞ , |x(k)| where k , ⌈αm⌉. This

quantity can be considered a “robust infinity norm”, as it ignores the top α fraction of

coordinates, which may be outliers. We call it the α-infinity norm. It is not strictly

speaking a norm, because, while it is homogeneous, it need not satisfy the triangle

inequality. Nevertheless, it satisfies the following relaxed form of the triangle inequality:

∥x+ y∥2α,∞ ≤ ∥x∥α,∞ + ∥y∥α,∞. (7.3)

We base a notion of robust discrepancy of an m× n matrix on the α-infinity norm:

rdiscα,β(A) , min
x∈{−1,0,1}n:∥x∥1≥βn

∥Ax∥α,∞.

Notice that robust discrepancy relaxes discrepancy in two ways: it allows for x to have
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a constant fraction of zero coordinates, and it also relaxes the infinity norm to the α-

infinity norm. Nevertheless, the next lemma shows that we can still prove strong lower

bounds on robust discrepancy.

Lemma 7.7. Let A be the matrix whose rows are the elements of the set {−1, 1}n.

Then rdiscα,β(A) ≥ cmin{βn,


βn log(1/α)} for an absolute constant c.

Proof. Let us fix an arbitrary x ∈ {−1, 0, 1}n such that ∥x∥1 ≥ βn. It suffices to

show that there exists a constant c such that Pra[|⟨a, x⟩| ≥ c


βn log(1/α)] > α, where

a ∈ {−1, 1}n is picked uniformly at random. Let ℓ , βn. For a fixed x, the random

variable ⟨a, x⟩ is distributed identically to
ℓ

i=1 si where each si is uniformly sampled

from {−1, 1}. Since
ℓ

i=1 si = 2(|{i : si = 1}| − ℓ/2), we have

Pra[|⟨a, x⟩| ≥ t] = 21−n

ℓ/2−t/2
k=1


ℓ

k


≥ 21−n


ℓ

ℓ/2− t/2


≥ 2(H2(p)−1)ℓ−o(ℓ).

Above H2(p) , −p log2 p − (1 − p) log2(1 − p) is the binary entropy function, p ,

(1 − t/ℓ)/2, and the final inequality follows from Sterling’s approximation. By the

Taylor expansion of binary entropy,

H2(p)− 1 ≥ − 1

2 ln 2
(1− 2p)2 − (1− 2p)4

6 ln(2)p2
.

For p ≥ 1/3, (1−2p)4

6 ln(2)p2
≤ 1

2
√
3 ln 2

(1 − 2p)2, so we have H2(p) − 1 ≥ 1+
√
3

2
√
3 ln 2

(1 − 2p)2.

Therefore, for t ≤ ℓ/3,

Pra[|⟨a, x⟩| ≥ t] ≥ 2−Ct2/ℓ,

where C = 1+
√
3

2
√
3 ln 2

− o(1). Choosing t = min{ℓ/3,


ℓ log2(1/α)/C} completes the

proof.

The lower bound in Lemma 7.7 is optimal up to constants, as shown by a random

coloring and Hoeffding’s inequality. Armed with this lower bound, and the approximate

triangle inequality for the α-infinity norm, we are ready to give our reconstruction

attack.

Lemma 7.8. There exists a deterministic algorithm R, such that for any A ∈ Rm×n,

any x ∈ {0, 1}n and any y such that ∥Ax − y∥α,∞ < 1
2 rdisc2α,β, we have R(A, y) ∈

{0, 1}n and ∥R(A, y)− x∥1 < βn.
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Proof. On input y, we define R(A, y) as

R(A, y) , arg min
x̃∈{0,1}n

∥Ax̃− y∥α,∞.

Let x̃ , R(A, y) and D , rdisc2α,β(A). By assumption, ∥Ax̃− y∥α,∞ ≤ ∥Ax− y∥α,∞ ≤

D/2. By the approximate triangle inequality (7.3), we have the guarantee

∥Ax̃−Ax∥2α,∞ ≤ ∥Ax̃− y∥α,∞ + ∥y −Ax∥α,∞ ≤ D.

Since x̃ and x are binary, x̃− x ∈ {−1, 0, 1}n, and by the definition of rdisc2α,β(A), we

have ∥x̃− x∥1 < βn.

We are now ready to prove our lower bound result. Once again, the intuition is

that the state of a pan-private algorithm can be used to answer many queries, and

if the algorithm is accurate with large constant probability, then a large fraction of

the queries will be answered accurately. Then we can invoke the reconstruction result

in Lemma 7.8. This idea is inspired by space lower bound arguments for streaming

algorithms, in which one argues that the space complexity of the algorithm must be

large because it accurately encodes the answers to too many queries.

Proof of Theorem 7.5. Let ε0 be a constant to be determined later, and let k , ⌊ε0/ε⌋,

and n , ⌊|Σ|/k⌋. Let us associate with each j ∈ [n] a set Σj ⊆ Σ of size k, so that

Σj∩Σℓ = ∅ for j ̸= ℓ. Given a vector x ∈ {0, 1}n, we construct a stream σ̄(x) as follows:

for each j ∈ [n] such that xj = 1, we insert into σ̄(x) all symbols in Σj in any order. We

will use the state of a pan-private algorithm for distinct counts after processing σ̄(x)

to answer counting queries on x under differential privacy.

Let β and c′ be constants to be determined later, and assume for the sake of

contradiction that M = (A,O) is an (ε, δ)-pan private algorithm such that for any

stream σ̄, with probability at least 1 − α, |F0 − O(A(σ̄))| < c′k

βn log(1/α). By

an argument analogous to the proof of Lemma 7.2, X(x) , A(σ̄(x)) is an (ε0, δ0)-

differentially private function of x, for any δ0 ≥ eε0−1
eε−1 δ. Let A be a matrix whose

rows a1, . . . , am, m = 2n, form the set of all binary vectors {0, 1}n. For each row

ai we construct a stream σ̄i in which we insert all symbols in Σj (in any order)
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for each j such that aij = aij = 1. Observe that the distinct count of the stream

σ̄(x) · σ̄i is equal to
n

j=1 k({aij = 1} ∨ {xj = 1}). Substituting {aij = 1}∨ {xj = 1} =

1
2(aij + 1)+ xj − 1

2(aij + 1)xj , re-arranging the terms and simplifying gives us that the

distinct count of σ̄(x) · σ̄i is

−k

2
⟨ai, x⟩+ k

2

n
j=1

(xj + aij) +
kn

2
.

The third term does not depend on x and the second term can be approximated with

additive error η , O(kcε0,δ0

log 1/α) with probability 1− α under (ε0, δ0)-differential

privacy using the Gaussian mechanism (Lemma 7.5). Let us call this approximation w,

and compute a vector y by

yi , −2

k
O(A(X(x), σ̄i)) +

2

k
w + n.

Because X(x) and w are each (ε0, δ0)-differentially private functions of x, y is an

(2ε0, 2δ0)-differentially private function of x by Lemma 7.1. Sample x uniformly at

random from {0, 1}n and define the random variable x̃ , R(A, y), where R is the

reconstruction algorithm from Lemma 7.8. Because R only accesses the (2ε0, 2δ0)-

differentially private y, x̃ is also (2ε0, 2δ0)-differentially private, and by Lemma 7.3

and linearity of expectation, E∥x̃ − x∥1 ≥ e−2ε0−2δ0
1+e−2ε0

n. On the other hand, by the

accuracy guarantee we assumed for M, for each i, with probability at least 1 − 2α,

|yi − (Ax)i| < 2
kη + 2c′


βn log(1/α) ≤ 1

2c

βn log(1/12α). Since 2

k
√

log(1/α)
η is a con-

stant depending only on ε0, δ0, setting c′ small enough ensures that the last inequality

holds for c as in Lemma 7.7 and all big enough n. Then, by Markov’s inequality, with

probability at least 2/3, ∥y−Ax∥6α,∞ < 1
2c

βn log(1/12α), so, by Lemmas 7.7 and 7.8,

∥x̃− x∥1 < βn. We can then bound the expected distance of x̃ from x as

E∥x̃− x∥1 <
2

3
βn+

1

3
n =

2β + 1

3
n.

Setting ε0, δ0 and β small enough so that e−2ε0−2δ0
1+e−2ε0

≥ 2β+1
3 gives a contradiction and

finishes the proof of the lower bound for distinct counts.

The proof for the cropped first moment is analogous, with the modification that any

symbol in the streams σ̄(x) and σ̄i is included τ times.



119

Bibliographic Remarks

The first discrepancy-based reconstruction attack appeared in the paper [110]. In the
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differentially private algorithm for halfspace counting with tight error (up to constants).

Theorem 7.1 was first proved in [118]. The approach via the ellipsoid infinity norm in

this chapter is a simplification of the proofs in [118], which used a recursive construc-

tion based on computing approximate John-Löwner ellipsoids. The error lower bound

for computing distinct counts and cropped first moment in the pan-privacy model was

first published in [108]. The argument is basically the same, but the proof in the paper

used the reconstruction attack of [52]. Here we instead use a discrepancy-based recon-

struction; while our reconstruction algorithm is not efficient, this is not an issue for the

lower bound argument, as differential privacy is an information theoretic notion.
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Chapter 8

Private Mechanisms for Small Databases

8.1 Overview

In this chapter we consider a setting in which the database size n is significantly

smaller than the number of queries |Q|. Since the seminal work Blum, Ligett and

Roth [26], a long line of work [55, 58, 125, 76, 73, 77, 74] has shown that in this regime

there exist algorithms with error guarantees superior to the general case. In general,

there exist (ε, δ)-differentially private mechanisms for linear queries that have error

O( 1√
ε


n log |Q| log1/4 |U |). Moreover, there exist sets of counting queries for which

this bound is tight up to factors polylogarithmic in the size of the database [33].

We extend the results from Chapter 7 and show that there exists an efficient (ε, δ)-

differentially private mechanism whose L2 error is not much larger than opt
(2)
ε,δ (A,n) on

any database of size at most n. In other words, if we look at opt
(2)
ε,δ (A,n) as a function

of n, the error of our algorithm approximates this function pointwise, while the error

of the algorithm of Theorem 7.1 is only guaranteed to be approximately bounded by

the least upper bound of opt
(2)
ε,δ (A,n). This improved guarantee is important, since in

some cases opt
(2)
ε,δ (A) may be larger than the trivial error n. Giving a similar “strongly

optimal” guarantee for the worst-case error optε,δ(A,n) is an interesting open problem.

Our main result for small databases is summarized in the following theorem.

The following theorem is our main result of this chapter and shows the existence of

an efficient nearly optimal differentially private algorithm.

Theorem 8.1. There exists an (ε, δ)-differentially private algorithm M that runs in

time polynomial in |D|, |Q|, and |U |, and has error

err2(M, n,A) = O((log n)(log 1/δ)1/4(log |U |)1/4) · opt(2)ε,δ (n,A)
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for any n, any query matrix A ∈ RQ×A, any small enough ε, and any δ = |U |−O(1)

small enough with respect to ε.

Question 5. Prove an analogoue of Theorem 8.1 for the worst-case error optε,δ(A,n).

Our lower bound argument for opt
(2)
ε,δ (n,A) is analogous to the discrepancy-based

reconstruction attack argument from Chapter 7. We simply observe that the hereditary

vector discrepancy of any submatrix of A of at most n columns provides a lower bound

on the optimal error. The more challenging task is to give an algorithm whose error

matches this lower bound. We take the generalized Gaussian mechanism as a basis, and

again we instantiate it with a minimal ellipsoid, although with respect to a different

objective. By itself this mechanism can have error which is too large when the database

is small. Nevertheless, in this case we can use the knowledge that the database is small

to reduce the error. Taking an idea from statistics, we perform a regression step: we

postprocess the vector ỹ of noisy query answers and find the closest vector that is

consistent with the database size bound. This post-processing step is a form of sparse

regression, and can be posed as a convex optimization problem using the sensitivity

polytope. Indeed, nKA is easily seen to contain the convex hull of the vectors of query

answers produced by databases of size at most n. So we simply need to project ỹ onto

nKA. (In fact our estimator is slightly more complicated and related to the hybrid

estimator of Li [155]). Intuitively, when n is small compared to the number of queries,

nKA is small enough that projection cancels the excess error.

