
Tight Hardness Results for Minimizing Discrepancy

Moses Charikar∗ Alantha Newman† Aleksandar Nikolov‡

Abstract

In the Discrepancy problem, we are given M sets
{S1, . . . , SM} on N elements. Our goal is to find an
assignment χ of {−1,+1} values to elements, so as to
minimize the maximum discrepancy maxj |

∑
i∈Sj

χ(i)|.
Recently, Bansal gave an efficient algorithm for achiev-
ing O(

√
N) discrepancy for any set system where M =

O(N) [Ban10], giving a constructive version of Spencer’s
proof that the discrepancy of any set system is at most
O(
√

N) for this range of M [Spe85].
We show that from the perspective of computa-

tional efficiency, these results are tight for general set
systems where M = O(N). Specifically, we show that it
is NP-hard to distinguish between such set systems with
discrepancy zero and those with discrepancy Ω(

√
N).

This means that even if the optimal solution has discrep-
ancy zero, we cannot hope to efficiently find a coloring
with discrepancy o(

√
N). We also consider the hard-

ness of the Discrepancy problem on sets with bounded
shatter function, and show that the upper bounds due
to Matoušek [Mat95] are tight for these sets systems as
well.

The hardness results in both settings are obtained
from a common framework: we compose a family of
high discrepancy set systems with set systems for which
it is NP-hard to distinguish instances with discrepancy
zero from instances in which a large number of the
sets (i.e. constant fraction of the sets) have non-zero
discrepancy. Our composition amplifies this zero versus
non-zero gap.

1 Introduction

In the Discrepancy problem, we are given M sets
{S1, . . . , SM} on N elements. Our goal is to find an
assignment χ of {−1,+1} values (sometimes referred to
as a coloring) to elements, so as to minimize the max-
imum discrepancy maxj |

∑
i∈Sj

χ(i)|. Questions about
the discrepancy of various set systems arise in several
different areas of mathematics and theoretical computer
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science and have given rise to a rich body of research
on the subject. For a comprehensive introduction to
discrepancy and its applications, the reader is referred
to [BS96, CMS95, Mat10].

A celebrated result of Spencer [Spe85] shows that
any system of M = O(N) sets has discrepancy at
most O(

√
N). Spencer’s proof is non-constructive and

until very recently, an efficient algorithm to construct
a low discrepancy coloring was not known. In a
recent breakthrough, Bansal [Ban10] gave an efficient
algorithm to find a low discrepancy coloring. For
a given set system of M = O(N), the discrepancy
of the coloring produced is at most O(

√
N) giving a

constructive version of Spencer’s proof.
Thus Bansal’s algorithm gives a coloring with dis-

crepancy that matches (within constants) the worst
case discrepancy for all set systems with M = O(N)
sets. This leaves open the tantalizing question: Can we
achieve discrepancy bounds tailored to the optimal dis-
crepancy of the input instance instead of the worst case
discrepancy over all instances? In particular, can we get
better guarantees for discrepancy if the optimal discrep-
ancy for the input instance is small? Given that the ex-
istence of an efficient algorithm for achieving worst case
discrepancy was open until recently, it is not surprising
that very little is known about these questions. In fact
Bansal mentions in his paper that even if the optimal
discrepancy is zero, we do not know if we can efficiently
find a coloring with discrepancy better than the worst
case discrepancy.

In this paper, we show strong hardness results that
rule out any better discrepancy guarantees for efficient
algorithms. We show that from the perspective of
computational efficiency, Bansal’s results are tight for
general set systems where M = O(N). Specifically, our
main theorem states:

Theorem 1.1. (Main Theorem) It is NP-hard to
distinguish between set systems on N elements with dis-
crepancy zero and those with discrepancy Ω(

√
N).

This means that even if the optimal solution has discrep-
ancy zero, we cannot hope to efficiently find a coloring
with discrepancy o(

√
N). Our approach to proving the

Main Theorem is to compose a family of high discrep-
ancy set systems with a family for which it is NP-hard



to distinguish instances with discrepancy zero from in-
stances in which a constant fraction of the sets have
discrepancy Ω(1). Our composition amplifies this zero
versus Ω(1) gap.

