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1 Approximation algorithms via discrepancy

In this lecture, we explore some applications of discrepancy to rounding and approximation algo-
rithms. In particular, we look at two examples where by using discrepancy we obtain constant
factor approximations to two well studied problems: scheduling on unrelated machines, and bin
packing. But first, let us recall some definitions we will use later. Given a matrix A ∈ Rm×n, for
the purposes of this lecture we will define linear discrepancy of A in a way that is slightly different
from what we have seen before:

lindisc(A) = max
x∈[0,1]n

min
y∈{0,1}n

‖Ax−Ay‖∞

disc(A) = 2 min
y∈{0,1}n

‖A((1/2) · 1−Ay)‖∞

Above, and in the rest of this lecture, 1 is the all-ones vector. The definition of linear discrepancy
above differs from the one we are used to by a factor of 2.

By the theorem of Lovasz, Spencer, and Vesztergombi [5] that we saw in a previous lecture, we
have the following

Theorem 1. ∀A ∈ Rm×n : lindisc(A) ≤ herdisc(A)

For {0, 1} matrices, i.e. incidence matrices of set systems, it is open whether we can reverse this
inequality up to constant, or even logarithmic factors.

Linear discrepancy in fact allows us to round any real vactor, and not just vectors with entries in
[0, 1]. This is captures by the following proposition:

Proposition 2. ∀x ∈ Rn
+,∃y ∈ Zn

+ such that ‖Ax−Ay‖∞ ≤ lindisc(A)

Proof. Let x̄i = xi − bxic, then x̄i ∈ [0, 1], and there exists ȳ ∈ {0, 1}n and y = ȳ + bxc (where the
floor is applied coordinate-wise) such that:

‖Ax̄−Aȳ‖∞ ≤ lindisc(A)

‖(Ax̄+Abxc)− (Aȳ +Abxc)‖∞ ≤ lindisc(A)

‖Ax−Ay‖∞ ≤ lindisc(A)
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2 Scheduling on unrelated parallel machines

Consider the following setting: Given m machines and n jobs, let pij denote the time job j takes on
machine i. The goal is to assign each job to a machine so all machines are done processing by time
T . Each machine executes only one job at a time. The time T by which the machines are done
processing is called the makespan. There exists a 2-approximation algorithm by Lenstra, Shmoys
and Tardos [4], and it is open whether the approximation can be improved to a factor 1.5, which
would be optimal, unless P=NP.

In this section, we will use discrepancy to give a constant factor approximation to this problem,
albeit not as good as the best known factor. Consider the following linear program, where we guess
the optimum makespan T by binary search, and drop the jobs that have processing time greater
than T .

m∑
i=1

xij = 1 ∀ jobs j ∈ [n]

n∑
j=1

pij
T
xij ≤ T ∀ machines i ∈ [m]

xij = 0 ∀i, j s.t. pij > T

0 ≤ xij ≤ 1

Fix x to be an x that solves this feasibility problem, and consider the constraint matrix A ∈
[0, 1](m+n)×|E| where E = {(i, j) : pij ≤ T}. (The fact that all entries of A are in [0, 1] is guaranteed
because we drop all (i, j) such that pij > T .) Let D = herdisc(A), and define x̄ = (1 + D)x. We
will be rounding this scaled-up solution, rather than x. Intuitively, we are over-scheduling the jobs
(scheduling each job multiple times), so that even after rounding we know that each job will be
scheduled at least once. You can think of this step as creating D extra copies of each job, so that
after rounding at least one of the copies is scheduled.

Let y ∈ Zn
+ be such that

‖Ax̄−Ay‖∞ ≤ lindisc(A)

≤ herdisc(A) by Proposition 2.

