1 Lower bounds on combinatorial discrepancy

We recall the definition of combinatorial discrepancy from the previous lecture. Let \(\mathcal{U} \) be a set with \(|\mathcal{U}| = n\). Without loss of generality, we can take \(\mathcal{U} = \{1, \ldots, n\} \). Let \(S \subset 2^\mathcal{U} := \{S_1, \ldots, S_m\} \) be a family of subsets of \(\mathcal{U} \); \(|S| = m\). The combinatorial discrepancy of \(S \), \(\text{disc}(S) \), is defined to be

\[
\text{disc}(S) := \min_{\chi: \mathcal{U} \to \{-1, +1\}} \max_{S \in S} |\chi(S)|,
\]

where \(\chi(S) := \sum_{j \in S} \chi(j) \). \(\chi \) is a colouring of the elements of \(\mathcal{U} \) with \(\pm 1 \), and so \(\text{disc}(S) \) can be thought of as a measure of the ‘balancedness’ (over \(S \)) of any such colouring.

1.1 Matrix discrepancy

We introduce the following ‘matrix notation’ for combinatorial discrepancy, which motivates the study of matrix discrepancy.

Let \(A \) be the incidence matrix of \(S \), i.e. \(A \in \{0, 1\}^{m \times n} \) such that

\[
A_{ij} = \begin{cases} 1 & \text{if } j \in S_i, \\ 0 & \text{otherwise.} \end{cases}
\]

Then we can write \(\text{disc}(S) \) in terms of \(A \), i.e.

\[
\text{disc}(S) = \min_{x \in \{-1, 1\}^n} \|Ax\|_\infty
\]

where \(\|v\|_\infty \) for \(v \in \mathbb{R}^n \) is the \(\infty \)-norm of \(v \), \(\|v\|_\infty := \max_{i \in \{1, \ldots, n\}} |v_i| \).

We can generalise this notion by allowing \(A \) to be any matrix in \(\mathbb{R}^{m \times n} \), and hence we can define for \(A \in \mathbb{R}^{m \times n} \) the matrix discrepancy of \(A \),

\[
\text{disc}(A) := \min_{x \in \{-1, 1\}^n} \|Ax\|_\infty.
\]

1.2 The eigenvalue lower bound

Recall that the singular values of a matrix \(A \in \mathbb{R}^{m \times n} \) are the square roots of the eigenvalues of \(A^T A \). Let \(\sigma_1 \geq \ldots \geq \sigma_n \) be the singular values of \(A \). The smallest singular value of \(A \), \(\sigma_n \), satisfies the following variational characterisation:

\[
\sigma_n^2 = \min_{x \in \mathbb{R}^n} \frac{x^T A^T A x}{x^T x} = \min_{x \in \mathbb{R}^n} \frac{\|Ax\|_2^2}{\|x\|_2^2},
\]

where \(\|x\|_2 \) is the Euclidean norm of \(x \).
For this reason we introduce a more ‘robust’ notion of discrepancy. For a matrix $A^{m \times n}$ the set V is the incidence matrix of A.

Example 2. Consider the Hadamard matrix $H_k \in \{-1,1\}^{2^k \times 2^k}$, defined recursively as follows:

$$H_0 := \begin{pmatrix} 1 \end{pmatrix},
H_k := \begin{pmatrix} H_{k-1} & H_{k-1} \\ H_{k-1} & -H_{k-1} \end{pmatrix}.$$

We have that $H_k^T H_k = 2^k \cdot I$, hence $\sigma_n = \sqrt{n}$ (where $n = 2^k$), and so $\text{disc}(H_k) \geq \sqrt{n}$.

The probabilistic argument from the previous lecture gives an upper bound for $\text{disc}(H_k)$ of $O(\sqrt{n \log n})$. An asymptotically tight upper bound follows from a matrix discrepancy version of Spencer’s Theorem [1], also discussed in the previous lecture:

Lemma 3 (Spencer 85 [1]). For all $A \in \{-1,1\}^{m \times n}$, $\text{disc}(A) = O(\sqrt{n \log(2m/n)})$.

2 Further discrepancy measures

2.1 Hereditary discrepancy

As a notion of complexity, the combinatorial discrepancy is somewhat fragile. To see this, we consider the universe $\mathcal{U} := \mathcal{U}^{(1)} \cup \mathcal{U}^{(2)}$, where $\mathcal{U}^{(1)}, \mathcal{U}^{(2)}$ are disjoint. Let $\mathcal{S}^{(1)} = \{S_1^{(1)}, \ldots, S_m^{(1)}\} \subseteq 2^\mathcal{U}^{(1)}$ and $\mathcal{S}^{(2)} = \{S_1^{(2)}, \ldots, S_m^{(2)}\} \subseteq 2^\mathcal{U}^{(2)}$ such that $|S_i^{(1)}| = |S_i^{(2)}|$ for $i = 1, \ldots, m$. Let $\mathcal{S}' = \{S_i^{(1)} \cup S_i^{(2)} : i \in \{1, \ldots, m\}\}$; $\mathcal{S}' \subseteq 2^\mathcal{U}$. Then regardless of the choice of $\mathcal{S}^{(1)}$ or $\mathcal{S}^{(2)}$, $\text{disc}(\mathcal{S}) = 0$.