8.2 Error Lower Bounds with Small Databases

In this section we discuss how to adapt our lower bounds on the error of differentially

private mechanism, so that they hold even when the input is the histogram of a small

database. This does not involve any new techniques as much as making observations

about the proofs we have already given.

First we give a reformulation of Theorem 7.2. Recall that we use the notation

herdisc(s,A) to denote the maximum discrepancy of all submatrices of A with at most

s columns. In this chapter it will be convenient to consider the vector discrepancy
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relaxation of the L2 version of this quantity. Define the L2 vector discrepancy of a

matrix A ∈ Rm×n as

vecdisc2(A) , min
u1,...,un∈Sn−1

 1

m

m
i=1

 n
j=1

Aijuj
2
2

1/2
.

An analogous argument to the proof of Proposition 3.2 establishes the dual formulation

vecdisc2(A)
2 = max tr(Q) (8.1)

s.t.

Q ≼ 1

m
AᵀA, (8.2)

Q diagonal . (8.3)

Now we define the s-hereditary vector discrepancy of A as

hvdisc2(n,A) , max
J⊆[m]:|J |≤s

vecdisc2(AJ).

The reformulation of Theorem 7.2 follows from the following modification of Lemma 7.4.

The proof is exactly analogous to the original proof and we omit it.

Lemma 8.1. Let A ∈ RQ×U be a query matrix, let W ⊆ U , |W | ≤ s, be such that

vecdisc2(AW ) = hvdisc2(s,A), and define X , {x ∈ {0, 1}U : xi = 0 ∀e ∈ U \W}. Let

M be a mechanism such that err2(M, A,X) ≤ α hvdisc2(s,A). Then, there exists an

assignment q : W → R of non-negative reals to W , and a deterministic algorithm R

with range {0, 1}U such that, for any x supported on W

E


1

q(W )


e∈W

q(e)(x̃e − xe)2 ≤ 2α,

where x̃ , R(M(x)), q(W ) ,


e∈W q(e), and the expectation is taken over the ran-

domness of M.

We can now state the theorem.

Theorem 8.2. There exists a constant c, such that for any query matrix A ∈ RQ×U

we have

opt
(2)
ε,δ (n,A) ≥

c

ε
hvdisc2(εn,A),

for all small enough ε and any δ sufficiently small with respect to ε.
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ŷ

ỹ = y + w
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p

Figure 8.1: A schematic illustration of the key step of the proof of Lemma 8.2. The
vector p− y is proportional in length to |⟨ŷ− y, w⟩| and the vector ŷ− p is proportional
in length to |⟨ŷ − y, ŷ − ỹ⟩|. Since the angle θ is obtuse, ∥p− y∥2 ≥ ∥ŷ − p∥2.

Proof. Observe that X as defined in Lemma 8.1 satisfies X ⊆ sBU
1 , i.e. is a set of

databases of size at most s. Using Lemma 7.3 and Lemma 8.1 with s , εn, we can

use an argument analogous to the one in the proof of Theorem 7.2 to conclude that

opt
(2)
ε0,δ0

(εn,A) ≥ 1
2(1+e) hvdisc2(εn,A) for small enough ε and δ. To finish the proof we

appeal to Lemma 7.2 to show that opt
(2)
ε,δ (n,A) ≥ ⌊1/ε⌋ opt(2)ε0,δ0

(n,A).

8.3 The Projection Mechanism

A key element in our algorithms for the small database case is the use of least squares

estimation to reduce error. In this section we introduce and analyze a mechanism based

on least squares estimation, similar to the hybrid estimator of [155].

8.3.1 Projection to a Convex Body

Below we present a bound on the error of least squares estimation with respect to sym-

metric convex bodies. This analysis appears to be standard in the statistics literature;

a special case of it appears for example in [123].

For the analysis we will need to recall Hölder’s inequality for general norms. If L is a

convex body, and L◦ is its polar body, then for any x and y we have |⟨x, y⟩| ≤ ∥x∥L∥y∥L◦ .

Lemma 8.2. Let L ⊆ Rm be a symmetric convex body, let y ∈ L, ỹ ∈ Rm, and define

w , ỹ − y. Let, finally, ȳ ∈ L be such that ∥ȳ − ỹ∥22 ≤ min{∥z − ỹ∥22 : z ∈ L} + ν for
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some ν ≥ 0. We have ∥ȳ − y∥22 ≤ min{(2∥w∥2 +
√
ν)2, 4∥w∥L◦ + ν}.

Proof. Let ŷ , argmin{∥z − ỹ∥22 : z ∈ L}. First we show the easier bound: by the

triangle inequality,

∥ȳ − y∥2 ≤ ∥ȳ − ỹ∥2 + ∥ỹ − y∥2 ≤ 2∥ỹ − y∥2 +
√
ν.

The last inequality above follows from

∥ȳ − ỹ∥2 ≤

∥ŷ − ỹ∥22 + ν ≤ ∥ŷ − ỹ∥2 +

√
ν ≤ ∥y − ỹ∥2 +

√
ν.

The bound ∥ȳ− y∥22 ≤ 4∥w∥L◦ + ν is based on Hölder’s inequality and the following

simple but very useful fact, illustrated schematically in Figure 8.1:

∥ȳ − y∥22 = ⟨ȳ − y, ỹ − y⟩+ ⟨ȳ − y, ȳ − ỹ⟩

≤ 2⟨ȳ − y, ỹ − y⟩+ ν. (8.4)

The inequality (8.4) can be proved algebraically:

⟨ȳ − y, ỹ − y⟩ = ∥ỹ − y∥22 + ⟨ȳ − ỹ, ỹ − y⟩

≥ ∥ȳ − ỹ∥22 − ν + ⟨ȳ − ỹ, ỹ − y⟩

= ⟨ȳ − ỹ, ȳ − y⟩ − ν = ⟨ȳ − y, ȳ − ỹ⟩ − ν.

Inequality (8.4), w = ỹ − y, Hölder’s inequality and the triangle inequality imply

∥ȳ − y∥22 ≤ 2⟨ȳ − y, w⟩+ ν ≤ 2∥ȳ − y∥L∥w∥L◦ ≤ 4∥w∥L◦ + ν,

which completes the proof.

8.3.2 The Mechanism

Lemma 8.2 is the key ingredient in the analysis of the Projection Mechanism, presented

as Algorithm 3. This mechanism gives improved L2 error with respect to the generalized

Gaussian mechanism ME when the the database size n is smaller than the number of

queries: the error is bounded from above roughly by the square root of the sum of

squared lengths of the n longest major axes of E.
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Algorithm 3 Projection Mechanism Mproj
E

Input: (Public) Query matrix A; ellipsoid E = F ·BQ
2 such that all columns of A are

contained in E.
Input: (Private) Histogram x of a database of size ∥x∥1 ≤ n.
1: Run the generalized Gaussian mechanism (Algorithm 2) to compute ỹ , ME(A, x);
2: Let Π be the orthogonal projection operator onto the span of the ⌊εn⌋ largest major

axes of E (equivalently the span of leading ⌊εn⌋ left singular vectors of F );
3: Compute ȳ ∈ n(I−Π)KA, where KA is the sensitivity polytope of A, and ȳ satisfies

∥ȳ − (I −Π)ỹ∥22 ≤ min{∥z − (I −Π)ỹ∥22 : z ∈ n(I −Π)KA}+ ν,

and ν ≤ ncε,δ

log |U |∥(I −Π)A∥21→2;

Output: Vector of answers Πỹ + ȳ.

Lemma 8.3. The Projection Mechanism Mproj
E in Algorithm 3 is (ε, δ)-differentially

private for any ellipsoid E = FBQ
2 that contains the columns of A. Moreover, for

ε = O(1),

err2(Mproj
E , n,A) = O


cε,δ


1 +


log |U |
log 1/δ

1/2
·
 1

|Q|

i≤εn

σ2
i

1/2
,

where σ1 ≥ σ2 ≥ . . . ≥ σ|Q| are the singular values of F .

Proof. To prove the privacy guarantee, observe that the output of Mproj
E (A, x) is just a

post-processing of the output of ME(A, x), i.e. the algorithm does not access x except

to pass it to ME(A, x). The privacy then follows from Lemmas 7.5 and 7.1.

Next we bound the error. Let w , ỹ − y be the random noise introduced by the

generalized Gaussian mechanism. Recall that w is distributed identically to Fg, where

g ∼ N(0, c2ε,δ)
Q. By the Pythagorean theorem and linearity of expectation we have

E∥Πỹ + ȳ − y∥22 = E∥Πỹ −Πy∥22 + E∥ȳ − (I −Π)y∥22.

Above and in the remainder of the proof the expectations are taken is with respect to

the randomness of the choice of w. We bound the two terms on the right hand side

separately. For the first term, observe that Πỹ −Πy = Πw is distributed identically to

ΠFg, with g distributed as above. Since, by the definition of Π, the non-zero singular

values of ΠF are σ1, . . . , σk where k , ⌊εn⌋, we have

E∥Πỹ −Πy∥22 = Etr(ΠFggᵀF ᵀΠ) = c2ε,δtr(ΠFF ᵀΠ) = c2ε,δ

k
i=1

σ2
i .
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To bound the second term we appeal to Lemma 8.2. Define K̃ , (I −Π)KA. With

nK̃ in the place of L, the lemma implies that

E∥ȳ − (I −Π)y∥22 ≤ 4E∥(I −Π)w∥(nK̃)◦ + ν ≤ 4nE∥(I −Π)w∥K̃◦ + ν, (8.5)

where we used the simple fact

∥(I −Π)w∥(nK̃)◦ = sup
z∈nK̃

⟨(I −Π)w, z⟩ = n sup
z∈K̃

⟨(I −Π)w, z⟩ = n∥(I −Π)w∥K̃◦ .

Since K̃ ⊆ (I −Π)E, and (I −Π)E is contained in a Euclidean ball of radius bounded

above by σk+1 ≤ σk by the choice of Π, we have that any point z ∈ K̃ has length

bounded as ∥z∥2 ≤ σk. Moreover, K̃ is the convex hull of at most N ≤ 2|U | vertices: it

is the convex hull of the 2|U | vertices of KA (the columns of A and −A) projected by

the operator I − Π. Call these vertices z1, . . . , zN . Since a linear functional is always

maximized at a vertex of a polytope, we have ∥(I −Π)w∥K̃◦ = supz∈K̃ ⟨(I −Π)w, z⟩ =

maxNi=1 ⟨(I −Π)w, zi⟩. Each inner product ⟨(I − Π)w, zi⟩ is a zero mean Gaussian

random variable with variance

E⟨(I −Π)w, zi⟩2 = zᵀi (I −Π)E[wwᵀ](I −Π)zi = c2ε,δz
ᵀ
i (I −Π)FF ᵀ(I −Π)zi.

By the choice of Π, the largest singular value of (I − Π)FF ᵀ(I − Π) is σk+1 ≤ σk.

Therefore, since the Euclidean norm of zi is also at most σk, we have that the variance

of ⟨(I−Π)w, zi⟩ is at most c2ε,δσ
4
k. By an argument analogous to the one in the proof of

Theorem 7.1, we can bound the expectation of the maximum of the inner products as

E∥(I −Π)w∥K̃◦ = E N
max
i=1

⟨(I −Π)w, zi⟩ = O(

logN)cε,δσ

2
k.

Plugging this into (8.5) and using that ∥(I −Π)A∥1→2 = maxNi=1 ∥zi∥2 ≤ σk, we get

E∥ȳ − (I −Π)y∥22 = O(

logN)cε,δnσ

2
k.

Observe that cε,δnσ
2
k ≤ cε,δn

k

k
i=1 σ

2
i . Since k = ⌊εn⌋, cε,δn

k = O


c2ε,δ√
log 1/δ


. This

finishes the proof.