Our methods are general enough that we also obtain
a similar theorem for set systems with bounded shatter
function. For such set systems, we show that the upper
bounds due to Matoušek [Mat95] are tight. The proof
for this latter result involves using high discrepancy set
systems that have bounded shatter function in the com-
position, and proving that the resulting set system also
has bounded shatter function. Thus, our methods sug-
gest a general framework where we can obtain compu-
tational lower bounds for computing the discrepancy on
other restricted set systems. In particular, our composi-
tion consists of two main steps that need to be tailored
to a specified type of restricted set system: (i) plug in
a lower bound (i.e. high discrepancy) instance for a set
system with certain specified properties, and (ii) show
that the final set system maintains these specified prop-
erties. If these two steps can be carried out, the discrep-
ancy of the lower bound instance will be translated to
computational hardness of distinguishing between dis-
crepancy zero and discrepancy equal to that of the lower
bound instance.

2 Preliminaries

We follow the notation from Chazelle [Cha91] and use
the M × N 0-1 matrix A to represent a specified set
system on N elements; each row of the matrix A is
the indicator vector for a set. The discrepancy of a set
system A, also denoted by D∞(A), can be expressed as:

D∞(A) = min
x∈{−1,1}N

||Ax||∞.(2.1)

Further following Chazelle, we have:

D2
2(A) = min

x∈{−1,1}N
||Ax||22.(2.2)

The following fact exhibits a useful relationship between
(2.1) and (2.2):

Fact 2.1. D∞(A) ≥
√

D2
2(A)
M .

The proof of our Main Theorem (Theorem 1.1) follows
from Fact 2.1 together with the following stronger
theorem:

Theorem 2.1. Given an M × N 0-1 matrix A with
M = O(N), it is NP-hard to distinguish between the
cases (1) D2

2(A) = 0, and (2) D2
2(A) ≥ Ω(N2).

2.1 Overview Our proof of Theorem 2.1 uses a
reduction from the Max-2-2-Set-Splitting problem,

which is defined in Section 2.2. The reduction uses
two key steps to construct a set system: (i) use of
a Hadamard matrix (i.e. a lower bound instance) to
design a new set system containing multisets, and (ii)
preprocessing the instance of Max-2-2-Set-Splitting
so that the procedure in step (i) results in a set
system without multisets. Hadamard set systems on N
elements and N sets are a lower bound instance, since
they have discrepancy Ω(

√
N) [Cha91]. In Section 3, we

illustrate step (i), by proving a variant of Theorem 2.1
on multisets. In Section 4, we prove Theorem 2.1
by showing how to create a set system in which each
element appears at most once per set. Our methods
are not tailored specifically to Hadamard set systems.
Thus, in Section 5, we show that we can get similar
hardness results for set systems with bounded shatter
function by substituting lower bound instances for these
set systems in place of Hadamard set systems.

2.2 Max-2-2-Set-Splitting Our proofs use a re-
duction from the Max-2-2-Set-Splitting problem,
which we now define. In an instance of the Max-2-
2-Set-Splitting problem, we are given m sets, C =
{C1, C2, . . . Cm}, on n elements, each set consisting of
exactly four distinct elements. The objective is to as-
sign each of the n elements a value from {−1, 1} so as to
maximize the number of sets in which the values of the
elements sum to 0. Such a set is called 2-2-split or split,
for short. A set whose value does not sum to 0 is called
unsplit. Unsplit sets have possible values {±2,±4}. It
is NP-hard to distinguish between instances of Max-
2-2-Set-Splitting for which there is an assignment
such that all sets are split and instances for which any
assignment will result in at least φm unsplit sets, for
some positive constant φ [Gur03]. We refer to the for-
mer and latter instances as splittable and unsplittable,
respectively. (Note that this immediately implies that
it is NP-hard to distinguish between set systems with
discrepancy zero and those with discrepancy two, which,
to the best of our knowledge, was the strongest hardness
result known for the Discrepancy problem until now.)
Furthermore, as noted in [CGW05], we can assume that
each of the n elements appears in no more than b sets
for some constant b. Thus, m ≤ bn/4 = Θ(n). In or-
der to distinguish between the sets in a given instance
of Max-2-2-Set-Splitting and the sets of elements in
the set systems that we construct, we refer to the former
as “clauses” from hereon in.