For this reason we introduce a more ‘robust’ notion of discrepancy. For $V \subseteq \mathcal{U}$, we write $\mathcal{S}|_V$ for the set $\{S \cap V : S \in \mathcal{S}\}$. Then the hereditary discrepancy of \mathcal{S} is

$$\text{herdisc}(\mathcal{S}) := \max_{V \subseteq \mathcal{U}} \text{disc}(\mathcal{S}|_V).$$

We can also define an analogous notion for matrix discrepancy. For a matrix $A \in \mathbb{R}^{m \times n}$ and $V \subseteq \{1, \ldots, n\}$, we write A_V for the matrix consisting of the columns of A indexed by V. Then

$$\text{herdisc}(A) := \max_{V \subseteq \{1, \ldots, n\}} \text{disc}(A_V).$$

Observe that the notions correspond when A is the incidence matrix of \mathcal{S}.
2.2 Linear discrepancy

Next we will study a generalisation of combinatorial discrepancy. Suppose that each \(i \in \mathcal{U} \) is assigned a weight \(w(i) \in [-1, 1] \). The discrepancy of \(\mathcal{S} \) with respect to \(w \) is

\[
\text{disc}^w(\mathcal{S}) := \min_{\chi : \mathcal{U} \to \{-1, 1\}} \max_{S \in \mathcal{S}} |\chi(S) - w(x)|.
\]

For \(A \in \mathbb{R}^{m \times n} \) we can define the same notion, treating \(w \) as a vector in \([-1, 1]^n\):

\[
\text{disc}^w(A) := \|A(x - w)\|_\infty.
\]

Note that in both cases the standard combinatorial discrepancy is given by \(w(i) = 0 \) for all \(i \in \mathcal{U} \) (resp. \(w = \vec{0} \)). The \textit{linear discrepancy} of \(\mathcal{S} \) (resp. \(A \)) is the supremum of \(\text{disc}^w(\mathcal{S}) \) (resp. \(\text{disc}^w(A) \)) over all weight functions \(w : \mathcal{U} \to [-1, 1] \) (resp. \(w \in [-1, 1]^n \)), and is written \(\text{lindisc}(\mathcal{S}) \) (resp. \(\text{lindisc}(A) \)).

\textit{Remark 4.} Linear discrepancy is related to the problem of rounding solutions to relaxations of combinatorial optimization problems. In particular we can think of a solution to the relaxation as a vector of weights \(w \in [0, 1]^n \), and a solution to the original problem as a vector \(x \in \{0, 1\}^n \). Then \(\text{disc}^w(A) \), for an appropriate matrix \(A \) and \(w' = 2w - \vec{1} \), measures the approximation error when rounding \(w \).

2.3 Relationships between discrepancy measures

It is clear that for any matrix \(A \), \(\text{disc}(A) \leq \text{herdisc}(A) \) and \(\text{disc}(A) \leq \text{lindisc}(A) \). The following theorem shows that the linear discrepancy cannot be much larger than the hereditary discrepancy.

\textbf{Theorem 5.} For \(A \in \mathbb{R}^{m \times n} \), \(\text{lindisc}(A) \leq 2 \text{herdisc}(A) \).

\textit{Proof.} We assume that all entries of \(w \) have a finite binary representation (note that any \(v \in \mathbb{R}^n \) is arbitrarily close to such a vector). The proof is by induction on the length of this representation: in particular, let \(k \) be the smallest integer such that \(w = \frac{v}{2^k} \) for some \(v \in \mathbb{Z}^n \) (i.e., \(k \) is the maximum number of bits after the radix point in the binary representation of any entry in \(w \)). If \(k = 0 \), then \(w \in \{-1, 0, 1\}^n \), and in this case \(\text{disc}^w(A) \leq \text{herdisc}(A) \), since setting \(x_i = w_i \) when \(w_i \in \{-1, 1\} \) gives \(\langle A(x - w) \rangle_i = 0 \) for \(w_i \neq 0 \), and so \(\text{disc}^w(A) = \text{disc}(A_{V'}) \) where \(V = \{i : w_i = 0\} \).

