Approximating Hereditary Discrepancy via Small Width Ellipsoids

Aleksandar Nikolov Kunal Talwar

Rutgers University

MSR SVC
Outline

1. Introduction
2. Ellipsoids
3. Upper Bound
4. Lower Bound
5. Conclusion
Discrepancy of Set Systems

Given a collection of m subsets $\{S_1, \ldots, S_m\}$ of a size n universe U.
Discrepancy of Set Systems

Color each universe element red or blue, so that each set is as balanced as possible.

Discrepancy: maximum imbalance (above: 1).
Matrix Representation
Matrix Representation

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 7 & 1 & 1 \\
\end{pmatrix}
\begin{pmatrix}
-1 \\
1 \\
1 \\
-1 \\
1 \\
-1 \\
1 \\
-1 \\
\end{pmatrix}
=
\begin{pmatrix}
1 \\
0 \\
0 \\
\end{pmatrix}
\]
Matrix Representation

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 7 & 1 & 1 \\
\end{pmatrix}
\begin{pmatrix}
-1 \\
1 \\
1 \\
-1 \\
1 \\
1 \\
-1 \\
1 \\
-1 \\
\end{pmatrix}
=
\begin{pmatrix}
1 \\
0 \\
\end{pmatrix}
\]

\[
disc(A) = \min_{x \in \{\pm 1\}^n} \|Ax\|_\infty
\]
Hereditary Discrepancy

For an $m \times n$ matrix A:

- **Discrepancy**:

 $$\text{disc}(A) = \min_{x \in \{\pm 1\}^n} \|Ax\|_\infty$$

- **Hereditary Discrepancy**

 $$\text{herdisc}(A) = \max_{S \subseteq [n]} \text{disc}(A|_S)$$

- $A|_S$: submatrix of columns indexed by S
 - corresponds to restricted set system $\{S_1 \cap S, \ldots, S_m \cap S\}$.
Some Applications

- **Rounding:** [Lovász, Spencer, and Vesztergombi, 1986] For any $y \in [-1, 1]^n$, there exists $x \in \{\pm 1\}^n$ such that $\|Ax - Ay\|_\infty \leq 2 \text{herdisc}(A)$.
 - efficient, if discrepancy solutions can be computed efficiently
 - used e.g. in [Rothvoß, 2013].

- **Sparsification:** Constructing ϵ-approximations, and ϵ-nets.

- **Private Data Analysis:** [Nikolov, Talwar, and Zhang, 2013] Lower bounds on the necessary error to prevent a privacy breach.
Introduction

Classical Results

- **[Spencer, 1985]** When $A \in [-1, 1]^{m \times n}$, $\text{herdisc}(A) = O(\sqrt{n \log \frac{m}{n}})$.

- **[Beck and Fiala, 1981]** When $A = (a_i)_{i=1}^n$, and $\forall i : \|a_i\|_1 \leq 1$, $\text{herdisc}(A) \leq 2$.

- **[Banaszczyk, 1998]** When $A = (a_i)_{i=1}^n$, and $\forall i : \|a_i\|_2 \leq 1$, $\text{herdisc}(A) \leq O(\sqrt{\log m})$.
 - Komlos Conjecture: $\text{herdisc}(A) \leq O(1)$.

Nikolov, Talwar (Rutgers, MSR SVC) Approximating Discrepancy
Hardness

- [Charikar, Newman, and Nikolov, 2011] NP-hard to distinguish between $\text{disc}(A) = 0$ and $\text{disc}(A) = \Omega(\sqrt{n})$ for A and $O(n) \times n$ matrix.

- [Austrin, Guruswami, and Håstad, 2013] NP-hard to approximate herdisc to within a factor of 2.
 - Is there super-constant hardness?