8.3.3 Efficient Implementation: Frank-Wolfe

Computing ȳ in Algorithm 3 requires approximately solving a convex optimization

problem. Any standard tool for convex optimization, such as the ellipsoid algorithm
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can be used. We recall an algorithm of Frank and Wolfe which has slower convergence

rate than the ellipsoid method, but may be more practical since we only require a very

rough approximation. Moreover, the algorithm allows reducing the problem to solving

linear programs over (I −Π)KA. The algorithm is presented as Algorithm 4.

Algorithm 4 Frank-Wolfe Algorithm

Input: convex body L ⊆ Rm; point r ∈ Rm; number of iterations T
Let q(0) ∈ L be arbitrary.
for t = 1 to T do
Let v(t) = argmaxv∈L ⟨r − q(t−1), v⟩.
Let α(t) = argminα∈[0,1] ∥r − αq(t−1) − (1− α)v(t)∥22.
Set q(t) = α(t)q(t−1) + (1− α(t))v(t).

end for
Output q(T ).

The expensive step in each iteration of Algorithm 4 is computing v(t), which re-

quires solving a linear optimization problem over L. Computing α(t) is a quadratic

optimization problem in a single variable, and has a closed form solution.

We use the following bound on the convergence rate of the Frank-Wolfe algorithm.

It is a refinement of the original analysis of Frank and Wolfe, due to Clarkson.

Theorem 8.3 ([63, 45]). The point q(T ) computed by T iterations of Algorithm 4 sat-

isfies

∥r − q(T )∥22 ≤ min{∥r − q∥22 : q ∈ L}+ 4diam(L)2

T + 3
.

In Algorithm 3, we can apply the Frank-Wolfe algorithm to the body L = n(I −

Π)KA and the point r = (I − Π)ỹ. The diameter of L is at most n∥(I − Π)A∥1→2, so

to achieve the required approximation ν we need to set the number of iterations T to

4 n

cε,δ
√

log |U |
.

Another useful feature of the Frank-Wolfe algorithm is that q(T ) is in the convex

hull of v(0), . . . , v(T ), which allows for a concise representation of its output.

8.4 Optimality of the Projection Mechanism

In this section we show that we can choose an ellipsoid E so that Mproj
E has nearly

optimal error. Once again we optimize over ellipsoids and use convex duality and
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the restricted invertibility principle to relate the optimal ellipsoid to the appropriate

notion of discrepancy, which itself bounds from below the error necessary for privacy.

The optimization problem over ellipsoids is different, but closely related, to the one

used to define the ellipsoid infinity norm.

8.4.1 Minimizing Ky Fan Norm over Containing Ellipsoids

Given an ellipsoid E = FBm
2 , define fk(E) =

k
ı=1 σ

2
i

1/2
, where σ1 ≥ . . . ≥ σm

are the singular values of F . Define ∥M∥(k) to be the Ky Fan k-norm, i.e. the sum

of the top k singular values of M . The already familiar nuclear norm ∥M∥S1 is equal

to ∥M∥(r) where r is the rank of M . An equivalent way to define fk(E) then is as

fk(E) , ∥FF ᵀ∥1/2k .

The ellipsoid we use in the projection mechanism will be the one achieving min{fk(E) :

ae ∈ E ∀e ∈ U}, where ae is the column of the query matrix A associated with the

universe element e. This choice is directly motivated by Lemma 8.3. We can write this

optimization problem in the following way.

Minimize ∥X−1∥(k) s.t. (8.6)

X ≻ 0 (8.7)

∀e ∈ U : aᵀeXae ≤ 1. (8.8)

To show that the above program is convex we will need the following well-known

result of Fan.

Lemma 8.4 ([62]). For any m×m real symmetric matrix M ,

∥M∥(k) = max
U∈Rm×k:UᵀU=I

tr(UᵀMU).

With this result in hand, we can prove that (8.6)–(8.8) captures the optimization

problem we are after analogously to the proof of Lemma 4.6.

Lemma 8.5. For a rank |Q| query matrix A = (ae)e∈U ∈ RQ×univ, the optimal value

of the optimization problem (8.6)–(8.8) is equal to min{fk(E)2 : ae ∈ E ∀e ∈ U}.

Moreover, the objective function (8.6) and constraints (8.8) are convex over X ≻ 0.



129

Proof. Let λ be the optimal value of (8.6)–(8.8) and let µ = min{fk(E)2 : ae ∈ E ∀e ∈

U}. Given a feasible X for (8.6)–(8.8), set E = X−1/2BQ
2 (this is well-defined since

X ≻ 0). Then for any j ∈ [n], ∥aj∥E = aᵀjXaj ≤ 1 by (4.8), and, therefore, aj ∈ E.

Also, by (4.4), fk(E)2 = ∥X−1∥(k) by definition. This shows that µ ≤ λ. In the reverse

direction, let E = FBQ
2 be such that ∀e ∈ U : ae ∈ E. Then, because A is full rank,

F is also full rank and invertible, and we can define X = (FF ᵀ)−1. Analogously to the

calculations above, we can show that X is feasible, and therefore λ ≤ µ.

The objective function and the constraints (8.8) are affine, and therefore convex.

It remains to show that the objective (8.6) is also convex. Let X1 and X2 be two

feasible solutions and define Y = αX1 + (1− α)X2 for some α ∈ [0, 1]. By Lemma 4.5,

Y −1 ≼ αX−1
1 +(1−α)X−1

2 . Let U be such that tr(UᵀY −1U) = ∥Y −1∥(k) and UᵀU = I;

then, by Lemma 8.4

∥Y −1∥(k) = tr(UᵀY −1U) ≤ αtr(UᵀX−1
1 U) + (1− α)tr(UᵀX−1

2 U)

≤ α∥X−1
1 ∥(k) + (1− α)∥X−1

2 ∥(k).

This finishes the proof.

Since the program (8.6)–(8.8) is convex, its optimal solution can be approximated

to any given degree of accuracy using the ellipsoid algorithm [72]. Analogously to the

ellipsoid infinity norm, we can define the ellipsoid Ky Fan k norm of an m× n matrix

A = (ai)
n
i=1 by ∥A∥E(k) , min{fk(E) : ai ∈ E ∀i ∈ [n]}. An argument analogous

to the one in the proof of Lemma 4.4 using Lemma 8.4 proves that herdisc2(s,A) ≤

O(1)∥A∥E(s). We shall not pursue this direction further here.

8.4.2 The Dual of the Ellipsoid Problem

Our next goal is derive a dual characterization of (8.6)–(8.8). Before we can do that,

we need to define a somewhat complicated function of the singular values of a matrix.

The next lemma is needed to argue that this function is well-defined.

Lemma 8.6. Let σ1 ≥ . . . σm ≥ 0 be non-negative reals, and let k ≤ m be a positive
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integer. There exists an integer t, 0 ≤ t ≤ k − 1, such that

σt >


i>t σi

k − t
≥ σt+1, (8.9)

with the convention σ0 = ∞.

Proof. Define σ>t ,


i>t σi. If σ>0 ≥ kσ1 holds, then (8.9) is satisfied for t = 0, and

we are done. So let us assume that σ>0 < kσ1. Then σ>1 = σ>0 − σ1 < (k − 1)σ1,

and the first inequality in (8.9) is satisfied for t = 1. If the second inequality is also

satisfied we are done, so let us assume that σ>1 < (k − 1)σ2, which implies the first

inequality in (8.9) for t = 2. Continuing in this manner, we see that if the inequalities

(8.9) are not satisfied for any t ∈ {0, . . . , k− 2}, then we must have σ>k−1 < σk−1. But

the second inequality for t = k − 1, i.e. σ>k−1 ≥ σk is always satisfied because all the

σi are non-negative, so we have that if (8.9) does not hold for t ≤ k − 2, then it must

hold for t = k − 1. This finishes the proof.

We now introduce a function which will be used in formulating a dual characteriza-

tion of (8.6)–(8.8).

Definition 8.1. Let M ≽ 0 be an m × m positive semidefinite matrix with singular

values σ1 ≥ . . . ≥ σm, and let k ≤ m be a positive integer. The function hk(M) is

defined as

hk(M) ,
t

i=1

σ
1/2
i +

√
k − t


i>t

σi

1/2

,

where t is the smallest integer such that σt >


i>t σi

k−t ≥ σt+1.

Lemma 8.6 guarantees that hk(M) is a well-defined real-valued function. The next

lemma shows that it is a continuous function.

Lemma 8.7. The function hk is continuous over positive semidefinite matrices with

respect to the operator norm.

Proof. Let M be a m×m positive semidefinite matrix with singular values σ1 ≥ . . . ≥

σm and let t be the smallest integer so that σt >


i>t σi

k−t ≥ σt+1. If


i>t σi

k−t > σt+1, then

setting δ small enough ensures that, for any M ′ such that ∥M −M ′∥2 < δ, hk(M) and
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hk(M
′) are computed with the same value of t, in which case the proof of continuity

follows from the continuity of the square root function. Let us therefore assume that
i>t σi

k−t = σt+1 = . . . = σt′ > σt′+1 for some t′ ≥ t+ 1. Then for any integer s ∈ [t, t′],


i>s

σi =

i>t

σi − (s− t)σt+1 = (k − s)σt+1.

We then have

t
i=1

σ
1/2
i +

√
k − t


i>t

σi

1/2

=
t

i=1

σ
1/2
i + (k − t)σ

1/2
t+1

=
s

i=1

σ
1/2
i + (k − s)σ

1/2
t+1

=
s

i=1

σ
1/2
i +

√
k − s


i>s

σi

1/2

(8.10)

For any M ′ such that ∥M ′ −M∥2 < δ for a small enough δ, we have

hk(M
′) =

s
i=1

σi(M
′)1/2 +

√
k − s


i>s

σi(M
′)

1/2

,

where s is an integer in [t, t′]. Continuity then follows from (8.10), and the continuity

of the square root function.

Since the objective of (8.6)–(8.8) is not necessarily differentiable, in order to ana-

lyze the dual we need to recall the concepts of subgradients and subdifferentials. A

subgradient of a function f : S → R at x ∈ S, where S is some open subset of Rd, is a

vector y ∈ Rd so that for every z ∈ S we have

f(z) ≥ f(x) + ⟨x− z, y⟩.

The set of subgradients of f at x is denoted ∂f(x) and is known as the subdifferential.

When f is differentiable at x, the subdifferential is a singleton set containing only the

gradient ∇f(x). If f is defined by f(x) = f1(x) + f2(x), where f1, f2 : S → R , then

∂f(x) = ∂f1(x)+∂f2(x). A basic fact in convex analysis is that f achieves its minimum

at x if and only if 0 ∈ ∂f(x). For more information on subgradients and subdifferentials,

see the classical text of Rockafellar [124].
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Overton and Womersley [120] analyzed the subgradients of functions which are a

composition of a differentiable matrix-valued function with a Ky Fan norm. The special

case we need also follows from the results of Lewis [90].

Lemma 8.8 ([120],[90]). Let gk(X) , ∥X−1∥(k) for a positive definite matrix X ∈

Rm×m. Let σ1 ≥ . . . ≥ σm be the singular values of X−1 and let Σ be the diagonal

matrix with the σi on the diagonal. Assume that for some r ≥ k, σk = . . . = σr. Then

the subgradients of gk are given by

∂gk(X) = conv{USU
ᵀ
SX

−2USU
ᵀ
S : Uorthogonal, UΣUᵀ = X−1, S ⊆ [r]},

where US is the submatrix of U indexed by S.

We use the following well-known characterization of the convex hull of boolean

vectors of Hamming weight k.

Lemma 8.9. Let Vk,n , conv{v ∈ {0, 1}n : ∥v∥1 = k}. Then Vk,n = {v : ∥v∥1 = k, 0 ≤

vi ≤ 1 ∀i}.

Proof. Let Pk,n be the polytope {v : ∥v∥1 = k, 0 ≤ vi ≤ 1 ∀i}. We need to show that

Vk,n = Pk,n. The containment Vk,n ⊆ Pk,n is easy to verify, as all extreme points of

Vk,n satisfy the constraints defining Pk,n. In the other direction, observe that Pk,n =

{v : b ≤ Av ≤ c}, where b and c are vectors with integer coordinates, and A is a matrix

with first row the all ones vector, followed by the n× n identity matrix I. It is easy to

verify that A is totally unimodular, either directly or by observing that herdisc(A) = 1,

which is equivalent to total unimodularity by the Ghouila-Houri characterization [66].