Finally, when necessary, we can assume that m is
a power of two. Note that if m is not a power of two,
we can add at most m clauses on at most 4n elements
so that the number of clauses is now a power of two.
Each of the new clauses will contain its own four distinct



elements and thus these new clauses will be always be
splittable. (Actually, each new clause in the “padding”
need only contain two elements, since this is sufficient
for the clause to have value zero.) Thus, we obtain
a modified instance of Max-2-2-Set-Splitting with
n′ = O(n) elements and m′ = O(n) clauses such that m′

is a power of two, such that the instance is unsplittable
iff the original instance was unsplittable and has γm′

unsplit clauses for any assignment of the elements for
some constant γ if the original instance was unsplittable.

3 Hadamard Set Systems

In this section, we illustrate one of the two key steps in
our proof of Theorem 2.1: the use of Hadamard matrices
to construct a set system. We describe this technique in
the proof of the following theorem, which is an analogue
of Theorem 2.1 for multisets.

Theorem 3.1. Given an M × N matrix B with M =
O(N) and entries in N+ ∩ [0, b], where b is a constant,
it is NP-hard to distinguish between the cases (1) ∃y ∈
{−1, 1}n for which ||By||22 = 0, and (2) ∀y ∈ {−1, 1}N ,
||By||22 ≥ Ω(N2).

Proof. We begin with an instance of Max-2-2-Set-
Splitting consisting of n elements and m clauses,
{C1, C2, . . . Cm}, of four distinct elements each. Let
us represent the n elements as E = {e1, e2, . . . en}.
We construct a new set system, B, of m multisets
on the same n elements, in which each new multiset
contains Ω(n) elements. Let H be an m×m Hadamard
matrix and let J be an m × m matrix of all ones. Let
W = 1

2 (H + J). To create the ith (multi)set in B, we
consider the ith row of W and include all elements from
the clause Cj such that Wij = 1 (i.e. jth entry of the
ith row of W is a ‘1’).

Suppose we fix an assignment, χ, of the n elements
in E to values in {−1, 1}. Let x be a vector of length m
such that xj represents the sum of the values in clause
Cj , i.e. xj =

∑
ei∈Sj

χ(ei) and xj ∈ {0,±2,±4}. Let
B (an m× n matrix) denote the system of m multisets
on n elements such that the ith entry of row j denotes
the multiplicity of element ei in the set represented by
vector Bj–the jth row of matrix B. Let y denote the
vector of length n corresponding to the assignment χ
for the n elements. Note that:

||By||22 = ||Wx||22.

If the assignment χ splits the original instance of Max-
2-2-Set-Splitting, then ||x||22 = 0 and therefore
||Wx||22 = 0. However, if χ is an unsplittable assign-
ment, resulting in φm of the original sets being unsplit,
then ||Wx||22 = Ω(m2) = Ω(n2). This latter fact follows

from pages 18–19 of [Cha91], which we reproduce here
for the sake of completeness. In this proof, we use the
property that

∑
i>1 x2

i = Ω(m). 2

Lemma 3.1. Let W = 1
2 (H + J), where H is a k × k

Hadamard matrix and J is a k × k matrix of all ones.
Let x ∈ Rk be a vector such that

∑
i>1 x2

i = Ω(k). Then
||Wx||22 = Ω(k2).

Proof. The proof of this lemma follows directly from the
arguments on pages 18–19 of [Cha91] with very minor
modifications. Following [Cha91], we have:

||Wx||22 = (Wx)T (Wx) =
1
4

∑
i,j

xixj(Hi + Ji)T (Hj + Jj).

Breaking this down, and further following [Cha91], we
have:

1.
∑

i,j xixjH
T
i Hj =

∑
i x2

i H
T
i Hi.

2. Since Jj = H1, we have
∑

i,j xixjH
T
i Jj =(∑

j xj

)∑
i xiH

T
i H1.

By orthogonality, this is (
∑

j xj)x1k. We find the
same value for

∑
i,j xixjJ

T
i Hj .

3. The term
∑

i,j xixjJ
T
i Jj = (

∑
i xi)2k.

Combining these terms, we have:

4||Wx||22 = k
∑

i

x2
i + 2k

(∑
i

xi

)
x1 + k

(∑
i

xi

)2

= k

(
x1 +

∑
i

xi

)2

+ k
∑
i>1

x2
i

≥ k
∑
i>1

x2
i

= Ω(k2).