- The problem “$\text{herdisc}(A) \leq t$?” is in Π_2^P
 - Is it in NP? Is it Π_2^P-hard?
Approximating Discrepancy

- [Bansal, 2010] If $\text{herdisc}(A) \leq D$, can find an x such that $\|Ax\|_\infty \leq O(D \log m)$.
 - But it’s possible that $\|Ax\|_\infty \ll D$

- [Lovász, Spencer, and Vesztergombi, 1986; Matoušek, 2013] A determinant lower bound for $\text{herdisc}(A)$ is tight within a factor of $O(\log^{3/2} m)$. But not efficient!

- [Nikolov, Talwar, and Zhang, 2013] An $O(\log^3 m)$-approximation to $\text{herdisc}(A)$ by relating it to the noise complexity of an efficient differentially private algorithm.
Approximating Discrepancy

- [Bansal, 2010] If herdisc(A) $\leq D$, can find an x such that $\|Ax\|_\infty \leq O(D \log m)$.
 - But it’s possible that $\|Ax\|_\infty \ll D$

- [Lovász, Spencer, and Vesztergombi, 1986; Matoušek, 2013] A determinant lower bound for herdisc(A) is tight within a factor of $O(\log^{3/2} m)$. But not efficient!

- [Nikolov, Talwar, and Zhang, 2013] An $O(\log^3 m)$-approximation to herdisc(A) by relating it to the noise complexity of an efficient differentially private algorithm.

This work: An $O(\log^{3/2} m)$-approximation to herdisc(A).
- Simpler, more direct proof.
Our Result

Theorem

There exists an efficiently computable function f, s.t.

$$\frac{c}{\log m} f(A) \leq \text{herdisc}(A) \leq C \sqrt{\log m} f(A),$$

for absolute constants c, C.

- herdisc(A) is a max over 2^n subsets of a min over 2^n colorings
 - No easy to certify upper or lower bound
- We prove a simple geometric certificate gives both upper and lower bounds.
- First (approximate) formulation of herdisc as convex program.
Outline

1. Introduction
2. Ellipsoids
3. Upper Bound
4. Lower Bound
5. Conclusion
The Min-Width Ellipsoid

(Centrally symmetric) ellipsoid: \(E = F B_2^m \).

Hypercube: \(B_\infty^m = [-1, 1]^m \).

Convex Program (MWE): Let \(A = (a_1, \ldots, a_n), \ a_i \in \mathbb{R}^m \).

\[
f(A) = \min w \\
\text{over } E, \ w \text{ subject to} \\
\{a_1, \ldots, a_m\} \subseteq E \subseteq wB_\infty
\]
The Min-Width Ellipsoid

Minimize width w over all E and w s.t. $\{a_1, \ldots, a_m\} \subseteq E \subseteq wB_\infty$
Proof Strategy

- **Upper Bound**: \(\text{herdisc}(A) \leq C \sqrt{\log mf(A)} \)
 - Banaszczyk’s discrepancy theorem.

- **Lower Bound**: \(\frac{c}{\log m} \leq \text{herdisc}(A) \)
 - Extract a lower bound on \(\text{herdisc}(A) \) from any solution to a convex dual of the (MWE) program.
 - Bound follows from strong duality.
Outline

1. Introduction
2. Ellipsoids
3. Upper Bound
4. Lower Bound
5. Conclusion
Banaszczyk’s Theorem

Theorem ([Banaszczyk, 1998])

Let $A = (a_1, \ldots, a_n)$, where $\|a_i\|_2 \leq 1$ for all i. Let $K \subseteq \mathbb{R}^m$ be a convex body so that

$$\Pr[g \in K] \geq \frac{1}{2},$$

for $g \sim N(0,1)^m$ a standard Gaussian. Then $\exists x \in \{-1,1\}^n$ so that

$$Ax \in 10K.$$

Applying the Theorem

Take some $E = FB_2$ and w s.t. $\{a_1, \ldots, a_m\} \subseteq E \subseteq wB_\infty$.
Applying the Theorem

\[\{ F^{-1}a_1, \ldots, F^{-1}a_m \} \subseteq B_2 \subseteq K. \]
Applying the Theorem

Every facet of K is at least distance 1 from the origin.