It follows that Pk,n is a polytope with integral vertices, and it is easy to verify that any

integral point in Pk,n is a boolean vector of Hamming weight k, and, therefore, lies in

Vk,n. Then Pk,n ⊆ Vk,n, implying Pk,n = Vk,n, as desired.

This characterization of Vk,n is a part of the more general theory of basis polytopes

of matroids. In particular, Vk,n is the basis polytope of the rank k uniform matroid.

For more details, see [132].

Before we give our dual characterization, we need one more technical lemma.



133

Lemma 8.10. Let M be an m × m positive semidefinite matrix of rank at least k.

Then there exists an m × m positive definite matrix X such that M ∈ ∂gk(X), and

∥X−1∥(k) = gk(X) = hk(M).

Proof. Let r = rank M , and let σ1 ≥ . . . ≥ σr be the non-zero singular values of M . Let

UΣUᵀ = M be some singular value decomposition of M : U is an orthonormal matrix

and Σ is a diagonal matrix with the σi on the diagonal, followed by 0s.

Assume that t is the smallest integer such that σt >


i>t σi

k−t ≥ σt+1 and define

α ,


i>t σi

k−t . A choice of t ≤ k− 1 exists by Lemma 8.6. Let the diagonal matrix Σ′ be

defined by

σ′
ii ,


σi i ≤ t

α t < i ≤ r

α− ϵ i > r

.

We set ϵ to be an arbitrary number satisfying α > ϵ > 0. Let us set X , (UΣ′Uᵀ)−1/2.

By Lemma 8.9 and and the choice of t, the vector (σt+1, . . . , σr) is an element of the

polytope αVk−t,r. Then M is an element of conv{USU
ᵀ
SX

−2USU
ᵀ
S : S = [t] ∪ T, T ⊆

{t+1, . . . , r}, |T | = k−t}. Since this set is a subset of ∂gk(X), we have M ∈ ∂gk(X). A

calculation shows that ∥X−1∥(k) = ∥(UΣ′Uᵀ)1/2∥(k) =


i≤t σ
1/2
i +(k−t)α1/2 = hk(M).

This completes the proof.

The following theorem is our dual characterization of (8.6)–(8.8).

Theorem 8.4. Let A = (ae)e∈U ∈ RQ×U be a rank |Q| matrix, and let µ = min{fk(E) :

ae ∈ E ∀e ∈ U}. Then,

µ2 =maxhk(AQAᵀ)2 s.t. (8.11)

Q ≽ 0, diagonal, tr(Q) = 1 (8.12)

Proof. The proof of this theorem is similar to the proof of Theorem 4.9. Let us define

{X : X ≻ 0} to be the domain for the constraints (8.8) and the objective function

(8.6). This makes the constraint X ≻ 0 implicit. The optimization problem is convex
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by Lemma 8.5. Is is also always feasible: for example for r = ∥A∥1→2,
1
r I is a feasible

solution. Slater’s condition is therefore satisfied, since the constraints are affine, and

strong duality holds.

The Lagrange dual function for (8.6)–(8.8) is

g(p) = inf
X≻0

∥X−1∥(k) +

e∈U

pe(a
ᵀ
eXae − 1),

with dual variables p ∈ RU , p ≥ 0. Equivalently, writing p as a diagonal matrix

P ∈ RU×U , P ≽ 0, with entries pee = pe, we have

g(P ) = inf
X≻0

∥X−1∥(k) + tr(APAᵀX)− tr(P ) (8.13)

Since X ≻ 0 implies X−1 ≻ 0, g(P ) ≥ −tr(P ) > −∞. Therefore, the effective domain

{P : g(P ) > −∞} of g(P ) is {P : P ≽ 0, diagonal}. Since we have strong duality, and,

by Lemma 8.5, µ2 is equal to the optimal value of (8.6)–(8.8), we have µ2 = max{g(P ) :

P ≽ 0, diagonal}.

By the additivity of subgradients, a matrix X achieves the minimum in (8.13) if

and only if APAᵀ ∈ ∂gk(X), where gk(X) = ∥X−1∥(k). Consider first the case in

which APAᵀ has rank at least k. Then, by Lemma 8.10, there exists an X such that

APAᵀ ∈ ∂gk(X) and ∥X−1∥(k) = hk(APAᵀ). Observe that, if U is an m × k matrix

such that UᵀU = I and tr(UᵀX−1U) = ∥X−1∥(k), then

tr(UUᵀX−2UUᵀX) = tr((UᵀX−2U)(UᵀXU)) = tr(UᵀX−1U) = ∥X−1∥(k).

Since APAᵀ is a convex combination of matrices UUᵀX−2UUᵀ for U as above, it follows

that tr(APAᵀX) = ∥X−1∥(k). Then we have

g(P ) = ∥X−1∥(k) + tr(APAᵀX)− tr(P )

= 2∥X−1∥(k) − tr(P ) = 2hk(APAᵀ)− tr(P ). (8.14)

If P is such that APAᵀ has rank less than k, we can reduce to the rank k case by

a continuity argument as in the proof of Theorem 4.9. Fix any non-negative diagonal

matrix P and for λ ∈ [0, 1] define P (λ) , λP + (1− λ)I. For any λ ∈ [0, 1), AP (λ)Aᵀ
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has rank |Q|, since AAᵀ has rank |Q| by assumption, and, therefore, AP (λ)Aᵀ ≽

(1− λ)AAᵀ ≻ 0. Then, by Lemma 4.7 and (8.14), we have

g(P ) = lim
λ↑1

g(P (λ)) = lim
λ↑1

[2hk(AP (λ)ᵀ)− λtr(P )− (1− λ)|U |]

= 2hk(APAᵀ)− tr(P ).

The final equality follows from the continuity of hk, proved in Lemma 8.7, and standard

perturbation bounds.

Defining new variables Q and c with c = tr(P ), Q = P/c, and optimizing over c as

in Theorem 4.9 finishes the proof.

8.4.3 Proof of the Main Theorem

We use the dual formulation in Theorem 8.4 and the restricted invertibility principle

to give lower bounds on hvdisc2(s,A).

Let us first give a variant of the spectral lower bound for hvdisc2(s,A). We define

specLB2(s,A) ,
s

max
k=1

max
J⊆[n]:|J |=k


k

m
σmin(AJ).

Analogously to Lemma 4.8, it follows from (8.1)–(8.3) that hvdisc2(s,A) ≥ specLB2(s,A).

Proof of Theorem 8.1. Given a database size n and a query matrix A, the near opti-

mal algorithm is the projection algorithm Mproj
E instantiated with an ellipsoid E that

(approximately) achieves min{fk(E) : ae ∈ E ∀e ∈ U} for k , ⌊εn⌋, where ae is the

column of A corresponding to the universe element e. By Lemma 8.5, E can be com-

puted by solving the program (8.6)–(8.8), which is a convex minimization problem and

can be arbitrarily well approximated using the ellipsoid method [72], or the algorithm

of Overton and Womersley [120].

By Lemma 8.3,

err2(Mproj
E , n,A) = O


cε,δ


1 +


log |U |
log 1/δ

1/2
· 1

|Q|
fk(E). (8.15)

By Theorem 4.9, the optimal solution Q of (8.11)–(8.12) satisfies

fk(E) = hk(AQAᵀ) =
t

i=1

σ
1/2
i +

√
k − t


i>t

σi

1/2

,
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where σ1 ≥ . . . ≥ σm are the singular values of AQAᵀ and t is such that (k − t)σt >
i>t σi ≥ (k − t)σt+1. At least one of

t
i=1 σ

1/2
i and

√
k − t


i>t σi

1/2
must be

bounded from below by 1
2fk(E). Next we consider these two cases separately.

Assume first that
t

i=1 σ
1/2
i ≥ 1

2fk(E). Let Π be the orthogonal projection operator

onto the span of the singular vectors of AQAᵀ corresponding to σ1, . . . , σt. Then,

∥ΠAQ1/2∥S1 =
t

i=1 σ
1/2
i , and by Lemma 4.9 applied to the matrices M = ΠA and

W = Q, there exists a set S ⊆ U of size at most |S| ≤ rank ΠAQ1/2 ≤ εn, such that

specLB2(εn,A) ≥


|S|
|Q|

σmin(AS)

≥


|S|
|Q|

σmin(ΠAS) ≥
c∥ΠAQ1/2∥S1

(log εn)


|Q|
=

cfk(E)

2(log εn)

|Q|

(8.16)

for an absolute constant c.

For the second case, assume that
√
k − t


i>t σi

1/2 ≥ 1
2fk(E). Let Π be an orthog-

onal projection operator onto the span of the singular vectors of AQAᵀ corresponding

to σt+1, . . . , σm. By the choice of t, we have

∥ΠAQ1/2∥2HS

∥ΠAQ1/2∥22
=


i>t σi

σt+1
≥ k − t.

By the Restricted Invertibility Principle (Theorem 4.5), applied with M = ΠA, W = Q,

and ε = 1
2 , there exists a set S ⊆ U of size 1

4(k − t) so that

specLB2(εn,A) ≥


|S|
|Q|

σmin(AS)

≥


|S|
|Q|

σmin(ΠAS) ≥
√
k − t


i>t σi

1/2
4


|Q|
≥ fk(E)

8

|Q|

. (8.17)

The theorem follows from (8.15), (8.16), (8.17), and Theorem 8.2.

Bibliographic Remarks

A variant of Theorem 8.1, with a weaker bound, was proved in [118]. The approach

there was somewhat different: the main algorithmic tool was again the Projection Mech-

anism; however, the same recursively computed Gaussian noise was used as in the large

database case. Here we take the alternative approach of optimizing the noise distribu-

tion with respect to the specific guarantee achieved by the projection mechanism.
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With any set of counting queries and IID Gaussian noise (i.e. spherical noise), the

projection mechanism achieves average error O(
√
n log1/4 |U |) (ignoring the dependence

on ε and δ). Moreover, this holds when the average error is computed with respect to any

distribution on queries, and via private boosting [58] we can also get a comparable worst-

case error guarantee. Using the Frank-Wolfe algorithm, the Projection mechanism can

be implemented in time sublinear in the universe size, and polynomial in the number

of queries and the database size, if linear programs over the sensitivity polytope can

be optimized in time polynomial in the dimension. In fact, it is enough to be able to

optimize linear programs over any convex body that contains the sensitivity polytope

and is not much wider on average. These observations were used in [56] to give the first

algorithm for answering 2-wise marginal queries that has asymptotically optimal error

and runs in polynomial time in the number of attributes.
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Chapter 9

Reconstruction and Communication Complexity

9.1 Overview

In this chapter we give several further applications of reconstruction attacks in the

style of Chapter 7 to topics in computer science. The applications combine the recon-

struction algorithms with simple arguments from information theory to prove results on

communication complexity. To give some intuition for the applications, assume we have

a method to produce some data structure D(x) that allows us to compute an accurate

approximation of Ax for any binary vector x. If the additive error of the approximation

is less than the appropriate notion of discrepancy, we can nearly reconstruct x, so the

mutual information between D(x) and x must be large. We then have a lower bound

on the expected size of D(x) in terms of the mutual information. We formalize this

general argument, and use it to derive a lower bound in the one-way communication

model. As applications, we give space lower bounds for density estimation problems

and we strengthen a lower bound of Woodruff [151] for approximating the Hamming

distance in the one-way communication model. The latter result implies a new proof

of Jayram and Woodruff’s [82] space lower bound for computing distinct count in the

streaming model.

9.2 The One-way Communication Model

In Yao’s communication model [154], we have two parties, Alice and Bob, respectively

holding inputs x ∈ X and y ∈ Y, who want to compute the value of a function f(x, y),

while minimizing their communication. More generally, they could also compute a

relation F ⊆ X × Y × Z, in which case any z such that (x, y, z) ∈ F is an admissible
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output. Here we consider the more restricted one-way communication model, in which

Alice sends a single message to Bob, who must produce the output.