This concludes the lemma. 2

4 Proof of Theorem 2.1

We now prove Theorem 2.1, which is essentially The-
orem 3.1 except that the sets in the set system are no
longer allowed to be multisets. This presents a difficulty
that we circumvent by dividing the clauses of the orig-
inal instance of Max-2-2-Set-Splitting into sets of
clauses such that no pair of clauses contain the same el-
ement. In other words, each element appears in at most
one clause per set. Then we run the construction from
Section 3 to create a Hadamard set system on each set
of clauses.



As before, we begin with an instance C of Max-2-2-
Set-Splitting consisting of n elements and m clauses.
Instead of creating a Hadamard set system directly from
these m clauses, we first divide the m clauses into a
constant number of sets such that in any set, each
element appears in at most one clause.

Lemma 4.1. The clauses from an instance C of Max-2-
2-Set-Splitting can be divided into c sets, where c is
a constant, such that in each set, each element appears
in at most one clause.

Proof. Construct a graph G = (V,E), where each vertex
in V is associated with one of the m clauses in C
and there is an edge between two vertices in V if the
associated pair of clauses has at least one element in
common. Each element in C appears in at most b
clauses, so |V | = m ≤ bn/4. Each vertex in V has
degree at most 4b. Thus, we can color this graph with
4b + 1 colors to obtain c ≤ 4b + 1 “independent” sets of
clauses. 2

Lemma 4.2. If C is an unsplittable instance of Max-2-
2-Set-Splitting, then for each of the 2n assignments
to the n elements, at least one of the c independent sets
of clauses contains at least Ω(n) unsplit clauses.

Proof. Any assignment to the n elements results in γm
unsplit clauses for some constant γ > 0. At least
one of the independent sets of clauses contains at least
γm/c = Ω(n) unsplit clauses. 2

Now we use Lemma 4.1 to construct a new set sys-
tem in the following way. Beginning with an instance
of Max-2-2-Set-Splitting, we can divide the clauses
into c sets such that the clauses in each set are “in-
dependent”. Call these sets {T1, T2, . . . Tc}. Let us fix
an integer h ∈ [1, c] and consider the independent set
Th containing k′ clauses. We construct a set system on
k sets, where k is the nearest power of two such that
k ≥ k′. (We use the padding “trick” discussed in Sec-
tion 2.2.)

To do this, we use the incidence matrix W (h) =
1
2 (H + J), where H is a k × k Hadamard matrix and J
is a k× k matrix of all ones. Consider the set of clauses
Th. For each row of W (h), we include all elements of
the jth clause in ith set if W

(h)
ij is a ‘1’. Note that each

new set corresponding to a row of the matrix W (h) is
not a multiset, since all elements in Th appear exactly
once. Let the final set system be the union of the c
set systems obtained via the above procedure. The
resulting set system is on N = Θ(n) elements and
contains M = O(cn) sets.

Now let the matrix A denote this set system of M
sets on N elements. In other words, A is a M × N 0-
1 matrix. Furthermore, let us consider an assignment,
χ, to the N distinct elements. Consider the set Th =
{C1, C2, . . . Ck}. Let the vector x(h) ∈ {±4,±2, 0}k be
defined as follows. For each Cj ∈ Th, we have:

x
(h)
j =

∑
ei∈Cj

χ(ei).

Let y ∈ {−1, 1}N denote the assignment χ for N
elements. Note that:

||Ay||22 =
c∑

h=1

||W (h)x(h)||22.

If the original instance of Max-2-2-Set-Splitting is
splittable, then there is an assignment χ on the N
elements such that ||Ay||22 = 0. However, if the original
instance of Max-2-2-Set-Splitting is unsplittable,
then by Lemma 4.2, for at least one of the vectors, say
x(h), it is the case that ||x(h)||22 = Ω(N), and in fact∑

j>1(x
(h)
j )2 = Ω(N). Thus, by Lemma 3.1, for this

case, we have:
c∑

h=1

||W (h)x(h)||22 = Ω(N2).

This completes the proof of Theorem 2.1.
Finally, we note that the following corollary holds.

Theorem 4.1. Given an M × N 0-1 matrix A for
M = O(N) such that each column of A has at most
t 1’s, it is NP-hard to distinguish between the cases (1)
D∞(A) = 0, and (2) D∞(A) ≥ Ω(

√
t).

Proof. If t = O(N), then this theorem follows from
Theorem 2.1 and from the fact that in the set systems
constructed in the proof of Theorem 2.1, there are N
elements and M = O(N) sets. Thus, each element has
degree t = O(N), since it can appear at most once in
each set.