- Because $B_2 \subseteq K$.

Chernoff bound + Union bound:

$$\Pr[g \in C \sqrt{\log m} \ K] \geq \frac{1}{2}.$$

By B.’s Theorem: \(\exists x \in \{-1, 1\}^n \), so that \(F^{-1}Ax \in K \)

- \(\iff Ax \in w \cdot C \sqrt{\log m} \ B_\infty \).
- \(\iff \|Ax\|_\infty \leq w \cdot C \sqrt{\log m} \).
- disc(A) \(\leq w \cdot C \sqrt{\log m} \).
The Bound is Hereditary

The bound immediately works for $A|_S$:

- $\{a_i\}_{i \in S} \subseteq \{a_1, \ldots, a_n\} \subseteq E \subseteq wB_\infty$.
- I.e. E an w are feasible for $A|_S$
The Bound is Hereditary

The bound immediately works for $A|_S$:

1. $\{a_i\}_{i \in S} \subseteq \{a_1 \ldots, a_n\} \subseteq E \subseteq wB_\infty$.
2. I.e. E an w are feasible for $A|_S$
The Bound is Hereditary

The bound immediately works for $A|_S$:

- $\{a_i\}_{i \in S} \subseteq \{a_1 \ldots , a_n\} \subseteq E \subseteq wB_\infty$.
- I.e. E an w are feasible for $A|_S$
- $\text{herdisc}(A) \leq w \cdot C \sqrt{\log m}$.
Spectral Lower Bound

Smallest singular value: \(\sigma_{\text{min}}(A) = \min_x \frac{\|Ax\|_2}{\|x\|_2} \).

Proposition

For any \(m \times n \) matrix \(A \), any diagonal \(P \geq 0 \), \(\text{tr}(P^2) = 1 \),

\[
\text{disc}(A)^2 \geq n\sigma_{\text{min}}^2(PA).
\]

Comes from (the dual of) a convex relaxation of \(\text{disc}(A) \).
Spectral Lower Bound

Smallest singular value: \(\sigma_{\text{min}}(A) = \min_x \frac{\|Ax\|_2}{\|x\|_2} \).

Proposition

*For any \(m \times n \) matrix \(A \), any diagonal \(P \geq 0 \), \(\text{tr}(P^2) = 1 \),

\[
\text{disc}(A)^2 \geq n\sigma_{\text{min}}^2(PA).
\]

Comes from (the dual of) a convex relaxation of \(\text{disc}(A) \).

Implies for any \(S \subseteq [n] \):

\[
\text{herdisc}(A)^2 \geq |S|\sigma_{\text{min}}^2(PA|_S).
\]
Proof.

\[\text{disc}(A)^2 = \min_{x \in \{-1,1\}^n} \max_{i=1}^{m} \left(\sum_{j=1}^{n} A_{ij} x_j \right)^2 \]
Proof.

$$\text{disc}(A)^2 = \min_{x \in \{-1, 1\}^n} \max_{i=1}^m \left(\sum_{j=1}^n A_{ij} x_j \right)^2$$

$$\geq \min_{x \in \{-1, 1\}^n} \sum_{i=1}^m P_{ii}^2 \left(\sum_{j=1}^n A_{ij} x_j \right)^2 \quad \text{(avaraging)}$$
Proof.

\[
\text{disc}(A)^2 = \min_{x \in \{-1,1\}^n} \max_{i=1}^m \left(\sum_{j=1}^n A_{ij} x_j \right)^2 \\
\geq \min_{x \in \{-1,1\}^n} \sum_{i=1}^m P_{ii}^2 \left(\sum_{j=1}^n A_{ij} x_j \right)^2 \quad \text{(avaraging)} \\
= \min_{x \in \{-1,1\}^n} \|PAx\|_2^2
\]
Proof.