Definition 9.1. A deterministic one-way protocol is a pair of functions Π = (ΠA,ΠB),

ΠA : X → {0, 1}t, ΠB : {0, 1}t × Y → Z. The cost of Π is equal to t.

The next definition captures the notion of communication complexity we will be

interested in.

Definition 9.2. Let F ⊆ X × Y × Z be a relation, and let µ be a distribution on

X×Y. The distributional one-way communication complexity D1-way
µ,δ (F ) of F for error

probability δ and distribution µ is equal to the smallest cost of any deterministic one-way

protocol Π = (ΠA,ΠB) such that Pr(x,y)∼µ[(x, y, z) ∈ F ] ≥ 1− δ for z , ΠB(ΠA(x), y).

The main application of distributional one-way communication complexity is to

prove lower bounds on randomized one-way communication complexity via Yao’s mini-

max principle [153]. While we only work with distributional communication complexity,

for completeness we define randomized protocols and randomized communication com-

plexity next.

Definition 9.3. A randomized one-way protocol in the public coin model is a pair of

functions Π = (ΠA,ΠB), ΠA : X × {0, 1}r → {0, 1}t, ΠB : {0, 1}t × Y × {0, 1}r → Z.

The cost of Π is equal to t, and the randomness complexity is equal to r.

Definition 9.4. Let F ⊆ X × Y × Z be a relation. The randomized (public coin)

one-way communication complexity R1-way
δ (F ) of F for error probability δ is equal to

the smallest upper bound on the cost of any randomized one-way protocol Π = (ΠA,ΠB)

such that Prb[(x, y, z) ∈ F ] ≥ 1− δ for z , ΠB(ΠA(x, b), y, b) and probability taken over

b sampled uniformly from {0, 1}r.

Yao’s minimax principle [153] asserts that R1-way
δ (F ) = maxµD

1-way
µ,δ (F ), where the

maximum is over all probability distributions µ on X ×Y. Therefore, any lower bound

on D1-way
µ,δ (F ) for any µ is also a lower bound on R1-way

δ (F ).
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9.3 Reconstruction and Fano’s Inequality

Starting with the pioneering work of Bar-Yossef, Jayram, Kumar, and Sivakumar [14],

information theory has proved to be a powerful tool for proving communication com-

plexity lower bounds. Many applications of information theory can be quite sophisti-

cated; here we only use elementary arguments, and all the necessary background can

be found in Chapter 2 of Cover and Joy’s text [47]. We make the connection be-

tween reconstruction and information lower bounds precise via Fano’s inequality. In

the following section, we will use this fact to prove communication lower bounds in the

one-way model.

All logarithms in this chapter will be base 2. We use H(X) , −E[ln p(X)] for

the entropy of a random variable X with density function p. The conditional entropy

of the random variable Y given a random variable X is equal to the expectation of

H(Y |X = x) over x sampled according to X. The binary entropy function H2(p) is

equal to the entropy of a Bernoulli random variable with success probability p, i.e.

H2(p) , −p log p− (1− p) log(1− p).

Lemma 9.1 (Fano’s inequality). Let X be a random variable taking values in some

finite set X . Let Y be another random variable, and let X̂ = g(Y ) for a (deterministic)

function g with range X . Then, for pe = Pr[X̂ ̸= X],

H(X|Y ) ≤ H2(pe) + pe log(|X| − 1).

Let us use the notation dH(x, y) = ∥x− y∥1 for the Hamming distance between two

vectors x ∈ {0, 1}n. We will need the definition of the mutual information I(X;Y ) of

two random variables:

I(X;Y ) , H(X)−H(X|Y ) = H(Y )−H(Y |X).

Notice that the mutual information is a lower bound on both H(X) and H(Y ), because

entropy is non-negative. The conditional mutual information I(X;Y |Z) is equal to

the mutual information with all entropy functions conditioned on Z, i.e. H(X|Z) −

H(X|Y,Z). The chain rule for entropy implies the chain rule for mutual information,

which is I((X1, X2);Y ) = I(X1;Y ) + I(X2;Y |X1).
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The following lemma is a relatively easy consequence of Fano’s inequality. It can be

seen as a version of the inequality for approximate recovery.

Lemma 9.2. Let X be a random vector sampled uniformly from {0, 1}n, and let Y be a

random variable. If there exists a deterministic function R with range {0, 1}n such that,

with probability at least 2/3, dH(X,R(Y )) ≤ βn, then I(X;Y ) ≥ (2/3−β log(e/β))n−

H2(1/3).

Proof. Let X̃ , R(Y ) and let us define a new random variable Z , (Y, S), where

S , {i : Xi ̸= X̃i} if dH(X, X̃) ≤ βn and S , ∅ otherwise. Whenever dH(X, X̃) ≤ βn,

we can recover X from Z exactly by flipping all bits of Y indexed by S. So, by

Lemma 9.1, I(X;Z) = H(X) − H(X|Z) ≥ 2n/3 − H2(1/3). By the chain rule for

mutual information, I(X;Z) = I(X;Y ) + I(X;S|Y ). We have

I(X;S|Y ) ≤ H(S|Y ) ≤ H(S) ≤ log


n

βn


,

where the first inequality is by the non-negativity of entropy, the second holds because

conditioning does not increase entropy, and the final inequality holds because entropy

is always bounded above by the logarithm of the range. Putting everything together

and using the estimate

n
βn


≤


e
β

βn
, we have

I(X;Y ) ≥ 2

3
n− log


n

βn


−H2(1/3) ≥


2

3
− β log

e

β


n−H2(1/3).

This completes the proof.

9.4 Communication Lower Bounds via Robust Discrepancy

Robust discrepancy and the reconstruction algorithm in Lemma 7.8 allow us to prove a

lower bound in the one-way communication model for a problem of approximating dot

products. Consider a relation Ft(A) ⊆ {0, 1}n × Zn × Z defined for an integer matrix

A to include the tuple (x, a, z) if a is a row of A and |⟨x, a⟩ − z| ≤ t. The problem

of computing Ft(A) in the one-way communication model captures the communication

complexity of approximating various problems in which Alice holds a set P and Bob

holds a set S, and their goal is approximate |P ∩ S|. With P a set of points in Rd
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and S is a geometric set, we get natural approximate range counting problems, and the

communication lower bounds imply lower bounds on the size of data structures. With

P and S general, we get a problem equivalent to approximating Hamming distance, for

which we prove a lower bound that generalizes a result of Woodruff, arguably with a

simpler proof.

Our general result on the one-way communication complexity of Ft(A) follows.

Theorem 9.1. For µ the uniform distribution on {0, 1}n × {a1, . . . , am}, where ai is

the i-th row of the matrix A, and any t ≤ 1
2 rdisc6δ,1/8(A), we have D1-way

µ,δ (Ft) = Ω(n).

Proof. Let Π = (ΠA,ΠB) be a one-way deterministic protocol such that, when (x, a)

is sampled from µ, and z , ΠB(ΠA(x), a), Pr[|⟨x, a⟩ − z| > t] ≤ δ]. Let w ∈ Zm be

the vector defined by wi , ΠB(ΠA(x), a
i). Then, by Markov’s inequality applied to the

random variable |{i : |⟨x, ai⟩−wi| > t}|, we have that with probability at least 2/3 over

the choice of x, ∥Ax − w∥3δ,∞ ≤ t. By Lemma 7.8, there is a deterministic procedure

R so that dH(x,R(w)) ≤ n/8. Since w is itself a deterministic function of ΠA(x), we

have a deterministic procedure R′ that, with probability at least 2/3 over the random

choice of x, satisfies dH(x,R′(ΠA(x))) ≤ n/8. By Lemma 9.2,

I(x; ΠA(x)) ≥

2

3
− 1

8
log(8e)


n−H2(1/3) = Ω(n).

Since I(x; ΠA(x)) ≤ H(ΠA(x)), and the entropy H(ΠA(x)) is at most the number of

bits needed to write ΠA(x), i.e. the cost of Π, the theorem is proved.

9.5 Density Estimation

Let us define a hereditary version of robust discrepancy as

hrdiscδ,β(s,A) , max
J⊆[n]:|J |≤s

rdiscδ,β(AJ),

where A ∈ Rm×n. We define hrdiscδ,β(s,S) for a set system (S, U) with incidence ma-

trix A as hrdiscδ,β(s,A). We use hereditary robust discrepancy to give lower bounds on

the communication complexity of density estimation problems. Let us define a relation

Gε(S) ⊆ 2U ×S ×R which includes (P, S, φ) if
 |P∩S|

|P | − φ
 < ε. The classical construc-

tion of ε-approximations (see e.g. [105]) shows that for any P we can take a subset
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Q ⊆ P of size O(s), where s is the smallest integer such that hrdisc0,1/8(s,A) ≤ εs;

then
 |Q∩S|

|Q| − |P∩S|
|P |

 ≤ ε. This gives a data structure of bit size O(s log(|P |/s)) to

approximate densities deterministically. The next corollary of Theorem 9.1 shows that

the bit size of this construction cannot be improved by more than a factor of log(|P |/s)

even if we allow an arbitrary data structure rather than a subset of P .

Corollary 9.2. For any s such that hrdisc6δ,1/8(s,S) ≥ εs, D1-way
δ (Gε(S)) = Ω(s).

In the special case when (S, U) is the set system B2(U) induced by axis-aligned rect-

angles on U ⊆ R2, Wei and Yi [147] showed a nearly tight lower bound of Ω

1
ε log

1
ε log |P |


.

They also used discrepancy theory techniques, but exploited the fact that set systems

induced by axis-aligned rectangles have many restrictions with high discrepancy. Giv-

ing similarly near-tight space lower bounds for any density estimation problem is an

intriguing open problem.

Question 6. Give tight bounds on the smallest bit size of a data structure for any given

density estimation problem.

A recent paper by Huang and Yi [80] shows communication lower bounds for com-

puting ε-approximations in a distributed setting, also using discrepancy. The problem

the consider is different from ours, even only for two parties: in their setting, the point

set P is split between the parties, while in ours Alice holds the entire pointset, while

Bob evaluates density queries.

Note that a multiplicative approximation of |P ∩ S| within factor (1± ε) allows an

ε-approximation of the density |P∩S|
|P | , so we can interpret the above corollary as also

giving a lower bound for multiplicative approximations.

9.6 Approximating Hamming Distance

Let us define the relation Ht,n ⊆ {0, 1}n × {0, 1}n × N to include (x, y, z) for all x,

y, and z such that |dH(x, y) − z| ≤ t. In other words, Ht,n captures the problem

of approximating the Hamming distance up to additive error t on strings of length

n. Woodruff [151] proved that D1-way
µ,δ (Ht,n) = Ω(n) when t ≤ c

√
n, µ is the uniform
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distribution, and δ is a small enough constant. In fact he showed this lower bound for

the promise problem of distinguishing between dH(x, y) > n/2 + c
√
n and dH(x, y) <

n/2 − c
√
n. This is known as the Gap Hamming problem. While our techniques can

be adapted to this promise version as well with some additional effort, for simplicity

we will focus on the approximation problem directly. The next theorem is our main

lower bound for approximating Hamming distance. It extends Woodruff’s lower bound

to also give a tight dependence on the failure probability δ. The theorem follows easily

from Theorem 9.1.

Theorem 9.3. For µ the uniform distribution on {0, 1}n×{0, 1}n and t ≤ c′


n log(1/δ)

for small enough constant c′, D1-way
µ,δ (Ht,n) = Ω(n).