However, note that we can actually prove this
theorem for any value of t such that Ω(1) ≤ t < Ω(N).
This is because after we take the independent sets of
clauses from the set-splitting instance (using Lemma
4.1), instead of obtaining 4b + 1 (where b is a constant)
independent sets, we can obtain k independent sets,
each with at most t elements (say, between t and 2t).
The number of such sets is k = Ω(N)/t. We use these k
sets to create k Hadamard set systems as described in
Section 3. The maximum degree of a set over all these
set systems is Ω(t). The number of unsplit clauses is
Ω(N). Thus, one of the k sets contains Ω(N)/k = Ω(t)
unsplit sets, and therefore has discrepancy Ω(

√
t). 2



5 Set Systems with Bounded Shatter Function

For some special classes of set systems there exist
bounds that improve on the guarantees of Spencer’s
theorem. For example, Matoušek [Mat95] showed im-
proved discrepancy bounds for set systems whose shat-
ter function is polynomially bounded. Such set sys-
tems arise frequently in computational geometry and
computational learning theory. Moreover, Matoušek’s
bounds can be made constructive using Bansal’s method
[Ban10]. In this section, we show tight inapproximabil-
ity results for the discrepancy of set systems with poly-
nomially bounded shatter function. They are proved
using the same approach that was used for proving The-
orem 2.1.

5.1 Preliminaries Let (X,S) be a set system on
N = |X| elements and M = |S| sets. Given Y ⊆ X, the
trace of Y on S is defined as S|Y = {S ∩ Y : S ∈ S}.
The primal shatter function is

πS(s) = max
Y :|Y |=s

|S|Y |.

Matoušek proved that for set systems (X,S) such
that πS(s) = O(sd), D∞(S) = O(N1/2−1/2d) [Mat95].
The proof relies on the entropy lemma; since Bansal
gives a constructive version of the lemma [Ban10],
Maroušek’s bound can be proved constructively as well.
We show that this is essentially best possible.

Theorem 5.1. Given a set system (X,S), with |X| =
N and πS(s) = O(sd), it is NP -hard to distinguish
between the cases (1) D∞(S) = 0, and (2) D∞(S) =
Ω(N1/2−1/2d).

Recall that one of the main ingredients in the
proof of Theorem 2.1 was a family of high discrepancy
set systems: the Hadamard set systems, which are
a tight example for Spencer’s theorem. Analogously,
in the proof of Theorem 5.1 we use a family of high
discrepancy set systems with polynomially bounded
shatter function. The family consists of systems of sets
defined by halfspaces. The discrepancy lower bound for
such set systems was proved by Alexander [Ale90]. We
present the result as it appears in Chazelle [Cha91]. We
need an extension of the original result that follows from
the proof technique introduced in [CMS95].

We first need to introduce a new definition.
For a set X of points in Rd, let dmax(X) =
maxx,y∈X ||x− y||22, and, similarly, dmin(X) =
minx,y∈X ||x− y||22.

Definition 1. A set X of N points in Rd is well-
spread if dmax(X)/dmin(X) = O(N1/d).

Observe that the set of vertices of a grid inside a d-
dimensional cube is well-spread. We also note the
following simple fact that will be useful in the proof
of Theorem 5.1.

Lemma 5.1. Let X be a well-spread set of N points in
Rd. If Y ⊆ X and |Y | = Ω(N), then Y is well-spread.

Proof. Since dmax(Y ) ≤ dmax(X) and dmin(Y ) ≥
dmin(X), dmax(Y )/dmin(Y ) ≤ dmax(X)/dmin(X) =
O(N1/d). By |Y | = Ω(N) we have O(N1/d) = O(|Y |1/d)
and this completes the proof. 2

We can now state the generalized version of Alexan-
der’s lower bound.

Lemma 5.2. Let X be a well-spread set of N points in
Rd. For any assignment χ : X → {±1,±2}, there exists
a hyperplane H, such that∑

x∈X∩H+

χ(x) = Ω(N1/2−1/2d),

where H+ is the closed halfspace above H.

Proof. If χ : X → {±1}, then this theorem is Theorem
3.9 in [Cha91]. However, since we need χ : X →
{±1,±2}, we need to modify the proof slightly. See
Appendix A for details. 2

It is a well known fact that a set system (X,S) of
halfspaces in Rd has πS(s) = O(sd) (see e.g. [Mat10]).
Thus, such set systems are a tight example for Ma-
toušek’s upper bound.