For the induction step, we note that \(2w \in [-2, 2]^n \), and so there must exist some \(y \in \{-1, 1\}^n \) such that \(z = 2w - y \in [-1, 1]^n \). Then there exists \(v \in \mathbb{Z}^n \) such that \(z = \frac{v}{2^k} \), and so by the induction hypothesis there exists some \(x_0 \in \{-1, 1\}^n \) such that \(\|A(x_0 - z)\|_\infty \leq 2 \text{herdisc}(A) \). Then

\[
\text{herdisc}(A) \geq \frac{1}{2} \|A(x_0 - z)\|_\infty = \frac{1}{2} \|A(x_0 + y - 2w)\|_\infty = \|A(x_1 - w)\|_\infty,
\]

where \(x_1 := \frac{1}{2}(x_0 + y) \in \{-1, 0, 1\} \). Let \(V := \{i : (x_1)_i = 0\} \); then by definition of \(\text{herdisc}(A) \), there is some \(x_2 \in \{-1, 1\}^V \) such that \(\|A_{V'} \cdot x_2\|_\infty \leq \text{herdisc}(A) \). We then take \(x \) to be as \(x_1 \) with its zero entries replaced with the corresponding entries in \(x_2 \), from which we obtain:

\[
\|A(x - w)\|_\infty \leq \|A_{V} \cdot x_2\|_\infty + \|A(x_1 - w)\|_\infty \leq 2 \text{herdisc}(A) \).
\]

Hence, by induction, \(\text{lindisc}(A) \leq 2 \text{herdisc}(A) \).
3 Determinant lower bound

Let $A \in \mathbb{R}^{m \times n}$, and let P be the set $\{x \in \mathbb{R}^n : \|Ax\|_\infty \leq 1\}$, i.e. the set of $x \in \mathbb{R}^n$ such that for each row \vec{a}_i of A, $-1 \leq \langle \vec{a}_i, x \rangle \leq 1$. We see that P is a convex polytope. For $m = n$, A invertible, we can also write P as

$$P = \{A^{-1}y : \|y\|_\infty \leq 1\} = A^{-1} \cdot [-1, 1]^n,$$

and hence the volume of P is given by $|\det(A^{-1})| \cdot 2^n = |\det(A)|^{-1} \cdot 2^n$.

Theorem 6 (Lovasz, Spencer and Vesztergombi [2]). For any square $A \in \mathbb{R}^{n \times n}$, $\text{lindisc}(A) \geq |\det(A)|^{1/n}$.

Proof. Let $P = \{x \in \mathbb{R}^n : \|Ax\|_\infty \leq 1\}$. Then $\|A(x - w)\|_\infty \leq D$ if and only if $x - w \in DP$, i.e. $-w \in DP - x$. Hence $\text{lindisc}(A) \leq D$ if and only if for all $w \in [-1, 1]^n$ there exists $x \in \{-1, 1\}^n$ such that $w \in DP - x$, which is the case if and only if $[-1, 1]^n \subseteq \bigcup_{x \in \{-1, 1\}^n} (DP - x)$. The latter implies, by the union bound, that $\text{vol}([-1, 1]^n) \leq \sum_{x \in \{-1, 1\}^n} \text{vol}(DP - x)$. The volume of $DP - x$ is simply the volume of DP, which is $D^n \text{vol}(P)$; the volume of $[-1, 1]^n$ is 2^n. Hence

$$2^n \leq 2^n D^n \text{vol}(P) = 2^n D^n \cdot (|\det(A)|^{-1} \cdot 2^n),$$

so $D \geq \frac{1}{2} |\det(A)|^{1/n}$, from which the theorem follows. \qed

Corollary 7 (Determinant lower bound [2]). For any $A \in \mathbb{R}^{m \times n}$,

$$\text{herdisc}(A) \geq \frac{1}{2} \min(m,n) \max_{k=1} \max_{|I| = k} \max_{|J| = k} |\det(A_{I,J})|^{1/k} =: \text{detlb}(A).$$

Proof. Let $I \subseteq \{1, \ldots, m\}$, $J \subseteq \{1, \ldots, n\}$, $|I| = |J| = k$. Then $A_{I,J}$ is a submatrix of A, so $\text{herdisc}(A) \geq \text{herdisc}(A_{I,J})$. By Theorem 5, $\text{herdisc}(A_{I,J}) \geq \frac{1}{2} \text{lindisc}(A_{I,J})$. Then since $A_{I,J}$ is a $k \times k$ matrix, by Theorem 6, $\text{lindisc}(A_{I,J}) \geq |\det(A_{I,J})|^{1/k}$. Combining the inequalities we obtain $\text{herdisc}(A) \geq \frac{1}{2} |\det(A_{I,J})|^{1/k}$, and the corollary follows by taking the maximum over k, I, J. \qed

A result due to Matoušek shows that the above bound is almost tight.

Theorem 8 (Matoušek [3]). For all $A \in \mathbb{R}^{m \times n}$, $\text{herdisc}(A) \leq O\left(\log(mn)\sqrt{\log n}\right) \cdot \text{detlb}(A)$.

References