Unpacking this inequality, from the job-constraints of the LP we have for each j ∈ [n]:∣∣∣∣ m∑
i=1

x̄ij −
m∑
i=1

yij

∣∣∣∣ ≤ D
m∑
i=1

yij ≥
m∑
i=1

x̄ij −D

≥ (1 +D)−D = 1

This implies that if we treat y as an assignment of jobs to machines, then each job is assigned to
at least one machine. It could happen that

∑m
i=1 yij > 1, in which case a job is assigned to more

than one machine. If that happens, pick an arbitrary machine j such that yij > 0 to assign job i
to: dropping all other assignments only decreases the makespan.
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From the machine constraint of the LP, for each i ∈ [m] we have:∣∣∣∣ 1

T

n∑
j=1

x̄ijpij −
1

T

n∑
j=1

yijpij

∣∣∣∣ ≤ D
1

T

n∑
j=1

x̄ijpij ≤ 1 +D =⇒ 1

T

n∑
j=1

yijpij ≤ (1 +D) +D

=⇒
n∑

j=1

yijpij ≤ (1 + 2D)T

Therefore, the makespan of the assignment given by y is at most (1 + 2D)T .

Notice that by construction, each column in the matrix A has 2 non-zero entries, each bounded
by 1 in absolute value. Using an easy modification of the Beck-Fiala theorem, we know that
D = herdisc(A) ≤ 2∆ where ∆ is the maximum number of non-zero entries in any column of A.
Thus D ≤ 4, and the makespan of the assignment given by y is at most 9T . This implies a factor
9 approximation for minimizing makespan on unrelated parallel machines.

3 Bin Packing

We next consider a second, more sophisticated application of of discrepancy to approximation
algorithms. The bin packing problem takes as input a set of n items of sizes s1, s2, . . . , sn, where
each si ∈ [0, 1]. The goal is to pack the items into the smallest number of bins, each of size 1. Bin
packing is NP-hard, and remains NP-hard to decide whether we need 2 vs. 3 bins (i.e. whether
OPT ≤ 2 or ≥ 3). Before getting started, we list the current known approximations:

• The First-Fit (arbitrary order) algorithm gives a 2-approximation.

• The First-Fit in decreasing order gives a 1.7 OPT + 1 [2].

• De La Vega and Lucker gave an asymptotic PTAS that uses ≤ (1 + ε)OPT + 1 bins, for any
given ε ≥ 0.

• Karmarkar and Karp (KK) gave an algorithm that achieves ≤ OPT + O(log2(OPT)) many
bins [3].

• Rothvoss used discrepancy to give an algorithm that uses≤ OPT+O(log(OPT) log log (OPT ))
bins [6].

• Rothvoss and Hoberg refined the discrepancy approach to give an algorithm that uses ≤
OPT +O(log(OPT)) bins [1].

For the special case when si >
1

k+1 ,∀i (i.e. we can place at most k items per bin), and k is
a constant, the KK result already gives OPT + O(log(OPT)) bins. Hoberg and Rothvoss’s result
essentially reduces the general case to this case. It is open whether there exists an efficient algorithm
that packs all items in OPT + 1 bins (!).
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For the remainder of the lecture, we will show how to get the KK bound for si >
1
4 ,∀i using

discrepancy on the Gilmore Gomory LP relaxation, defined below. For convenience, let us assume
all the weights are sorted in decreasing order:

1 ≥ s1 ≥ s2 ≥ . . . ≥ sn >
1

4

Let s = (s1, s2, . . . , sn) denote the sorted vector, and let Ps be all possible ways to pack the items:

Ps =

{
p ∈ {0, 1}n : pT s =

∑
pisi ≤ 1

}
Think of p as the indicator of a feasible set of items which we can assign to a single bin. Since we
can only fit at most 3 items per bin, it follows that |Ps| = O(n3). Now consider the following linear
program, which is a relaxation of the bin packing problem:

minimize
∑

xp (# of bins)

subject to
∑

xp · p ≥ 1 (each item in at least a bin)

xp ≥ 0 ∀p ∈ Ps

Let x be an optimal x such that |{p : xp > 0}| ≤ n. That such an optimal solution always exists
follows from the theory of basic feasible solutions. Let B be the constraint matrix of the LP, with
columns restricted to p such that xp > 0, and let us replace x with x restricted to these patterns
p, as well. Given the item size constraint, notice that each column in B has at most 3 zeroes:

B =


...

...
p1 . . . pn
...

...