Our proof of the hardness of approximating discrep-
ancy on set systems with polynomially bounded shat-
ter function follows the structure of the proof of Theo-
rem 2.1. The two key steps in the proof of Theorem 5.1
are using systems of halfspaces instead of Hadamard set
systems, and showing that the shatter function of the
final construction is bounded by O(sd).

5.2 Proof of Theorem 5.1 Once again we begin
with an instance of Max-2-2-Set-Splitting with n
elements and m clauses. As in the proof of Theorem 2.1,
we partition the clauses of the set splitting instance into
sets T1, . . . , Tc, such that for any h no two clauses in
Th share an element. Also, if each element in the set
splitting instance appears in at most b clauses, then
c ≤ 4b + 1.

We construct a set system Sh for each Th, and the
final systems S will be the union of S1, . . . ,Sc. Next we
describe the construction of any particular Sh.

We fix h and describe the construction of Sh. Let
Th = {C1, . . . , Ck}, and let Ph be a set of k well-spread



points in Rd. Fix an arbitrary bijection fh : Th → Ph,
i.e. assign each clause to a distinct point from Ph.
For notational convenience for a set of points R ⊆ Ph

we define f−1
h (R) = {Ci ∈ Th : fh(Ci) ∈ R}. Let

{H1, . . . ,H`} be a maximal set of hyperplanes in Rd

such that ∀i 6= j : H+
i ∩ Ph 6= H+

j ∩ Ph. For each Hi

we define a set Si ∈ Sh to consist of the elements of the
clauses in f−1

h (H+
i ∩ Ph). We will occasionally abuse

notation and also identify Si with the set of clauses
f−1

h (H+
i ∩Ph). Note that this does not lead to ambiguity

since the clauses in Th are pairwise disjoint. Finally,
Sh = S1 ∪ . . . ∪ S`.

If the original instance of Max-2-2-Set-Splitting
is splittable then every set in the new set system has
discrepancy zero. Assume that the original instance
is unsplittable. By Lemma 4.2, for any assignment
χ : X → {−1, 1} there exists an independent set
Th = {C1, . . . , Ck}, s.t. at least Ω(N) of C1, . . . , Ck are
unsplit. Define, as before,

x
(h)
j =

∑
ei∈Cj

χ(ei).

We get an assignment of Ph with values in the set
{0,±2,±4} by assigning each point pj ∈ Ph the value
x

(h)
j of its corresponding clause Cj = f−1(pj). We focus

on the points in Ph with non-zero values. Consider the
set P ′

h = {f(Cj) : x
(h)
j 6= 0}. By Lemma 5.1, P ′

h is
well-spread, and, therefore, by Lemma 5.2, there exists
a hyperplane Hi and a corresponding set Si ∈ Sh s.t.∑

j:Cj∈Si

x
(h)
j = Ω(|P ′

h|1/2−1/2d) = Ω(N1/2−1/2d).

It remains to show that πS(s) = O(sd) for S =
S1∪ . . .∪Sc. For a specific Sh and its corresponding set
of points P in Rd, let (P,H) be the set system consisting
of all sets of the form H+

i ∩P , where Hi belongs to the
set of maximal hyperplanes {H1, . . . ,H`}. Let (Eh, Sh)
be the set system defined above. Note that Eh is a subset
of the n elements of the original instance of Max-2-2-
Set-Splitting.

Lemma 5.3. πSh
(s) ≤ πH(s).

Proof. Let Y ⊆ Eh, and |Y | = s. Define U = {Cj ∈
Th : Y ∩ Cj 6= ∅} to be the set of clauses intersected by
Y , and R = {f(Cj) : Cj ∈ U} to be the corresponding
set of points in Ph. Since the clauses in Th are pairwise
disjoint, |R| = |U | ≤ |Y | = s.

We claim that |(Sh)|Y | = |H|R|. Notice that the
claim completes the proof since |H|R| ≤ πH(|R|) ≤
πH(s). To prove the claim we will establish a bijective
map between sets Si ∩ Y for Si ∈ Sh and sets Hi ∩ R.