Proof. Let A be the matrix whose rows are all elements of the set {−1, 1}n. By Theo-

rem 9.1 and Lemma 7.7,D1-way
µ′,δ (Ft(A)) = Ω(n) for t ≤ 1

2 rdisc6δ,1/8(A) ≤ c
2


n log(6/δ)/8

and µ′ the uniform distribution on {0, 1}n × {−1, 1}n. Then the theorem follows from

the inequality D1-way
µ,δ (Ht,n) ≥ D1-way

µ′,δ (Ft(A)), which holds for any any δ and t. Indeed,

given an input (x, a) ∈ {0, 1}n,×{−1, 1}n, let us define y by yi = (ai + 1)/2. This

transformation is a bijection, so the uniform distribution on {0, 1}n ×{−1, 1}n induces

the uniform distribution on {0, 1}n × {0, 1}n. Then, because x and y are binary,

dH(x, y) = ∥x− y∥1 = ∥x− y∥22

=
n

i=1

x2i +
n

i=1

y2i − 2⟨x, y⟩

=
n

i=1

xi +
n

i=1

yi − 2⟨x, y⟩,

and ⟨x, a⟩ = 2⟨x, y⟩ −
n

i=1 xi. Therefore, ⟨x, a⟩ =
n

i=1 yi − dH(x, y). It follows that

Bob can approximate ⟨x, a⟩ from an approximation to dH(x, y) only with access to his

own input and without degrading the quality of the approximation.

Theorem 9.3 has implications for space complexity lower bounds in the streaming

model [109]. The model is essentially the same as the pan-privacy model from Chapter 7,

ignoring the privacy guarantees; indeed, the pan-privacy model was inspired by data

streams theory. A stream processing algorithmA is given as input a sequence of symbols
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σ̄ , (σ1, . . . , σm), σt ∈ Σ, which arrives online. At each time step a symbol arrives and

the algorithm updates its memory state. At any point the algorithm is required to be

able to output an approximation to some statistic on σ̄ with high probability. One of the

most basic statistics is the distinct count F0: the number of distinct symbols in σ̄. Kane,

Nelson, and Woodruff [84] give an optimal algorithm with space complexity O(ε−2 +

log n) that outputs an (1+ε)-approximation to F0 with constant probability. By running

O(log 1/δ) copies of the algorithm in parallel and taking the median answer from all

instances, the error probability can be brought down to δ at the cost of increasing

the space complexity by a factor of O(log 1/δ). Jayram and Woodruff [82] show a

lower bound of Ω(ε−2 log(1/δ)), which is optimal when ε ≤


log 1/δ
logn . The same lower

bound is implied by Theorem 9.3 via standard reductions [150], which we briefly sketch

next. We choose n = ε−2 log(1/δ) so that D1-way
µ,δ (Hεn,n) = Ω(n). Then we argue that

we can use a streaming algorithm for the distinct count problem to approximate the

Hamming distance between arbitrary x, y ∈ {0, 1}n; the argument is similar to the proof

of Theorem 7.5. The stream is split into two halves, where the first half contains all

j so that xj = 1 and the second half contains all j such that yj = 1; Alice constructs

the first half of the stream from x, and after processing the stream sends the memory

state of the algorithm to Bob, who finishes the computation with the second half of

the stream and computes the output. It is easy to argue that, with a small additional

message from Alice, Bob can compute the Hamming distance from the distinct count

approximation. See [150, 151] for the detailed argument.

It is an interesting research direction to find other natural problems in the streaming

model for which Theorem 9.1 implies tight or near-tight space lower bounds.
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Chapter 10

Avenues to Further Applications of Discrepancy

10.1 Overview

In prior chapter we posed research questions directly related to the material in these

chapters. In this chapter we outline some directions for research in other areas where we

believe discrepancy theory can be useful in making progress on important questions.

We first present a discrepancy theory view of expander graphs. Then we describe a

discrepancy-based approach to compressed sensing, motivated by the reconstruction

algorithms of prior chapters. We finish with applications of discrepancy theory to the

design of approximation algorithms.

10.2 Expander Graphs and Sparsification

The impact of expander graphs on mathematics and theoretical computer science can

hardly be overstated. Here we we give an interpretation of some basic definitions and

facts from the viewpoint of discrepancy theory. Essentially all observations we make

are widely known.

10.2.1 Spectral Expansion as Discrepancy

We start by recalling several basic definitions from spectral graph theory. All graphs will

be simple, unweighted, and undirected. Recall that the adjacency matrix A ∈ {0, 1}V×V

of a graph G = (V,E) is defined by au,v = 1 ⇔ (u, v) ∈ E}. The graph Laplacian

LG of G is the matrix L , D − A, where D ∈ NV×V is a diagonal matrix with

the degree sequence of G on the main diagonal, i.e. duu , degG(u) , |{v ∈ V :

(u, v) ∈ E}|. Equivalently, L =


(u,v)∈E (eu − ev)(eu − ev)
ᵀ, where eu ∈ RV is the
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standard basis vector corresponding to u. Therefore, L is positive semidefinite, and

xᵀLx =


(u,v)∈E (xu − xv)
2 for every x ∈ RV . Letting λ1 ≤ . . . ≤ λn be the eigenvalues

of L (with multiplicities), we see that λ1 = 0 with eigenvector the all-ones vector e.

The dimension of the nullspace of L is equal to the number of components of G.

Recall the Erdős-Renyi random graph model Gn,p, in which each edge (u, v) ∈

V
2


is

sampled independently with probability p. The expected Laplacian of a graph G ∼ Gn,p

is

EG∼Gn,pLG =


(u,v)∈E

p(eu − ev)(eu − ev)
ᵀ = p(n− 1)I − p(J − I) = p(nI − J),

where J is the all-ones matrix. We define a (n, p)-expander as a graph that approximates

this expected Laplacian in the spectral norm.

Definition 10.1. A graph G is an (n, p, α)-expander if ∥LG − p(nI − J)∥2 ≤ α, where

∥ · ∥2 is the spectral norm.

We emphasize that this is not quite the standard definition, but we will soon relate

it to more standard ones.

The notion of an expander graphs, as we defined it, is related to linear discrepancy.

Let us define a linear operator T : R(
V
2) → RV×V by

Tx ,


(u,v)∈(V2)

xu,v(eu − ev)(eu − ev)
ᵀ.

Then if x(G) is the indicator vector of the edge set E(G) of a graph G, G is an (n, p, α)

expander if and only if ∥Tx−T (px(Kn))∥2 ≤ α. Since any finite dimensional norm can

be embedded linearly into a finite dimensional subspace of ℓ∞ with arbitrarily small

distortion, there exists a linear operator T ′ : R(
V
2) → RN so that we can characterize

(n, p, α)-expanders as those graphs for which ∥T ′x(G)− T ′(px(Kn))∥∞ ≤ α′, for some

α′ arbitrarily close to α. Thus the problem of constructing an (n, p, α)-expander graph

is equivalent to minimizing the linear discrepancy of T ′ with respect to a fixed vector

px(Kn), i.e. the all-ones vector scaled by p.

Let us clarify the relationship of (n, p, α)-expanders to more standard definitions.

In their survey, Hoory, Linial, and Wigderson [79] define a degree-d regular graph G
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on n vertices to be an expander with parameter σ if σ2(A) ≤ σ, where σ2(A) is the

second largest singular value of the adjacency matrix A of G. (Note that, since A is a

symmetric matrix, its singular values are equal to the absolute values of the eigenvalues.)

This is equivalent to G being an (n, p, α)-expander for p = d
n . To see this, notice that

LG − p(nI − J) = pJ − A. The only non-zero eigenvalue of the matrix pJ is pn = d

and corresponds to the eigenvector 1√
n
e, for e being the all-ones vector. This vector is

also an eigenvector of A with the same eigenvalue, and, therefore, the singular values of

pJ−A are σ2(A), . . . , σn(A), 0. It follows that ∥LG−p(nI−J)∥2 = ∥pJ−A∥2 = σ2(A),

which is what we wanted to show.

An important property of expander graphs is captured by the expander mixing

lemma, which states that any (n, p, α)-expander graph G = (V,E) satisfies

E(S, T )− p|S||T |
 ≤ α


|S||T |, (10.1)

for any two disjoint sets S, T ⊆ V . Here we use the notation E(S, T ) , |{(u, v) ∈ E :

u ∈ S, v ∈ T}| for the size of the cut between S and T . This property is fairly easy to

verify from our definition. Let x be the indicator vector of the set S and y the indicator

of T . By the definition of the Laplacian,

−xᵀLGy =


(u,v)∈E

(xv − xu)(yu − yv) = E(S, T ).

The last equality follows because each term in the sum is nonzero only if both |{u, v}∩

S| = 1 and |{u, v} ∩ T | = 1, and, because S and T are disjoint, this happens only if

u ∈ S and v ∈ T or vice versa. On the other hand, by an analogous argument,

−xᵀp(nI − J)y =


(u,v)∈(V2)

p(xv − xu)(yu − yv) = p|S||T |.

It then follows from the definitions of the operator norm and Cauchy-Schwarz that

E(S, T )− p|S||T |
 = |xᵀ(LG − p(nI − J))y| ≤ ∥x∥2∥y∥2∥LG − p(nI − J)∥2.

(10.1) follows from the inequality above and the definition of an (n, p, α)-expander.

The bound (10.1) is a typical discrepancy property: it says that the number of

edges of any cut in an expander graph is not very different from the expected number
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of edges in the same cut in the Gn,p model. This property is key in many applications of

expanders, e.g. in randomness reduction [1, 46, 81] and hardness of approximation [4]. It

resembles, but is different from, another combinatorial notion of discrepancy of graphs,

introduced in the work of Erdős and Spencer [60] and Erdős, Goldberg, Pach, and

Spencer [61], and more closely related to Ramsey’s theorem. That notion compares the

density of subgraphs to the expected density in Gn,p. It would be interesting to explore

explicit constructions and algorithmic applications of this notion of low-discrepancy

graphs as well.

It turns out that the discrepancy property (10.1) nearly characterizes expanders:

Bilu and Linial [25] showed that if a d-regular graph G on n vertices satisfies (10.1) for

all S, then G is an (n, d
n , O(α log(2d/α)))-expander. They used this fact to construct

infinite families of regular expander graphs of any degree d with nearly optimal parame-

ters. Let us clarify what the optimal parameters are. Alon and Boppana (see [119, 64])

showed that any d-regular (n, d
n , α)-expander satisfies α ≥

√
d− 1 − o(1), where the

asymptotic notation assumes d stays fixed and n → ∞. Any graph matching this bound

is called a Ramanujan graph. Bilu and Linial constructed d-regular (n, d
n , O(


d log3 d))-

expanders for any integer d and infinitely many n. Very recently, Marcus, Spielman and

Srivastava [96] showed that there exist infinite families of bipartite Ramanujan graphs

of any degree. The analogous result for families of non-bipartite graphs remains open.

These advances suggest the following question.

Question 7. Can the definition of (n, p, α)-expander as a low-discrepancy object be

used to construct an infinite family (non-bipartite) Ramanujan graphs of any degree via

discrepancy theory techniques? Can this view be used to give deterministic polynomial

time constructions of Ramanujan families?

The result of Bilu and Linial is efficient: a graph of size n can be constructed in

deterministic polynomial in n time. On the other hand, the result of Marcus, Spielman,

and Srivastava is only existential.

The connection between the combinatorial discrepancy property (10.1) and ex-

panders proved by Bilu and Linial is tight. Therefore, in order to make progress on
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Question 7, we need to work directly with the more linear-algebraic definition.

10.2.2 Sparsification

Marcus, Spielman, and Srivastava’s recent resolution of the Kadison-Singer problem [97]

makes some progress on Question 7. Their result implies the following discrepancy

bound. This observation was made, for example, in the weblog post [139].

Theorem 10.1 ([97]). Let M =
m

i=1 viv
ᵀ
i , where v1, . . . , vm ∈ Rn. If vᵀi M

+vi ≤ α

for all i and M+ denoting the pseudoinverse of M , then there exist signs ε1, . . . , εm ∈

{−1, 1} such that for all x ∈ Rn,
m
i=1

εi⟨vi, x⟩2
 ≤ 10

√
α

m
i=1

⟨vi, x⟩2.

In particular, ∥
m

i=1 εiviv
ᵀ
i ∥2 ≤ 10

√
α∥M∥2, where ∥ · ∥2 is the spectral norm.

Theorem 10.1 is a vector-balancing result for “small” rank-1 matrices with respect

to the spectral norm. The values vᵀi M
+vi are known as leverage scores. If V is the

matrix whose columns are v1, . . . , vm, and Π is the orthogonal projection matrix onto

the row-span of V , then the leverage scores are equal to the diagonal entries of Π.