 {p1 . . . pn} = {p : xp > 0}

Bx = 1

Let A be a matrix constructed as follows:

A =

(
TnB

3 . . . 3

)

where Tn is the lower triangular {0, 1} matrix:

1 . . . 0

1
. . . 0

1 . . . 1
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This means that each of the first n rows of A is of the form Ai∗ =
i∑

j=1
Bj∗. Since the columns

of B have at most 3 ones each, and all other entries are 0, it follows that A ∈ {0, 1, 2, 3}(n+1)×n.
Moreover, each column in A is monotone non-decreasing. Because Bx = 1, we have:

Ax =


1
2
...
n

3 · LP


where LP ≤ OPT . Assume xp ∈ [0, 1), and let D denote lindisc(A). By Proposition 2,

∃y ∈ Zn
+ s.t. ‖Ax−Ay‖∞ ≤ D
|3 · 1T y − 3 · 1Tx| ≤ D

1T y ≤ LP − 1

3
D

Claim 3. We can pack all items in D +
∑

p yp many bins.

Proof. We will use yp copies of pattern p, and additional D copies of the pattern that contains a
space for item 1. We will pack items according to thse patterns, except that we will also allow
ourselves to put a smaller item in the space reserved by a larger item. Since item 1 is the largest
one1, we can pack any item in a space reserved for it.

We construct a bipartite graph G(V = U ∪ V, E) as follows: Every vertex ui ∈ U corresponds to
an item i of size si. For item 1, we create (By)1 + D copies of v1, which is the number of slots
where item 1 can fit (or any item with size ≤ s1). For the remaining items, create (By)i copies of
vertex vi for each item i (i.e. the # of slots for items of size ≤ si). For every ui ∈ U , add an edge
(ui, vj) ∈ E for all j ≤ i. The goal is to compute a U-perfect matching. Then, for any edge (ui, vj)
of the matching, we will pack item i in any slot reserved for item j. Since the matching is perfect,
we can pack all items.

The proof that a U-perfect matching exists is based on Hall’s theorem, which says:

Theorem 4. U-perfect matching exists if and only if for all W ⊆ U , |N(W)| ≥ |W|, where N(W)
is the set of neighbors of W.

Now we verify the condition of Hall’s theorem. Assume W = {u1, . . . , ui}. This is without loss of
generality, because ∀j ≤ i, N(uj) ⊆ N(ui) by construction. Therefore

|N(W)| =
i∑

j=1

(By)j +D for j = 1

= (Ay)i +D

≥ (Ax)i = i = |W|
1recall that items are sorted in decreasing order
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Therefore a U-perfect matching exists and all items can be packed, and the cost of the solution is
at most ≤ LP + (1 + 1

3)D.

On the other hand, for all A with monotone non-decreasing columns and entries in [k], we have
herdisc(A) = O(k log n), thus:

D = lindisc(A)

≤ herdisc(A)

= O(3 log n) = O(log n)

We will not prove the bound on the hereditary discrepancy of A here: there is a clever proof which
uses techniques similar to these in the proof of the Beck-Fiala theorem. Let us, however, analyze
the γ2 norm instead:

Proposition 5. γ2(A) = O(log n)

Proof. We decompose A into 3 matrices where the entries are of the form:

A
(k)
ij =

{
1 if Aij ≥ k
0 otherwise

Therefore A = A(1) +A(2) +A(3). Since γ2(A) satisfies the triangle inequality,

γ2(A) ≤
3∑

k=1

γ2(A
(k))

A has monotone columns, thus each A(k) has monotone columns. Up to columns rearrangement,
A(k) is a submatrix of Tn, and, since γ2 does not change when considering submatrices and/or
rearranging columns, it follows that:

γ2(A
(k)) ≤ γ2(Tn) = Θ(log n)

Now using Proposition 5 and the bound on hereditary discrepancy in terms of the γ2 norm that we
proved in a prior lecture, we get

herdisc(A) = O(log
3
2 n).

As we mentioned above, a specialized argument, in the spirit of the proof of the Beck-Fiala theorem,
shows that herdisc(A) = O(log n).
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