Associate each Si with its corresponding hyperplane Hi,
i.e. Hi = {f(Cj) : Cj ∈ Si}; then the bijective map
sends a set Si ∩ Y to Hi ∩R. To establish that this is a
bijection we show that Si ∩ Y 6= Si′ ∩ Y if and only
if Hi ∩ R 6= Hi′ ∩ R. Indeed if Si ∩ Y 6= Si′ ∩ Y ,
then there exists a ∈ Eh such that, without loss of
generality, a ∈ Si ∩ Y and a /∈ S′i ∩ Y (or vice versa).
Then define the sets A = {Cj ∈ Si : Cj ∩ Y 6= ∅} and
B = {Cj ∈ Si′ : Cj ∩ Y 6= ∅}. Since a belongs to Si ∩ Y
but not to S′i ∩ Y , there must be some Cj ∈ A such
that Cj /∈ B, since each element appears in a unique
clause. Then the sets {f(Cj) : Cj ∈ A} = Hi ∩ R and
{f(Cj) : Cj ∈ B} = Hi′ ∩ R are also different. For the
other direction, note that if Hi ∩ R 6= Hi′ ∩ R, then
f−1(Hi ∩ R) 6= f−1(Hi′ ∩ R). Thus, without loss of
generality, there is some clause Cj ∈ f−1(Hi ∩ R) such
that Cj /∈ f−1(Hi′ ∩R) (or vice versa). Since the point
corresponding to clause Cj , is in R, (i.e. f(Cj) ∈ R) at
least one of the elements a ∈ Cj belongs to Y , and thus
belongs to Si∩Y . However, since Cj /∈ f−1(Hi′∩R), the
elements in Cj do not belong to Si′ . Thus, a /∈ Si′ ∩ Y ,
and we conclude that Si ∩ Y 6= Si′ ∩ Y . 2

By a simple union bound, for any Y , |Y | = s,

(5.3) |S|Y | ≤
c∑

h=1

|(Sh)|Y | ≤
c∑

h=1

πSh
(s).

Using (5.3), Lemma 5.3, and the fact πH(s) = O(sd),
we can derive the final bound on the shatter function of
S:

πS(s) = O(csd) = O(sd).

6 A General Approach

In proving Theorem 2.1 and Theorem 5.1, we use a
common approach: we start with an instance of Max-
2-2-Set-Splitting and compose this instance with
a high discrepancy set system. This construction is
then used to prove hardness for the resulting class of
set systems. In Theorem 2.1 the high discrepancy set
system is a Hadamard set system; In Theorem 5.1, a
system of halfspaces is a high discrepancy set system. In
the latter setting, we prove that the class of set systems
resulting from the composition preserves the property
of bounded shatter function. Here, we formalize this
general approach.

As we have done previously, let A refer to both a set
system and to its incidence matrix. Consider a class of
set systems W = {Wk}, where k denotes the number of
elements in the respective set system, and such that for
all k in some infinite set I of positive integers, such a Wk

exists. Recall that if an instance C of Max-2-2-Set-
Splitting on n elements and m clauses is unsplittable,



then each assignment results in at least φm unsplit
clauses. Furthermore, recall that each element appears
in at most b clauses, and we can decompose C into c sets
of independent clauses, {T1, T2, . . . Tc}, where c = 4b+1.
For γ = φ/c, define a discrepancy function D′

∞(Wk) as
follows:

(6.4) D′
∞(Wk) = min

x∈{0,±2,±4}k

‖x‖22≥γk

‖Wkx‖∞.

For matrices A and B with equal numbers of
columns, define A ∪ B as the matrix consisting of the
rows of A followed by the rows of B. With respect to
the set systems represented by the incidence matrices A
and B, A∪B is simply the union of the set systems. We
abuse notation by allowing Ti to represent both a set of
clauses as well as a corresponding matrix in which each
row represents a clause (and therefore has four ‘1’s), and
each column represents the clauses in which an element
appears (and therefore has a single ‘1’). Furthermore,
for convenience of notation, we assume that each set Ti

contains the same number of clauses. If this is not the
case, note that we can pad Ti with “dummy” clauses,
each composed of four unique elements that appear only
in that clause and not in any other clause in Ti or any
Tj for j 6= i. Note that in any optimal assignment to the
original Max-2-2-Set-Splitting instance augmented
with these “dummy” clauses, a “dummy” clause always
has value zero. Moreover, note that we add at most
cm = O(m) “dummy” clauses using 4cm additional
elements.