The condition that the leverage scores are bounded by α is related to the notion of

coherence; when α is small, it implies that no strict subset of v1v
ᵀ
1 , . . . , vmvᵀm has too

large of a contribution to the total energy tr(M).

In the context of expander graph constructions, Theorem 10.1 and the classical

“halving” construction in combinatorial discrepancy theory can be applied to construct

(n, p, α)-expanders. The halving construction itself is outlined in [139] and is very

closely related to the proof of Beck’s transference lemma (Lemma 1.1). Let us take

M , LKn =


(u,v)∈(V2)
(eu − ev)(eu − ev)

ᵀ = nI − J . All leverage scores are equal to

2/n, and, by Theorem 10.1, there exist signs {εu,v}(u,v)∈(V2) such that

∥


(u,v)∈(V2)

εu,v(eu − ev)(eu − ev)
ᵀ∥2 = O(

√
n).

We can then take the graph G = (V,E) where E is the smaller of the two edge sets

E+ = {(u, v) : εu,v = +1} and E− = {(u, v) : εu,v = −1}. We have

∥LG − 1

2
LKn∥2 = ∥LG − 1

2
(nI − J)∥ ≤ 1

2
·O(

√
n).
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I.e. G is an (n, 12 ,
1
2 · O(

√
n))-expander. We can then apply the same technique to

M = LG to get a (n, 14 ,
1
4 · O(

√
n))-expander, and so on recursively, until we have a

(n, d
n , O(

√
d))-expander. This is close to optimal, but to resolve Question 7, we would

need to get tighter constant factors and adapt the construction to produce regular

graphs of any degree. It is also an interesting question whether this construction can

be done in polynomial time, as the known proof of Theorem 10.1 is existential.

The “sparsification by halving” argument above can be applied to any graph H in

order to derive a sparser spectral approximation G. Here, by spectral approximation, we

mean that, for some p < 1, ∥LG − pLH∥2 is bounded. The quality of the sparsification

will depend on the leverage scores, which in the case of graph Laplacians are equal to

the effective resistances of the graph edges. A similar sparsification result was proved

by Batson, Spielman, and Srivastava [17]. In the setting of Theorem 10.1, they proved

that there exists a set of scalars x1, . . . , xm, at most dn of them nonzero, so that
1− 1√

d

2

M ≼
m
i=1

xiviv
ᵀ
i ≼


1 +

1√
d

2

M.

In fact, this result does not require any condition on the leverage scores. It is proved

via a deterministic polynomial-time algorithm, but it requires that the sparsified graph

be weighted. As there has been substantial recent progress on constructive methods in

discrepancy theory, we are prompted to ask the following question.

Question 8. Can constructive discrepancy minimization techniques be applied to ef-

ficiently produce, given a graph H, an unweighted sparse graph G that is a spectral

approximation to G?

We also note that there are other notions of graph sparsification. For one closely

related example, cut sparsifiers [22] relax the spectral approximation requirement and

require that xᵀ(LG − pLH)x is bounded only for binary vectors x. One can also define

sparsifiers with respect to a measure approximation based on subgraph densities: G

approximates H scaled down by p if the density of any induced subgraph of G is close to

the density of the corresponding subgraph of H scaled down by p. This approximation

notion is closely related to the discrepancy quantity for pairs of graphs defined by

Bollobás and Scott [29].
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10.3 Compressed Sensing

A basic observation in signal processing is that real-life signals are often sparse in

some basis, or at least well-approximated by a sparse signal. A popular example is

digital images, which tend to be sparse in the wavelet basis. This fact is traditionally

exploited for compression: after an image is acquired, only the largest coefficients are

retained, while those that fall below some threshold are dropped; once the remaining

coefficients are transformed back into an image, we get an image that visually looks very

close to the original, but can be stored in smaller space. Compressed sensing is a new

framework in which the first two-steps of the traditional approach are combined into

one: the measurements are carefully designed so that we directly acquire a compressed

image. Moreover, the number of measurements is comparable to the size of the image

after compression. Compressed sensing has revolutionized signal processing and is now

an active field which has also crossed over into computer science and statistics. For a

recent survey of results, we recommend the book [59], and in particular the introductory

chapter by Davenport, Duarte, Eldar, and Kutyniok.

In this section we offer a more combinatorial perspective on compressed sensing,

inspired by the reconstruction algorithms in Chapter 7. These connections are prelimi-

nary, and we do not aim to reconstruct the best results in compressed sensing. Our goal

is rather to offer a different perspective, which can hopefully lead to further advances.

We represent a signal as a vector x ∈ Rn. We assume that the vector is k-sparse

in the standard basis, i.e. has at most k non-zero entries. This comes without loss of

generality: if the signal is sparse in another basis, we can perform a change of basis

in order to make sure the assumption is satisfied. The goal in compressed sensing is

to design a measurement matrix A ∈ Rm×n, so that any k-sparse x can be efficiently

reconstructed from Ax. Moreover, it is desirable that the reconstruction is robust in

a number of ways: we would like a good approximation x̃ of x when we only observe

noisy measurements, and when x is not exactly k-sparse but only close to a k-sparse

vector. This class of problems are collectively known as sparse recovery.
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The following proposition shows a connection between sparse recover and the con-

cept of robust discrepancy defined in Chapter 7. We recall that we use dH as the

Hamming distance function.

Proposition 10.1. There exists an algorithm R such that for any real matrix A ∈

Rm×n, any k-sparse x ∈ {0, 1}n and any y such that

∥y −Ax∥α,∞ ≤ 1

2
min

J⊂[n]:|J |=2k
rdisc2α,β(AJ), (10.2)

x̃ , R(A, y) satisfies dH(x̃, x) ≤ βk.

Proof. The proof is very similar to that of Lemma 7.8. We define R(A, y) as

R(A, y) , arg min
x̃∈{0,1}n,k-sparse

∥Ax̃− y∥α,∞.

Let x̃ , R(A, y) and D , minJ⊆[n]:|J |=2k rdiscα,β(AJ). By assumption, ∥Ax̃− y∥α,∞ ≤

∥Ax − y∥α,∞ ≤ D/2. By the approximate triangle inequality (7.3), we have the guar-

antee

∥Ax̃−Ax∥2α,∞ ≤ ∥Ax̃− y∥α,∞ + ∥y −Ax∥α,∞ ≤ D.

Since x̃ and x are binary, x̃ − x ∈ {−1, 0, 1}n. Moreover, because both vectors are

k-sparse, the union of their supports is contained in some set J ⊆ [n] of size 2k, so

A(x̃ − x) = AJ(x̃ − x). Then, by the definition of rdiscα,β(A), we have dH(x̃, x) =

∥x̃− x∥1 ≤ βk.

The quantity minJ⊆[n]:|J |=k rdiscα,β(AJ) can be seen as a combinatorial analogue of

the restricted isometry property (RIP) of order k, which requires that for any submatrix

AJ for |J | = k, the ratio between the largest singular value of AJ and the smallest

nonzero singular value is bounded by 1 + ϵ. The correspondence would be closer if

we were to replace the ∥ · ∥α,∞ norm in the definition of robust discrepancy with the

ℓm2 -norm.

Proposition 10.1 shows that sparse reconstruction is possible in the presence of an

α-fraction of gross (unbounded) errors, and the other errors bounded as in the right

hand side of (10.2). In this sense it gives a robust reconstruction guarantee. This

mixed error setting is similar to the one in [52, 34]. These papers do not consider the
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sparse setting but they do propose efficient reconstruction algorithms. We suggest the

following question.

Question 9. Under what conditions can the reconstruction algorithm R in Proposi-

tion 10.1 be made efficient?

We have not addressed several other issues which are important in compressed sens-

ing. For example, usually the signal x is arbitrary, rather than binary. This issue can be

addressed by appropriately strengthening the definition of discrepancy; we will not pur-

sue this further in this section. A very important issue is the number of measurements

m. It can be shown that for m = Θ(k log(n/k)) random linear measurements drawn

from the Rademacher distribution, the right hand side of (10.2) is, with overwhelming

probability, Ω(
√
βk) for any constant α.

Proposition 10.2. Let the matrix A be picked uniformly at random from {−1, 1}m×n.

There exists a constant C such that for m ≥ Ck log(n/k), with probability 1 − e−Ω(n)

we have that for any set J ⊆ [n] of size |J | = k, rdiscα,beta(AJ) = Ω(


βk log(1/α)).

Proof. Let P be the matrix whose rows are the set {−1, 1}n. Let β0 , βk/n. For any

J ⊆ [n] and any x ∈ {−1, 0, 1}J , we define its extension x′ ∈ {−1, 0, 1}n to agree with

x on J and have entries 0 everywhere else. Then, there exists a constant c such that

for any α, any J ⊆ [n] of size k, and any x ∈ {−1, 0, 1}J such that ∥x∥1 ≥ βk, by

Lemma 7.7,

∥PJx∥2α,∞ = ∥Px′∥2α,∞ ≥ rdisc2α,β0(P ) ≥ c


β0n log(1/2α0) = c

βk log(1/2α).

Let A be the random matrix we get by sampling m rows uniformly and independently

from P . For any fixed J and x as above, E[|{i : |(AJx)| > c

βk log(1/2α)}|] ≥ 2αm,

and, by the Chernoff bound,

Pr[∥AJx∥α,∞ < c


βk log(1/α0)] ≤ exp(−c′m),

for a constant c′. Setting m > n + 1
c′ ln


3k

n
k


and taking a union bound over all

choices of J and x completes the proof.



155

The bound in Proposition 10.2 is of the same order of magnitude as the size of

random matrices with the restricted isometry property.

An interesting question is whether sparse reconstruction is possible with more re-

stricted measurements. If the measurements have some nice geometric structure, it is

possible that designing the sensing hardware would be less costly. Discrepancy theory

seems like a well-suited tool to address this problem, since it provides discrepancy es-

timates for many classes of structured matrices A. However, while Proposition 10.2

shows that the quantity on the right hand side of (10.2) can be nicely bounded from

below for random matrices, this is in general a very strong property, and it is not clear

if it holds for any family of structured matrices. On the other hand, it is natural to also

assume that the signal x has some nice structure, and it seems plausible that under

such an assumption reconstruction is possible even with restricted measurements. As

a motivating example, we have the following proposition.

Proposition 10.3. Let P ⊆ [n]2 be a O(1)-spread set (see Definition 2.3) of k points

in the plane. Let H be the set of halfplanes that have non-zero intersection with [n]2,

and let y ∈ RH be such that for any H ∈ H, |yH − |H ∩ P || = o(k1/4). There exists an

algorithm R such that |R(y)△P | = o(k).

Proof Sketch. The reconstruction algorithm R outputs a c-spread point set P̃ that

minimizes maxH |yH−|H∩P̃ ||. Let A be the incidence matrix of the set system induced

by H on [n]2, and let x be the indicator vector of P . By an argument analogous to

the one in Proposition 10.1, it is enough to show that ∥A(x− x̃)∥∞ = Ω(k1/4) for any

indicator vector x̃ of a c-spread set such that ∥x− x̃∥1 = Ω(k). Notice that a c-spread

set is contained in a disc of radius c
√
n. Let P̃ be the set of points for which x̃ is an

indicator vector. If we can draw two discs of radius c
√
n, one containing P and one

containing P̃ , such that the discs intersect, then P ∪P̃ is 2c-spread and the claim follows

from Lemma 2.7. Otherwise, there is a line separating P and P̃ , and for any halfplane

H bounded by this line, |(A(x − x̃))H | = ||P ∩H| − |P̃ ∩H|| = Ω(k). This completes

the proof sketch.

Proposition 10.3 bounds the amount of information needed for reconstruction in a
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different way from the usual reconstruction results: by putting a restriction on the ex-

pressiveness of measurements rather than on their number. Also, the restriction on the

signal combines a geometric assumption (well-spreadedness) and a sparsity assumption.

This is similar to model-based compressed sensing, see e.g. [15].