\[\text{disc}(A)^2 = \min_{x \in \{-1,1\}^n} \max_{i=1}^m \left(\sum_{j=1}^n A_{ij} x_j \right)^2 \]

\[\geq \min_{x \in \{-1,1\}^n} \sum_{i=1}^m P_{ii}^2 \left(\sum_{j=1}^n A_{ij} x_j \right)^2 \quad \text{(avaraging)} \]

\[= \min_{x \in \{-1,1\}^n} \| PAx \|_2^2 \]

\[\geq n\sigma_{\min}^2(PA) \quad (x \in \{-1,1\}^n \implies \|x\|_2 = n^{1/2}) \]
Dual of (MWE)

Primal

\[f(A) = \min w \]
\[\text{subject to} \]
\[\{a_1, \ldots, a_m\} \subseteq E \subseteq wB_\infty \]

Nuclear norm: \(\|M\|_S \) is equal to the sum of singular values of \(M \).

Dual

\[f(A) = \max \|PAQ\|_S \]
\[\text{subject to} \]
\[P, Q \geq 0, \text{ diagonal} \]
\[\text{tr}(P^2) = \text{tr}(Q^2) = 1 \]
Spectral LB from the Dual

Lemma

For any feasible P and Q, there exists a set $S \subseteq [n]$ such that

$$|S|\sigma_{\min}(PA|_S)^2 \geq \frac{c^2}{(\log m)^2} \|PAQ\|_{S_1}^2.$$

The set S is efficiently computable.

Spectral lowerbound \Rightarrow herdisc$(A) \geq \frac{c}{\log m} f(A)$.
Restricted Invertibility Principle

Theorem ([Bourgain and Tzafriri, 1987; Spielman and Srivastava, 2010])

Assume that any two nonzero singular values σ_i, σ_j of the $m \times k$ matrix M satisfy $\frac{1}{2} \leq \frac{\sigma_i}{\sigma_j} \leq 2$. Then there exists a subset $S \subseteq [k]$ such that

$$|S|\sigma_{\min}(M|_S)^2 \geq \frac{1}{64k}\|M\|_{S_1}^2$$
Restricted Invertibility Principle

Theorem ([Bourgain and Tzafriri, 1987; Spielman and Srivastava, 2010])

Assume that any two nonzero singular values σ_i, σ_j of the $m \times k$ matrix M satisfy $\frac{1}{2} \leq \frac{\sigma_i}{\sigma_j} \leq 2$. Then there exists a subset $S \subseteq [k]$ such that

$$|S|\sigma_{\text{min}}(M|S)^2 \geq \frac{1}{64k} \|M\|_{S_1}^2$$

Simple transformations to PAQ to get a matrix M:
- M satisfies the assumption of the restricted invertibility principle
- $\|M\|_{S_1} \geq \frac{\sqrt{k}}{\log m} \|PAQ\|_{S_1}$
 - Captures a large fraction of the dual value
- All columns of M are projections of columns of PA
 - Spectral lower bounds for M lower bound herdisc(A)
Outline

1. Introduction
2. Ellipsoids
3. Upper Bound
4. Lower Bound
5. Conclusion
Conclusion

This work:

- $O(\log^{3/2} m)$ approximation for hereditary discrepancy
- *Direct* proof using geometric techniques
- Approximate *characterization* of hereditary discrepancy as a *convex program*
 - Can use tools of convex analysis to understand herdisc.

Open:

- $2 + \epsilon$ hardness of approximating hereditary discrepancy
- How far can $f(A)$ be from herdisc(A)?
- Constructive proof of Banaszczyk's theorem
 - Improve the approximation ratio
Conclusion

This work:
- \(O(\log^{3/2} m) \) approximation for hereditary discrepancy
- *Direct* proof using geometric techniques
- Approximate *characterization* of hereditary discrepancy as a *convex program*
 - Can use tools of convex analysis to understand herdisc.

Open:
- \(2 + \epsilon \) hardness of approximating hereditary discrepancy
- How far can \(f(A) \) be from herdisc\((A)\)?
- Constructive proof of Banaszczyk’s theorem
- Improve the approximation ratio
Thank you!
References