Let A be a class of set systems that, for each
k ∈ I, contains the set systems that can be written as
WkT1∪. . .∪WkTc, for some Wk where D′

∞(Wk) = f(k).
Here, each WkTh is the conventional matrix product.
Note that for Wk a 0-1 matrix, and Th a 0-1 matrix
with at most one ‘1’ in a column, WkTh is also a
0-1 matrix, and, therefore, can be interpreted as an
incidence matrix.

Theorem 6.1. Given a set system A ∈ Am on N
elements, it is NP-hard to distinguish between the cases
(1) D∞(A) = 0, and (2) D∞(A) = f(Ω(N)).

Proof. For any y ∈ {−1, 1}N , we can write:

(6.5) Ay = WmT1y ∪ . . . ∪WmTcy.

Note that, by construction, N = Θ(m). Also, note
that Thy ∈ {0,±2,±4}m. Therefore, ‖Ay‖∞ =
maxh ‖WmThy‖∞. If for some y and some h, we have
‖Thy‖2

2 ≥ γm, then ‖Ay‖∞ ≥ D′
∞(Wm).

Thus, if the original instance C of Max-2-2-Set-
Splitting was splittable, then there exists a y ∈

{−1, 1}N such that Thy = 0 for all h and therefore
D∞(A) = 0. If C is unsplittable, then, by Lemma 4.2,
for any y ∈ {−1, 1}N , there exists an h such that
‖Thy‖2

2 ≥ γm. Therefore, D∞(A) ≥ D′
∞(Wm) = f(m).

Thus, we have D∞(A) = f(Ω(N)). 2
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A The Generalized Alexander Lower Bound

The generalized Alexander lower bound (Lemma 5.2)
follows easily from the proof technique of Chazelle et
al. [CMS95]. We sketch how their proof needs to
be modified. Our exposition follows section 3.3. of
Chazelle [Cha91].

First, we introduce notation that closely follows
Chazelle’s. Let X be a well-spread point set in Rd,
and let v = (v1, 0, . . . , 0) be a vector in Rd, where v1 is



a small real number to be specified later. We consider
a union of X with t = dd/2e + 1 copies of itself, each
translated by a multiple of v:

Xv =
t⋃

j=0

(X + jv).

Fix an assignment χ : X → {±1,±2}. The coloring is
extended to Xv as follows:

χ(x + jv) = (−1)j

(
t

j

)
χ(x).

Let D(H) denote the discrepancy of H+ ∩ X, and let
Dv(H) denote the discrepancy of H+ ∩ Xv with re-
spect to the extended coloring. Consider a cube that
encloses X, and pick a random hyperplane through the
cube according to the motion-invariant measure on hy-
perplanes. By the probabilistic method, E[D(H)2] ≥
maxH D(H)2, where the expectation is taken over
picking a random hyperplane as described above.
Chazelle [Cha91] shows that

E[D(H)2] = Ω(E[Dv(H)2]).

The next step in the proof is to lower bound E[Dv(H)2].
Define a weight function G(x, y) as

G(x, y) =


∑t

j=−t (−1)j
(

2t
t+j

)
|x− y + jv| if x 6= y,

−
(
2t−2
t−1

)
||v|| if x = y.

Chazelle further proves the following facts:

E[Dv(H)2] = −
∑

x,y∈X

χ(x)χ(y)G(x, y);(A.1)

∑
x6=y

|G(x, y)| = O(||v||2tn1+(2t−1)/d).(A.2)

All the statements so far are independent of the range
of the assignment function χ. Next we show how to
modify the proof in order to accommodate the larger
domain of assignments.

We separate the cross terms in the expression (A.1)
for E[Dv(H)2], and show that even if the points in X
are assigned colors from {±1,±2}, the cross terms are
dominated by the remaining terms. Note that for any
x, y ∈ X, |χ(x)χ(y)| ≤ 4, and χ(x)2 ≥ 1. Then,

E[Dv(H)2] = −
∑

x

χ(x)2G(x, x)−
∑
x6=y

χ(x)χ(y)G(x, y)

≥ −
∑

x

G(x, x)− 4
∑
x6=y

|G(x, y)|.

By the definition of G(x, x), and the bound (A.2), we
have

E[Dv(H)2] = Ω(n||v|| − 4||v||2tn1+(2t−1)/d).

Setting ||v|| = cn−1/d gives E[Dv(H)2] = Ω((c −
4c2t)n1−1/d). Choosing c small enough so that c−4c2t >
0 completes the proof.


