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Intro

Example

ID Gender Zip Code Smoker Lung Cancer

089341 M 07306 No No
908734 F 10001 Yes Yes
560671 M 08541 Yes No

The data is both sensitive (medical information) and personally identifiable
(with the right kind of side information).

Universe: All possible settings of the attributes

Histogram: Number of users for each setting of the attributes.

Queries:

How many male smokers have lung cancer?

How many more female smokers are there than male smokers?
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Intro

Setting

A universe U of user types; |U| = N

A database D ∈ Un of n users, each having some type in U

The database in histrogram representation:

x ∈ RU : xi is the number of users in the database having type i ∈ U

‖x‖1 =
∑

i∈U |xi | = n

D4D ′ ≤ 1⇔ ‖x − x ′‖1 ≤ 1
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Intro

Linear Queries

A useful and rich primitive: linear queries on the histrogram x .

Linear Query: 〈a, x〉

Query Matrix: d linear queries: Ax where A ∈ Rd×N

when A is a 0-1 matrix, we call the d queries counting queries
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Intro

Privacy

Privacy Goal: compute aggregate statistics (here: linear queries) without
revealing the type of any user, even to an adversary who knows the types
of all other users.

Definition

An algorithm M with input domain RN and output range Y is
(ε, δ)-differentially private if for every n, every x , x ′ with ‖x − x ′‖1 ≤ 1,
and every measurable S ⊆ Y , M satisfies

Pr[M(x) ∈ S ] ≤ eε Pr[M(x ′) ∈ S ] + δ.

Intuition: Algorithm does almost the same, no matter if a particular user
participated or not. Incentive to participate in a study.
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Intro

Accuracy

Accuracy of algorithm M – mean squared error:

Err(M,A, n) = max
x :‖x‖1≤n

E
1

d
‖M(A, x , n)− Ax‖2

2

Err(M,A) = max
n

Err(M,A, n)

Optimal error on A and on databases of size up to n is:

Optε,δ(A, n) = min
M

Err(M,A, n),

where the minimum is over all (ε, δ)-differentially private algorithms M.

The optimum when database size is unrestricted:

Optε,δ(A) = max
n

Optε,δ(A, n)
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Intro

Universal bounds on error

For A ∈ [0, 1]d×N :

Optε,δ(A) = O(d)

[DKM+06]: Add N(0,
√
dc(ε, δ)) noise to each query answer

[DN03]: Tight for random A

Optε,δ(A, n) = O(n
√

logN)

[HR10, GRU12]: Multiplicative weights, median mechanism
[DN03]: Tight up to the

√
logN for random A

Optε,0(A, n) = O(n4/3 polylog(N))

[BLR08]: Learning theoretic techniques
This work: Optε,0(A, n) = O(n polylog(N, d))
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Intro

Special A?

Some matrices A require a lot less error:

A =


1 0 · · · 0 0
1 1 · · · 0 0
...

...
. . .

...
...

1 1 · · · 1 0
1 1 · · · 1 1



Optε,δ(A) = O(polylog(d))

Algorithm: answer a different set of queries, based on a binary tree
data structure
Notice: A is TUM
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Intro

Results

An algorithm M is α-optimal in the dense case if it is (ε, δ)-d.p. and

Err(M,A) ≤ αOptε,δ(A)

An algorithm M is α-optimal in the sparse case if it is (ε, δ)-d.p. and

Err(M, n) ≤ αOptε,δ(A, n)

Unbounded n Bounded n
α = (Dense) (Sparse)

(ε, 0)-d.p. polylog(d) 1 ?

(ε, δ)-d.p. ? ?

Table : Values for α

1 [HT10, BDKT12]
Nikolov, Talwar, Zhang (Rutgers, SVC) Geometry of Privacy p. III 10 / 27



Intro

Results

An algorithm M is α-optimal in the dense case if it is (ε, δ)-d.p. and

Err(M,A) ≤ αOptε,δ(A)

An algorithm M is α-optimal in the sparse case if it is (ε, δ)-d.p. and

Err(M, n) ≤ αOptε,δ(A, n)

Unbounded n Bounded n
α = (Dense) (Sparse)

(ε, 0)-d.p. polylog(d) 1 polylog(d ,N)

(ε, δ)-d.p. polylog(d) polylog(d ,N)

Table : Values for α

1 [HT10, BDKT12]
Nikolov, Talwar, Zhang (Rutgers, SVC) Geometry of Privacy p. III 10 / 27



Intro

Growth of Error with n

d
n

E
rr

Err(Msparse, A, n)

Opt(A,n)

Err(Mdense, A)
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Intro

What the algorithms look like?

Dense case (n = Ω(d))

Add correlated Gaussian noise w and output ỹ = Ax + w

Sparse case (n = o(d))

Compute noisy answers ỹ using the dense case algorithm

Find the closest set of answers ŷ that can be generated by a database
x of size ‖x‖1 ≤ n
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Dense Case (n = Ω(d))

Outline

1 Intro

2 Dense Case (n = Ω(d))

3 Sparse Case (n = o(d))
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Dense Case (n = Ω(d))

The Lead Actor: K

Let K = AB1 where B1 is the `1 ball:

nK is all query answers that can be generated by a size n-database.

K = conv{±a1, . . . ,±aN}

K
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Dense Case (n = Ω(d))

Preliminaries: Gaussian Mechanism

Basic algorithm MGN:

Say K ⊆ rBd
2 (`2-sinsitivity is r)

Output Ax + w , where w ∼ N(0, r · c(ε, δ))d

Properties:

satisfies (ε, δ)-differential privacy

Err(MGN,A) = O(r2)
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Dense Case (n = Ω(d))

Preliminaries: Noise Lower Bounds

[HT10]: Optε,0(A) ≥ d2 vol(K )2/d

[MN12]: Say S is a simplex of d vertices of K and the origin
⇒ Optε,δ(A) ≥ d2 vol(S)2/d

lower bound uses combinatorial discrepancy

Optε,δ(ΠA) ≤ Optε,δ(A) for any projection Π ⇒ can use lower bound
on any ΠA to lower bound Optε,δ(A).