Nevertheless, it is interesting to explore whether the number of measurements in

Proposition 10.3 (which apriori is O(n4) since this is the number of distinct sets induced

by halfplanes on [n]2) can be reduced. A possible direction is to consider a limited

number of adaptive measurements to “weed out” most of the grid [n]2, followed by

O(k2) non-adaptive halfplane measurements. Another important question is whether

the reconstruction algorithm can be made to run in polynomial time.

We finish the section with the following general question.

Question 10. Under what natural assumptions on the signal x is reconstruction from

a restricted class of structured measurements possible? What structured measurements

are important in practice, e.g. for reducing the cost of compressed sensing hardware?

10.4 Approximation Algorithms

Many combinatorial optimization problems can be posed as an integer program (IP)

min{cᵀx : Ax ≥ b, x ∈ Zn}. In general, such formulations are NP-hard, as are many

interesting examples. As a basic example, consider the NP-hard SetCover problem,

in which we are given m subsets S1, . . . , Sm ⊆ [n], and our goal is to find a set I ⊆ [m]

of the smallest size such that


i∈I Si = [n]. As an integer program, SetCover can be

formulated as min{eᵀx : ATx ≥ e, x ∈ {0, 1}m}, where e = (1, . . . , 1) ∈ Rm and A is

the incidence matrix of the input set system {S1, . . . , Sm}.

While exactly solving an NP-hard problem in polynomial time is implausible, it is

often possible to design an efficient approximation algorithm. One of the most powerful

strategies for doing this is to relax an integer programming formulation of an optimiza-

tion problem to a linear program (LP) by simply dropping the integrality constraints.

I.e., in our general formulation above, the LP relaxation would be min{cᵀx : Ax ≥ b},

and for the SetCover problem the relaxation would be min{eᵀx : ATx ≥ e, x ∈
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[0, 1]m}. Clearly, for a minimization problem, the value of the LP relaxation is no

larger than the value of the IP. The challenge then is to use the LP to compute a fea-

sible IP solution whose value is not much larger than the optimal value of the LP (and

therefore not much larger than the optimal value of the IP as well). One common way

to do this is to design a rounding algorithm which takes a feasible LP solution x as input

and outputs a feasible IP solution x̄ so that cᵀx ≥ αcᵀx̄. This guarantee then implies

an approximation factor of α−1. For general background and more information on the

design of approximation algorithms we refer the reader to the books by Williamson and

Shmoys [149] and by Vazirani [145].

The connection between rounding algorithms and discrepancy theory is via linear

discrepancy. Recall that we define the linear discrepancy lindisc(A) of a matrix A as

lindisc(A) , max
c∈[−1,1]n

min
x∈{−1,1}n

∥Ax−Ac∥∞.

Recall also that, by Theorem 1.1, lindisc(A) ≤ 2 herdisc(A).

Proposition 10.4. Let vIP , min{cᵀx : Ax ≥ b, x ∈ Zn} and vLP , min{cᵀx : Ax ≥

b}. Define the matrix D ,

 cᵀ

A

. There exists a solution x̄ ∈ Zn such that

cᵀx− vLP ≤ 1

2
lindisc(D)

∥Ax− b∥∞ ≤ 1

2
lindisc(D).

Proof. Let x∗ be the optimal solution of the LP min{cᵀx : Ax ≥ b}, and let x0

be the vector consisting of the integer parts of each coordinate of x∗. Let x1 ,

argminx∈{−1,1}n ∥Dx − Df∥∞ for f , e − 2(x∗ − x0) ∈ [−1, 1]n and e the all-ones

vector. By the definition of linear discrepancy, ∥Dx1 − Df∥∞ ≤ lindisc(D). Let

x̄ , x0 +
1
2(e− x1), and observe that

x∗ − x̄ = x∗ − x0 −
1

2
(e− x1) =

1

2
(x1 − f),

and, therefore, ∥Dx∗ −Dx̄∥∞ = ∥Dx1 −Df∥∞, and the proposition follows.

An important note to make here is that if we can minimize linear discrepancy in

polynomial time (for the given matrix), then the integer solution x̄ can also be found in
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polynomial time. Moreover, the proof of Theorem 1.1 is constructive, in the sense that

if we can find a coloring in polynomial time that achieves discrepancy bounded by the

hereditary discrepancy, then we can compute a coloring that achieves linear discrepancy

bounded by at most twice the hereditary discrepancy. It is also not necessary to exactly

minimize discrepancy and linear discrepancy: whatever value we can achieve efficiently

will give a corresponding bound in Proposition 10.4.

Proposition 10.4 does not immediately imply an approximation guarantee, because

the integer solution x̄ is not necessarily feasible. However, in special cases, it may be

possible to “fix” x̄ to make it feasible, while incurring only a small cost in terms of the

objective value cᵀx. One simple strategy, which works when A, b, c are non-negative,

is to scale the vector b in the linear program by a large enough number K so that

∥Kb− b∥∞ ≥ 1
2 lindisc(D). The new linear program min{cᵀx : Ax ≥ Kb} has value at

most KvLP , and if we apply Proposition 10.4 to it, we get an integral x̄ which is feasible

for the original IP and has objective function value at most KvLP + 1
2vLP

lindisc(D).

As an example, let us apply the above observation to the SetCover problem.

It is easy to see that the linear discrepancy of the matrix

 eᵀ

Aᵀ

 is at most the

degree ∆S of the input set system S = {S1, . . . , Sm}: any coloring x ∈ {−1, 1}m that

satisfies |eᵀx| ≤ 1, for example, achieves this bound. Therefore, we can approximate

SetCover up to a factor of (1+ 1
vLP

)12∆S+1. For example, when ∆S = 2, we have the

VertexCover problem, and for large enough vLP we nearly recover the best known

approximation ratio of 2. (When the optimal vertex cover is of constant size, it can be

found in polynomial time.) This approach is similar to the scaling strategy proposed

by Raghavan and Thompson [122] for randomized rounding.

For any particular problem there may be a more efficient way to make the integer

solution x̄ feasible. Eisenbrand, Pálvölgyi, and Rothvoß showed how to do this for

the BinPacking problem. In BinPacking we are given a set of n items with sizes

s1, . . . , sn ∈ [0, 1]. The goal is to pack the items into the smallest number of bins, each of

size at most 1. BinPacking can be relaxed to the Gilmore-Gomory linear program [68]

min{eᵀx : Aᵀx ≥ e}, where the rows of the matrix A are the indicator vectors of all ways
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to pack the items into a bin of size 1. In fact, this is a special case of the SetCover

problem, but the sets are exponentially many, and are given implicitly. Karmarkar and

Karp [85] showed that this linear program can be efficiently approximated to any given

degree, and can then be rounded to get a packing that uses at most O(log2 n) more

bins than the optimal solution. In the interesting special case where all item sizes are

bounded from below by a constant, Karmarkar and Karp’s algorithm gives additive

approximation O(log n). Eisenbrand et al. presented a discrepancy-based approach

to improve on Karmarkar and Karp’s algorithm for this special case. Assuming that

s1 ≥ . . . ≥ sn, they substitute the constraint Aᵀx ≥ b with LAᵀx ≥ Lb, where L is

the n × n lower triangular matrix with 1s on the main diagonal and below it. Hall’s

marriage theorem can be used to show that this new constraint is equivalent to the

original one. However, the new constraint has the benefit that it allows for an easy

method of fixing “slightly infeasible” solutions x̄: if Lb − LAx̄ ≤ de for some value d,

then we can make x̄ feasible by only opening d new bins. Eisenbrand et al. showed that

when the item sizes in the BinPacking instance are bounded below by a constant, the

discrepancy of LA is equal, up to constants, to the discrepancy of a set system of initial

intervals of O(1) permutations on [n].

Unfortunately [113] proved the existence of 3 permutations on [n] so that the set

system of their initial intervals is Ω(log n), showing that the original approach of Eisen-

brand at al. could not improve on the Karmakar and Karp algorithm ([113] also showed

that the same holds for a larger natural class of rounding algorithms). Nevertheless,

this does not mean that discrepancy-based rounding, together with other methods,

could not lead to an improved approximation gaurantee for the BinPacking problem.

A powerful illustration of this argument is the recent work by Rothvoß [128], who im-

proved on Karmakar and Karp’s algorithm and showed that for general BinPacking

instances, the optimal solution can be approximated to within O(log n log log n) bins.

His algorithm, on a very high level, transforms the constraint matrix via gluing and

grouping operations (without changing the optimal value of the LP relaxation much)

so that the discrepancy becomes very low.

In the reverse direction, assume we have an integer program min{cᵀx : Ax ≥ b, x ∈
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{0, 1}n}. We have that there exists some vector x so that any integer vector x̄ satisfies

∥Ax−Ax̄∥∞ ≥ lindisc(A). While this does not imply a gap between the integer program

and its linear relaxation, it is plausible that, for specific problems, such a connection

can be made. This is especially interesting for BinPacking, where the largest known

additive gap between the Gilmore-Gomory linear program and the smallest achievable

number of bins is 1.

Question 11. Can linear discrepancy be used to prove a super-constant additive in-

tegrality gap for the Gilmore-Gomory relaxation of bin packing? For other interesting

problems? Can discrepancy-based rounding be used to give improved approximation

algorithms for interesting problems.

We note that discrepancy techniques were successfully used to give approximation

algorithms and integrality gaps for the broadcast scheduling problem [12].

10.5 Conclusion

Many questions in computer science can be phrased as questions about how well a “sim-

ple” (discrete) structure can mimic a “complex” (continuous) structure. Techniques to

address such problems have been developed in parallel in discrepancy theory and com-

puter science. There have been many interesting examples of interaction between the

two fields, some presented in this thesis, and we can expect more such examples in the

future. Moreover, while discrepancy theory is already a mature field, we only recently

began to understand the computational challenges associated with it. Until a few years

ago, many positive results in discrepancy were not constructive, and thus not available

for the design of efficient algorithms. Furthermore, prior to the results of this thesis,

no efficient non-trivial algorithms were known to accurately estimate the fundamental

measures of combinatorial discrepancy. As we understand these computational dis-

crepancy theory questions better, we can expect that the relevance of discrepancy to

computer science and related fields will only grow.
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[3] Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel
algorithm for the maximal independent set problem. J. Algorithms, 7(4):567–583,
1986.

[4] Noga Alon, Uriel Feige, Avi Wigderson, and David Zuckerman. Derandomized
graph products. Computational Complexity, 5(1):60–75, 1995.

[5] Noga Alon and Yishay Mansour. ϵ-discrepancy sets and their application for
interpolation of sparse polynomials. Inform. Process. Lett., 54(6):337–342, 1995.

[6] Noga Alon and Joel H. Spencer. The probabilistic method. Wiley-Interscience Se-
ries in Discrete Mathematics and Optimization. John Wiley & Sons, Inc., Hobo-
ken, NJ, third edition, 2008.

[7] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–
856, July 1995.

[8] Per Austrin, Venkatesan Guruswami, and Johan H̊astad. (2+ϵ)-SAT is NP-hard.
In ECCC, 2013.

[9] W. Banaszczyk. Balancing vectors and gaussian measures of n-dimensional con-
vex bodies. Random Structures & Algorithms, 12(4):351–360, 1998.

[10] Wojciech Banaszczyk. Balancing vectors and convex bodies. Studia Math.,
106(1):93–100, 1993.

[11] Nikhil Bansal. Constructive algorithms for discrepancy minimization. In Foun-
dations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on,
pages 3–10. IEEE, 2010.

[12] Nikhil Bansal, Moses Charikar, Ravishankar Krishnaswamy, and Shi Li. Better
algorithms and hardness for broadcast scheduling via a discrepancy approach. In
SODA, pages 55–71, 2014.

[13] Nikhil Bansal and Joel Spencer. Deterministic discrepancy minimization. Algo-
rithmica, 67(4):451–471, 2013.



163

[14] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. Information
theory methods in communication complexity. In Proceedings of the 17th Annual
IEEE Conference on Computational Complexity, Montréal, Québec, Canada, May
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[21] József Beck and Vera T. Sós. Discrepancy theory. In Handbook of combinatorics,
Vol. 1, 2, pages 1405–1446. Elsevier, Amsterdam, 1995.
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