Nikolov, Talwar, Zhang (Rutgers, SVC) Geometry of Privacy p. III 16 / 27



Dense Case (n = Ω(d))

Preliminaries: Noise Lower Bounds

[HT10]: Optε,0(A) ≥ d2 vol(K )2/d

[MN12]: Say S is a simplex of d vertices of K and the origin
⇒ Optε,δ(A) ≥ d2 vol(S)2/d

lower bound uses combinatorial discrepancy

Optε,δ(ΠA) ≤ Optε,δ(A) for any projection Π ⇒ can use lower bound
on any ΠA to lower bound Optε,δ(A).

Nikolov, Talwar, Zhang (Rutgers, SVC) Geometry of Privacy p. III 16 / 27



Dense Case (n = Ω(d))

Preliminaries: Noise Lower Bounds

[HT10]: Optε,0(A) ≥ d2 vol(K )2/d

[MN12]: Say S is a simplex of d vertices of K and the origin
⇒ Optε,δ(A) ≥ d2 vol(S)2/d

lower bound uses combinatorial discrepancy

Optε,δ(ΠA) ≤ Optε,δ(A) for any projection Π ⇒ can use lower bound
on any ΠA to lower bound Optε,δ(A).

Nikolov, Talwar, Zhang (Rutgers, SVC) Geometry of Privacy p. III 16 / 27



Dense Case (n = Ω(d))

Preliminaries: The Löwner Ellipsoid

K

Every K has a a unique minimum volume ellipsoid (MEE) containing
it. [Joh48].

[BT87, Ver01]: If the MEE of K is a ball rBd
2 , there are Ω(d) contact

points of rBd
2 and K which are pairwise nearly orthogonal.
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Dense Case (n = Ω(d))

Optimality: pt 1

[BT87, Ver01]: If the MEE of K is a ball rBd
2 , there are Ω(d) contact

points of rBd
2 and K which are pairwise nearly orthogonal.

When the MEE of K is a ball:
Take the simplex S spanned by the nearly orthogononal contact points
d2 vol(S)2/d = Ω(r2)
The Gaussian Mechanism Ax + N(0, r · c(ε, δ)) is optimal!
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Dense Case (n = Ω(d))

Optimality: pt 2

But when the MEE is a “long” ellipse?:

K

V

Find a subspace V (of dimension Ω(d)) such that ΠVE is like a sphere
Run Gaussian Mechanism on ΠVK and recurse on V⊥

Can still get a large simplex even inside V using the full power
of [Ver01].
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Sparse Case (n = o(d))

Outline

1 Intro

2 Dense Case (n = Ω(d))

3 Sparse Case (n = o(d))
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Sparse Case (n = o(d))

Sparse case noise lower bound

If S is a simplex of k ≤ n vertices of K and the origin
⇒ Optε,δ(A, n) ≥ 1

d k
3 vol(S)2/k

Notice: when the MEE of K is a ball, we found a simplex S which is
almost regular

⇒ any face of S gives a lower bound of Ω( n
d r

2)

But what algorithm matches the bound?
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Sparse Case (n = o(d))

Simple Algorithm for Sparse Case

Gaussian Noise + Least Squares Estimation MGN + LSE:

1 Add noise: Compute ỹ = Ax + w for w ∼ N(0, r · c(ε, δ))d

2 Project: Output arg min{‖ŷ − ỹ‖2 : ŷ ∈ nK}.
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Sparse Case (n = o(d))

Optimality: MEE is a ball

y = Ax

ŷ = Ax̂

ỹ = Ax+ w

w

nK

1
d ‖ŷ − y‖2

2 ≤ 4
d ‖w‖2

2.

1
d ‖ŷ − y‖2

2 ≤ 2
d |〈w , ŷ − y〉|.

E
2

d
|〈w , ŷ − y〉| ≤ E

4n

d
‖ATw‖∞

= E
4

d
|Πw (nK )|

≤ 4n

d
r2
√

logN

The Gaussian Mechanism + LSE is
nearly optimal!
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ŷ = Ax̂
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Sparse Case (n = o(d))

Optimality: General

Same ideas as before:

K

V

Find a subspace V such that ΠVE is like a sphere

Run Gaussian Mechanism + LSE on ΠVK and recurse on V⊥
Full power of [Ver01] gives a lower bound.
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Sparse Case (n = o(d))

Miscellanea

(ε, 0)-differential privacy: use generalized K -norm noise
of [HT10, BDKT12] to “approximate” Gaussian noise.

In the dense case can extend to worst-case error per query using
boosting

Our lower bounds are in terms of hereditary discrepancy and our
upper bounds are efficiently computable and nearly matching: first
polylogarithmic approximation to hereditary discrepancy.
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Sparse Case (n = o(d))

Summary and open questions

A simple (ε, δ)-d.p. algorithm for answering linear queries optimally
for any workload A and database size n.

Improved on the error bound of [BLR08]

Polylogarithmic approximation for hereditary discrepancy.

Questions:

Can an algorithm that processes queries online be competitive?

Other cases where simple least squares regression provably helps?

Other data parameters that help reduce error?
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Sparse Case (n = o(d))

Thank you!
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Sparse Case (n = o(d))
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Sparse Case (n = o(d))
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Sparse Case (n = o(d))
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